Calcolo delle probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo delle probabilità"

Transcript

1 Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche molto lontani da quello appena citato, ad esempio il Google Rank (l algoritmo di ricerca di Google ideato da Sergey Brin e Larry Page, i fondatori di Google) si basa sulle catene di Markov alla cui base vi è la probabilità. Il calcolo delle probabilità è uno strumento che rende razionale il comportamento umano in condizioni di incertezza. Un evento è un qualsiasi fatto o avvenimento che può essere osservato. Un evento è descritto da un enunciato, che può essere vero o falso. E necessario che, quando sono note tutte le modalità dello svolgimento dell osservazione o dell esperimento casuale in questione, sia possibile solo una delle conclusioni: vero, se l evento si è verificato, falso, se l evento non si è verificato. Un evento si dice casuale o aleatorio se può verificarsi oppure no: le cause che lo producono non sono oggettivamente controllabili. Un esperimento che dà luogo a differenti esiti se ripetuto sotto le stesse condizioni viene chiamato esperimento casuale. Pur conoscendone i dati iniziali e le leggi che lo governano non possiamo prevederne il risultato, ma possiamo conoscere l insieme di tutti i possibili risultati. Essi sono chiamati eventi elementari. Un evento si dice composto se può essere scomposto in più eventi elementari. Esempi di esperimenti casuali: estrazione di una carta da un mazzo, lancio di un dado o di una moneta. Esempi di eventi elementari nel lancio di un dado: esce il numero 1,, esce il numero 6. Invece l evento esce un numero dispari non è elementare essendo l unione degli eventi (incompatibili) esce il numero 1, esce il numero 3, esce il numero 5. Lo spazio campionario è l insieme dei risultati possibili di un esperimento casuale e solitamente si indica con la lettera Ω. Quindi nel lancio del dado Ω = {1,2,3,4,5,6}, nel lancio di una moneta Ω = {T, C}. Un evento si dice certo se in seguito ad un esperimento deve necessariamente verificarsi, ad esempio l uscita di un numero naturale tra 1 e 6 nel lancio di un dado a sei facce; si dice impossibile se non può accadere in un certo esperimento, ad esempio l uscita del numero 7 nel dado; aleatorio in tutti gli altri casi. E di questi eventi che si occupa la probabilità. Dato un evento E si definisce evento complementare di E l evento corrispondente al non verificarsi di E. Si indica con E o con 1 E. Un medesimo evento può essere certo, impossibile o aleatorio a seconda del contesto. Ad esempio l evento Mario supera l esame di probabilità è certo se Mario ha corrotto la

2 commissione esaminatrice, possibile se ha studiato, impossibile se il giorno dell esame non si presenta. Due eventi si dicono incompatibili (o disgiunti) se il verificarsi dell uno esclude il verificarsi dell altro, ossia se essi non si verificano contemporaneamente, cioè se E 1 E 2 =. Ad esempio nel lancio di una moneta l evento esce testa e l evento esce croce sono incompatibili, così come nel lancio di un dado l evento esce il numero 2 e l evento esce un numero maggiore di 3 sono incompatibili. Due eventi elementari sono sempre incompatibili. Due eventi si dicono compatibili se non sono incompatibili, cioè se E 1 E 2. Esempio: l evento esce il numero 3 è compatibile con l evento esce un numero dispari. Due eventi si dicono esaustivi se la loro unione genera tutto lo spazio campionario, cioè se E 1 E 2 = Ω. Esempio: l evento esce un numero pari e l evento esce un numero dispari sono esaustivi nel lancio di un dado perché la loro unione dà tutto lo spazio degli eventi Ω = {1,2,3,4,5,6}. Un certo numero di eventi costituisce una partizione se tali eventi sono esaustivi e incompatibili a due a due. Definizioni di probabilità 1. Probabilità classica o laplaciana o a priori La probabilità di un evento E è il rapporto tra i casi favorevoli al verificarsi dell evento e quelli possibili (o totali), a condizione che i casi possibili siano finiti ed equiprobabili (cioè distribuiti uniformemente): P(E) = casi favorevoli casi possibili Esempio: lancio di una moneta: P(T)=1/2; P(C)=1/2; lancio di un dado: P(pescare un numero pari)=1/2 e così via. La definizione classica di probabilità è inutilizzabile quando non si conosce a priori il numero dei casi possibili, come nella quasi totalità degli eventi reali. Gli sviluppi del calcolo delle probabilità e le sue applicazioni in ambito commerciale fecero vacillare la definizione classica. Essa non si può applicare quando gli esiti sono infiniti. Esempio: nell insieme dei naturali qual è la probabilità di scegliere a caso un numero pari? L intuizione dice ½, ma la definizione classica non è applicabile perché sia gli esiti favorevoli che quelli possibili sono infiniti (NB Tra le altre cose l insieme N è infinito perché può essere messo in

3 corrispondenza biunivoca con il suo sottoinsieme proprio dei numeri pari, e sono entrambi insiemi infiniti con cardinalità numerabile). Esempio: al Luna Park una ruota di legno, divisa in settori colorati di ampiezze diverse, gira molto velocemente mentre un giocatore lancia una freccetta colpendo a caso uno dei settori. Qual è la probabilità di colpire il settore giallo, il cui angolo al centro misura 9? La probabilità di colpire un settore è data dal rapporto tra la superficie considerata e quella di tutto lo spazio campione. Un settore di 9 rappresenta 9/360 dell intera ruota e dunque la probabilità vale 9/360 ossia 1/40. Esempio: calcolare la probabilità che lanciando successivamente 3 monete escano 2 croci (con grafo ad albero). Il diagramma ad albero permette di avere un elencazione grafica di tutti gli elementi dello spazio campione. Se scriviamo su ciascun ramo la probabilità dell evento scritto nel nodo seguente, la probabilità di un evento su un ramo terminale è il prodotto delle probabilità scritte sull intero percorso (applicazione della formula della probabilità composta, che vedremo). 2. Probabilità frequentista o statistica o a posteriori A causa delle critiche mosse alla concezione classica agli inizi del 900 si assiste alla nascita della concezione frequentista, dovuta soprattutto all applicazione della probabilità alle scienze sperimentali. Intuitivamente al crescere del numero delle prove effettuate tutte nelle stesse condizioni iniziali, la frequenza relativa, pur variando, tende a stabilizzarsi attorno ad un valore, e tale valore corrisponde a quello della probabilità dell evento. Dunque la probabilità di un evento E è la frequenza relativa con cui tende a presentarsi un certo evento, qualora fosse possibile effettuare un gran numero di prove tutte nelle stesse condizioni. Ossia: P(E) = m n dove m rappresenta il numero di prove che hanno verificato E, n rappresenta il numero totale delle prove. E la probabilità empirica, che dà un significato preciso al concetto di probabilità. Questa definizione si applica in quei casi in cui non è applicabile la definizione classica in quanto viene a mancare la condizione di equiprobabilità degli eventi elementari sulla quale essa si basa. Ad esempio se abbiamo motivo di ritenere che un dado sia truccato, non essendo magari costruito con materiale omogeneo, non potremo assegnare alla probabilità di uscita di un certo numero il valore 1/6. Possiamo ripetere il lancio del dado molte volte, calcolare la frequenza relativa dell uscita di ciascun numero ed assumere quel valore come probabilità dell evento. La definizione si applica a fenomeni passati dei quali si posseggano dati statistici che si sono verificati in condizioni analoghe, per esempio per una data popolazione la probabilità di sopravvivenza, o delle nascite di maschi e femmine. Si applica in fisica, biologia, medicina, economia e in tutte le scienze che utilizzano metodi statistici. E molto utile in campo assicurativo e nel controllo di qualità. Ha il pregio di aver collegato concetti molto diversi come probabilità e

4 frequenza, essendo la prima definita a priori, la seconda calcolata a posteriori. Dunque nella concezione frequentista la probabilità è ricavata a posteriori, dall esame dei dati. Esempio: calcolare la probabilità che un neonato sia maschio, sapendo che su nascite sono maschi. P(M)=52.300/ =0,523 e P(F)= = Esempio: la probabilità dell evento nel week-end pioverà non si può calcolare con tale definizione, perché è un evento non ripetibile, e nemmeno quella dell evento nasce un bambino con 2 teste, la coda e tre paia di occhi perché non si è mai realizzato (speriamo). 3. Probabilità soggettiva (di Bruno De Finetti, 1930) Cosa accade se un fenomeno casuale non si presenta con un elenco chiaro di esiti possibili, equiprobabili, tra i quali scegliere quelli favorevoli ad un certo evento? Per esempio l esito di una battaglia il giorno prima di combatterla, il fatto che domani piova o sia sereno, o che una certa squadra di un certo sport vinca un trofeo sono esempi di fenomeni che richiedono una concezione soggettiva della probabilità. Non si richiede la conoscenza del meccanismo che regola il fenomeno e la ripetibilità del fenomeno stesso. Tale concezione sottolinea l impossibilità di accertare l obiettività della probabilità. Il modello soggettivo esprime il grado di fiducia che si ha nella realizzazione di un certo evento e in esso diventa dunque fondamentale il fattore personale. E relativo alle scommesse ma anche alla gestione aziendale, ad esempio. E il numero reale P(E) tale che 0 P(E) 1 che rappresenta la quantificazione del grado di fiducia che un evento E si verifichi. E dunque il rapporto: P(E) = S V dove S è la somma che siamo disposti a pagare (cioè a scommettere) e V è la vincita che otterremmo se l evento si verificasse. Condizione di coerenza: chi scommette deve essere anche disposto a perdere la vincita V se l evento non si verifica. Esempio: il risultato della finale di Champions League, o eventi simili sono governati da un altissimo numero di fattori imprevedibili. La stima personale che diamo al verificarsi di un evento dipende pesantemente dalle quantità di informazioni che conosciamo, dal loro grado di attendibilità e da come sappiamo valutarle. 4. Probabilità assiomatica (di Kolmogorov, 1933) (teoria unificata di probabilità) La probabilità di un evento E è un numero reale p tale che: 1. p(e) 0 (positività); 2. p(e) = 1 se l evento E è certo (certezza);

5 3. p(e 1 E 2 ) = p(e 1 ) + p(e 2 ) se gli eventi sono incompatibili (unione). Dai primi due assiomi si deduce che 0 p(e) 1. Primi teoremi sulla probabilità 1. Teorema della probabilità contraria: dove E indica l evento complementare di E. p(e ) = 1 p(e), 2. Teorema della somma per eventi incompatibili: p(e 1 E 2 ) = p(e 1 ) + p(e 2 ), se gli eventi E 1, E 2 sono incompatibili, cioè se E 1 E 2 =. 3. Teorema della somma per eventi compatibili: p(e 1 E 2 ) = p(e 1 ) + p(e 2 ) p(e 1 E 2 ). Generalizzando: se gli eventi E 1, E 2,, E n sono a due a due incompatibili allora: p(e 1 E n ) = p(e 1 ) + + p(e n ). Se oltre ad essere incompatibili sono anche esaustivi, ossia costituiscono una partizione dello spazio campionario, allora: p(e 1 E n ) = p(e 1 ) + + p(e n ) = 1. Esempi: 1. Da un urna contenente palline numerate da 1 a 10 si estraggono contemporaneamente 4 numeri. Calcolare la probabilità dell evento almeno uno dei numeri estratti è pari. Basta calcolare p(e )=p(nessuno dei numeri estratti è pari) e poi usare il teorema della probabilità contraria. p(e )= (5 4 ) ( 10 )=1/42, quindi p(e)=1-1/42=41/ Si lanciano due dadi successivamente. Calcolare la probabilità dell evento E= la somma delle facce è un numero maggiore di 7 o multiplo di 3. p(somma maggiore di 7)=15/36; p(multiplo di 3)=12/36, p(s>7 and s=3k)=p(s=9 o s=12)=5/36, quindi: p(e)=15/36+12/36-5/36=22/36=11/ In un mazzo di carte romagnole (da briscola) calcolare la probabilità di pescare una figura oppure una carta di bastoni. p(figura)=12/40; p(bastoni)=10/40; p(figura di bastoni)=3/40 quindi: p(figura vel carta di bastoni)=12/40+10/40-3/40=19/40.

6 4. Calcolare la probabilità che esca una sola testa lanciando due volte una moneta equilibrata. I casi possibili sono TT, TC, CT e CC dunque p(una testa)=p(ct)+p(tc)=2/4=1/2. 5. Si hanno 8 palline bianche. Quante palline azzurre dovremmo aggiungere affinché la probabilità di estrarre una pallina bianca sia 2/3? 8/N=2/3 quindi N=12 quindi dovremmo aggiungere 12-8=4 palline azzurre.

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

TEORIA DELLA PROBABILITÀ I

TEORIA DELLA PROBABILITÀ I TEORIA DELLA PROBABILITÀ I Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [2015-16] Indice 1 Probabilità 1 1.1 Introduzione............................................ 1 1.2 Eventi...............................................

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità: indicazioni quantitative sul verificarsi di certi eventi (linguaggio comune), ad es. P di superare o

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

1 Probabilità condizionata

1 Probabilità condizionata 1 Probabilità condizionata Accade spesso di voler calcolare delle probabilità quando si è in possesso di informazioni parziali sull esito di un esperimento, o di voler calcolare la probabilità di un evento

Dettagli

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio M. Besozzi - IRCCS Istituto Auxologico Italiano L argomento... Errori cognitivi Il problema gnoseologico Dati, informazione

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

E LE M E N T I D I P R O B A B I L I T A

E LE M E N T I D I P R O B A B I L I T A L M T I D I P R O B A B I L I T A CI STORICI Il calcolo delle probabilità si è andato sviluppando piuttosto di recente, intorno al 500 e per lungo tempo solo come una branca della matematica Solo dal secolo

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006 Calcolo delle probabilità riassunto veloce Laboratorio di Bioinformatica Corso aa 2005-2006 Teoria assiomatica della probabilità S = spazio campionario = insieme di tutti i possibili esiti di un esperimento

Dettagli

PROBABILITÀ - SCHEDA N. 1 INTRODUZIONE ALLA PROBABILITÀ

PROBABILITÀ - SCHEDA N. 1 INTRODUZIONE ALLA PROBABILITÀ PROBABILITÀ - SCHEDA N. 1 INTRODUZIONE ALLA PROBABILITÀ 1. Che cos è la probabilità? «La teoria delle probabilità non è altro che il tentativo del genere umano di comprendere l incertezza dell universo,

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Appunti di Probabilità

Appunti di Probabilità Appunti di Probabilità Bruno Betrò CNR-IMATI, Sezione di Milano bruno.betro@mi.imati.cnr.it www.mi.imati.cnr.it/ bruno Testi di riferimento: Dall Aglio G., Calcolo delle Probabilità, Zanichelli Scozzafava

Dettagli

Somma logica di eventi

Somma logica di eventi Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero

Dettagli

Teoria della probabilità Assiomi e teoremi

Teoria della probabilità Assiomi e teoremi Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini 1 Elementi di calcolo delle probabilitá, teorema di Bayes e applicazioni 1.1 Definizione di probabilitá

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE AREA TECNICO ASSISTENZIALI

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Probabilità. Esperimento, risultati e spazio campionario

Probabilità. Esperimento, risultati e spazio campionario Probabilità La probabilità è usata nel linguaggio comune per dare indicazioni quantitative sul verificarsi di certi eventi: i) probabilità di incorre in un data patologia causa l abuso di alcol, fumo,

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il problema di Monty Hill nel film 21 Elementare!! Statistiche, cambio di variabili. 1 Il coefficiente di correlazione tra Indicee Stipendio vale 0,94. E possibile asserire che

Dettagli

La probabilità nella vita quotidiana

La probabilità nella vita quotidiana La probabilità nella vita quotidiana Introduzione elementare ai modelli probabilistici Bruno Betrò bruno.betro@mi.imati.cnr.it CNR - IMATI San Pellegrino, 6/9/2011 p. 1/31 La probabilità fa parte della

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott.

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Modello probabilistico di un esperimento aleatorio Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Un esperimento è il processo attraverso il quale un osservazione

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI

GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI ALLA PROBABILITÀ 17 II.1 Probabilità in senso classico

Dettagli

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità CAPITOLO 12 Calcolo delle Probabilità 12.1 Introduzione al Calcolo delle Probabilità Una storia d amore Luca abita a Lecco, Bianca a Brindisi. Lui è innamorato perso. Anche lei ama lui, ma, ultimamente,

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Pubblicato sul n 36 di Rassegna, periodico dell Istituto Pedagogico, agosto 2008

Pubblicato sul n 36 di Rassegna, periodico dell Istituto Pedagogico, agosto 2008 LA PROBABILITÀ Margherita D Onofrio Pubblicato sul n 36 di Rassegna, periodico dell Istituto Pedagogico, agosto 2008 Perché Le ragioni per introdurre la matematica dell incerto nella scuola di base possono

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

INTRODUZIONE ALLA PROBABILITÀ NELLA SCUOLA MEDIA CONCETTI DI BASE

INTRODUZIONE ALLA PROBABILITÀ NELLA SCUOLA MEDIA CONCETTI DI BASE 1 INTRODUZIONE ALLA PROBABILITÀ NELLA SCUOLA MEDIA CONCETTI DI BASE 2 Un fenomeno casuale, o aleatorio, èun fenomeno osservabile, ma non prevedibile. Cioè conoscendo i dati iniziali e le leggi, non possiamo

Dettagli

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva Calcolo delle probabilità. Gli eventi - definizioni propedeutiche 2. La probabiltà nella concezione classica. La probabiltà nella concezione frequentista 4. La probabiltà nella concezione soggettiva. La

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

Appunti: elementi di Probabilità

Appunti: elementi di Probabilità Università di Udine, Facoltà di Scienze della Formazione Corso di Laurea in Scienze e Tecnologie Multimediali Corso di Matematica e Statistica (Giorgio T. Bagni) Appunti: elementi di Probabilità. LA PROBABILITÀ..

Dettagli

MODULI DI LINEAMENTI DI MATEMATICA

MODULI DI LINEAMENTI DI MATEMATICA R. MANFREDI - E. FABBRI - C. GRASSI TRIENNIO licei scientifici MODULI DI LINEAMENTI DI MATEMATICA per il triennio della scuola secondaria di secondo grado L CALCOLO DELLE PROBABILITÀ E ELEMENTI DI STATISTICA

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

TEOREMI SULLA PROBABILITÀ

TEOREMI SULLA PROBABILITÀ TEOREMI SULLA PROBABILITÀ o Probabilità totale oprobabilità contraria oprobabilità condizionata odipendenza stocastica oprobabilità composta oformula di Bayes oproblemi di riepilogo Probabilità di eventi

Dettagli

PROBABILITÀ E DECISIONI IN MEDICINA: I TEST DIAGNOSTICI

PROBABILITÀ E DECISIONI IN MEDICINA: I TEST DIAGNOSTICI Università degli Studi di Padova CICLO DI LEZIONI SCIENZE DI BASE PER I DOTTORATI DI RICERCA DELL AREA MEDICA Anno accademico 2005-06 Temi di Statistica ed Epidemiologia PROBABILITÀ E DECISIONI IN MEDICINA:

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

1 Breve introduzione alla probabilità elementare: approccio intuitivo

1 Breve introduzione alla probabilità elementare: approccio intuitivo Breve introduzione alla probabilità elementare: approccio intuitivo. È usuale che in molte situazioni che si presentano concretamente ci sia a priori incertezza su ciò che accadrà nel futuro: il calcolo

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Marco Di Marzio. Primi elementi di inferenza statistica

Marco Di Marzio. Primi elementi di inferenza statistica Marco Di Marzio Primi elementi di inferenza statistica Ringraziamenti Un sentito ringraziamento a Fabiola Del Greco e Agnese Panzera per la preziosa collaborazione. Indice Probabilità. Esperimenti casuali...........................................2

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Esercitazione del 18/1/2005 Dott. Claudio Conversano Esercizio 1 (non svolto in aula) Vengono lanciati

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità à 1. Introduzione Calcolo delle Probabilità Il Calcolo delle Probabilità nasce dagli studi matematici sui giochi d azzardo. Il Calcolo delle Probabilità è lo strumento che permette all uomo di assumere

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

1 Calcolo delle probabilità

1 Calcolo delle probabilità 1 Calcolo delle probabilità Lo studio delle leggi del caso va sotto il nome di calcolo delle probabilità. Ci fu un vigoroso sviluppo di questa disciplina a cavallo tra il cinquecento e il seicento e lo

Dettagli

Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes

Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes Sessione Live #3 Settimana dal 7 all 11 marzo 2003 Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes Lezioni

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Capitolo 4 PROBABILITÀ. Thursday, 5 April 12

Capitolo 4 PROBABILITÀ. Thursday, 5 April 12 Capitolo 4 PROBABILITÀ Cosa imparerete Idea di esperimento aleatorio Idea di evento Come si definisce una probabilità Idea di probabilità condizionata Determinare se gli eventi sono indipendenti Usare

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza La probabilità Teoria della probabilità: eventi, proprietà additiva e moltiplicativa L incertezza Nella maggior parte delle situazioni la nostra condizione è caratterizzata dallincertezza Incertezza relativa

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti colori, tra cui 382 rosse. Qualche tempo dopo il donatore

Dettagli

UNA STORIA PROBABILE di Francesca D Iapico

UNA STORIA PROBABILE di Francesca D Iapico UNA STORIA PROBABILE di Francesca D Iapico Si mostrano qui alcune delle tappe attraverso le quali si è compiuto il cammino che ha portato al calcolo delle probabilità come lo usiamo oggi Un racconto pensato

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

CENNI DI CALCOLO COMBINATORIO E DELLE PROBABILITÀ Appunti delle lezioni del Prof. Giuseppe Puggioni a cura di M. Marras e B.

CENNI DI CALCOLO COMBINATORIO E DELLE PROBABILITÀ Appunti delle lezioni del Prof. Giuseppe Puggioni a cura di M. Marras e B. CENNI DI CALCOLO COMBINATORIO E DELLE PROBABILITÀ Appunti delle lezioni del Prof. Giuseppe Puggioni a cura di M. Marras e B. Pettinelli CALCOLO COMBINATORIO Disposizioni semplici Dati n elementi ( a 1,

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Il calcolo delle probabilità

Il calcolo delle probabilità Il calcolo delle probabilità Cenni storici Come in molti altri casi, anche l'individuazione di una data precisa per la collocazione della nascita della teoria della probabilità non ha soluzione univoca.

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica MARIA GARETTO STATISTICA Lezioni ed esercizi Corso di Laurea in Biotecnologie A.A. 00/00 Quaderno # Novembre 00 M. Garetto - Statistica

Dettagli

Esericizi di calcolo combinatorio

Esericizi di calcolo combinatorio Esericizi di calcolo combinatorio Alessandro De Gregorio Sapienza Università di Roma alessandrodegregorio@uniroma1it Problema (riepilogativo) La segretaria di un ufficio deve depositare 3 lettere in 5

Dettagli