2 R = mgr mv2 0 = E f

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2 R = mgr + 1 2 mv2 0 = E f"

Transcript

1 Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore minimo di h (h, da esprimere in funzione di R) perchè il corpo possa compiere un giro completo. Ponendo adesso h = nh, calcolare: b) il valore della forza, N, esercitata dalla pista sul corpo quando questo si trova la prima volta nel punto più basso del percorso circolare (indicato con A); c) il valore dellaccelerazione centripeta, a C, nel punto più alto del percorso circolare. La guida termina, dopo il cerchio, con un tratto in salita, che si interrompe ad altezza pari a R formando un angolo θ rispetto al piano orizzontale. Calcolare: d) a quale distanza, D, dal punto A atterra il corpo? A: m = 0.12 kg; R = 1.4m; n = 3/2; θ = 30 o B: m = 0.20 kg; R = 1.0m; n = 4/3; θ = 30 o Figura 1 SOLUZIONE In figura sono mostrate le forze agenti sul corpo in diverse posizioni lungo il giro della morte. Scegliamo in ogni punto della traiettoria un sistema di riferimento radiale, positivo verso il centro. a. Perchè il corpo possa compiere un giro completo, il punto critico è il punto più alto della traiettoria, in cui la reazione vincolare deve essere al limite nulla: il peso fornisce da solo la forza centripeta necessaria per il moto circolare: mg + N = mg = m v2 R da cui v2 = gr. Durante il moto vale anche la conservazione dell energia, poichè la pista è liscia e agisce solo la forza peso (la reazione vincolare non compie lavoro).

2 Prendendo il punto di partenza (ad altezza h rispetto al fondo della pista, scelto come riferimento per l energia potenziale) e il punto più alto nel cerchio della morte a confronto, vale da cui si ricava E i = mgh = mg2r mv2 = mg2r mrg = E f h = 5 2 R b. Sia ora h = nh. Sfruttando ancora la conservazione dell energia, nel punto più basso della traiettoria E A = 1 2 mv2 A = mgh = mg 5 2 nr e quindi v2 v2 A = 5ngR. L accelerazione verso il centro del cerchio è allora a = R = 5ng e quindi la forza risultante agente sul corpo è F A = 5nmg, risultante della forza peso del corpo e della reazione vincolare in A (si veda la figura): F A = N mg da cui N = (1 + 5n)mg c. Sfruttando la conservazione dell energia tra il punto di partenza ad altezza h e il punto più alto del percorso circolare E i = mg (n 5 ) 2 R = mg2r mv2 = E f si ricava v 2 = (5n 4)gR e quindi a C = v2 = (5n 4)g R d. Quando il corpo si stacca dalla guida si trova a distanza orizzontale d 1 = R/tgθ dal punto A. Dobbiamo poi studiare il moto parabolico del corpo da quando si stacca dalla guida ad altezza R a quando atterra. Innanzitutto ci serve calcolare la sua velocità v 0 al momento del distacco, che troviamo ancora con considerazioni energetiche: E i = mg (n 5 ) 2 R = mgr mv2 0 = E f da cui v 0 = (5n 2)gR. Dopo il distacco il moto è la composizione di un moto orizzontale lungo l asse x con velocità costante pari a vcosθ, e un moto accelerato lungo l asse verticale, y: Imponendo y = 0 ricaviamo il tempo di volo, x = v 0 cosθt y = R + v 0 sinθt 1/2gt 2 t V = v 0sinθ + v 2 0 sin2 θ + 2gR avendo scartato la soluzione negativa, che corrisponde al tratto virtuale di parabola precedente il distacco. Troviamo quindi d 2 = v 0 cosθt V e la distanza dal punto A a cui atterra il corpo è allora d = d 1 + d 2 = R tgθ + v 0cosθ v 0sinθ + v0 2sin2 θ + 2gR g g A. a. h = 3.5 m; b. N = N; c. a C = 34.3 m/s 2 ; d. d = 10.0 m B. a. h = 2.5 m; b. N = N; c. a C = 26.1 m/s 2 ; d. d = 7.06 m

3 Esercizio 2 Due aste di lunghezza 2L e una di lunghezza L, tutte con densità lineare costante λ, sono connesse come illustrato in figura. Il sistema giace in un piano verticale e può ruotare senza attrito attorno al polo O. Calcolare: a) Il momento di inerzia del sistema rispetto a O. b) La distanza d tra il centro di massa del sistema e O. c) Il valore dell impulso (orizzontale) che si deve trasferire al centro di massa affinchè il sistema possa compiere un giro completo. A: L = 1.0 m; λ = 1 kg/m B: L = 0.7 m; λ = 0.5 kg/m SOLUZIONE a. Il momento di inerzia del sistema formato dalle tre aste è la somma dei momenti di inerzia delle medesime. Possono essere calcolati sfruttando il teorema di Huygens-Steiner: I = I CM + md 2 ; il momento d inerzia di un asta omogenea, rispetto al suo centro di massa, è I CM = 1/12ms 2 ; m, s e d sono rispettivamente massa, lunghezza dell asta, e distanza del punto di rotazione dal centro di massa dell asta. Tutte le aste sono omogenee e quindi il centro di massa si trova nel centro geometrico; inoltre la loro massa è proporzionale alla loro lunghezza. Sia M = λl la massa dell asta corta; le aste lunghe hanno allora massa 2M. - asta orizzontale di lunghezza 2L: I 1 = 1/12(2M)(2L) 2 = 2/3ML 2. - asta verticale di lunghezza 2L: I 2 = 1/12(2M)(2L) 2 + (2M)L 2 = 8/3ML 2. - asta di lunghezza L: I 3 = 1/12ML 2 + M(2L) 2 = 49/12ML 2. Vale quindi I tot = I 1 + I 2 + I 3 = 89/12ML 2 b. Prendiamo un sistema di riferimento con l asse y lungo l asta verticale diretto verso l alto, l asse x sia orizzontale passante per O. Il centro di massa dell asta orizzontale lunga 2L si trova in (0, 0), quello dell asta verticale si trova in (0, L), quello dell asta lunga L si trova in (0, 2L). Il centro di massa si trova lungo l asse y. Per calcolare la sua posizione lungo l asse y, dalla definizione di centro di massa 0 (2M)L M(2L) y CM = = 4 5M 5 L La posizione del centro di massa è allora (0, 4 5L), e la distanza tra il perno (che si trova al centro del sdr scelto) e il centro di massa è quindi d = 4/5L La massa totale del sistema è M tot = 5M.

4 c. L asta, a cui cui viene trasferito l impulso J, ruota intorno al perno O, e perchè l asta compia un giro completo il centro di massa del sistema deve portarsi dal punto (0, d) a (0, d) al più con velocità nulla. Per la conservazione dell Energia -agisce solo la forza di gravità, e la reazione vincolare del perno compie lavoro nullo-: E i = 1 2 Iω2 min M tot gd = M tot gd = E f e quindi 4Mtot gd 3g ω min = = 8 I 89L Il momento dell impulso rispetto al perno O è, in modulo, pari a dj e ha direzione lungo l asse z (z scelto in modo tale che formi con x e y una terna cartesiana). L applicazione di questo impulso induce una variazione del momento angolare del sistema pari al momento dell impulso stesso, e quindi L = L fin L in = L fin = Iω = dj (la reazione vincolare ha momento nullo rispetto ad O). Ricaviamo quindi che J = Iω d = 5 2 M 89 3 gl Nota: come aspettato, il valore dell impulso necessario per far compiere ad un sistema vincolato un giro completo è inversamente proporzionale alla distanza dal perno del punto in cui l impulso stesso viene applicato. A: a. I = 7.42 kg m 2, b. d = 0.80 m, c. J = 42.7 kg m/s. B: a. I = 1.27 kg m 2, b. d = 0.56 m, c. J = 12.5 kg m/s.

5 Esercizio 3 Due stelle di massa M 1 e M 2 si trovano a distanza d m e percorrono orbite circolari intorno al centro di massa del sistema binario che esse costituiscono. Calcolare, per ogni stella: a) Il raggio orbitale. b) Il periodo di rotazione. c) Il momento angolare rispetto al centro di massa del sistema. A: M 1 = kg; M 2 = kg, d = m B: M 1 = kg; M 2 = kg, d = m SOLUZIONE a. e b. Le stelle si muovono su orbite circolari sotto l azione della reciproca attrazione gravitazionale, che fornisce la forza centripeta necessaria a mantenerle in orbita: G M 1M 2 d 2 = M 1 ω 2 1R 1 = M 2 ω 2 2R 2 (1) dove le ω i sono le velocità angolari (costanti, nel caso di orbite circolari, e uguali per entrambe le stelle) e R i sono i raggi orbitali, pari alle distanze delle due stelle dal centro di massa del sistema. Quest ultimo si trova sulla congiungente i centri di massa delle due stelle, e vale R 1 = M 2 M tot d = 5 7 d R 2 = M 1 M tot d = 2 7 d Si può trovare questa soluzione usando la definizione di centro di massa o usando la seconda uguaglianza di Eq. (1) a sistema con R 1 + R 2 = d. Dall eq. (1) ricaviamo anche il periodo di rotazione (identico per le due stelle), facendo uso della relazione ω = 2π/T : T = 2πd R1 = 2πd R2 G M 2 G M 1 c. Il momento angolare è un vettore perpendicolare al piano dell orbita delle due stelle e direzione tale da vedere il loro moto avvenire in senso antiorario, quindi per entrambe le stelle direzione e verso sono 2πR uguali. Il modulo invece varia per le due stelle ed è pari a L 1 = M 1 v 1 R 1 = M 1 1 T R 1 = R 2 2π 1M 1 T e L 2 = R 2 2π 2M 2 T. A: a. R 1 = m, R 2 = m; b. T = s = 9.77 ore; c. L 1 = kg m 2 /s, L 2 = kg m 2 /s B: a. R 1 = m, R 2 = m; b. T = s = 4.69 ore ; c. L 1 = kg m 2 /s, L 2 = kg m 2 /s

6 Esercizio 4 Due masse m 1 e m 2 sono connesse da una corda che gira senza attrito attorno ad un piolo fisso, come rappresentato in figura. La massa m 2 è poi connessa ad una terza massa, m 3 da una corda che gira senza scivolare attorno ad una carrucola di raggio R e massa M. Entrambe le corde sono inestensibili e di massa trascurabile. Il coefficiente di attrito dinamico tra tutte le superfici è pari a 0.3. a) Trovare il valore della massa m 3, necessaria per muovere il sistema con accelerazione pari a 3 m/s 2. b) Calcolare la tensione della corda che connette m 1 e m 2 nel caso individuato al punto a). A: m 1 = 1.4 kg; m 2 = 4.2 kg, R = 10 cm, M = 1.0kg B: m 1 = 1.2 kg; m 2 = 3.2 kg, R = 10 cm, M = 1.2kg Diagramma delle forze: in cui T i sono le tensioni delle corde che connettono gli elementi del sistema; F a,1 è la forza di attrito che sviluppa sulla superficie di contatto tra A e B, e F a,2 è quella che si sviluppa sulla superficie di contatto tra B e il piano; N A e N B sono le reazioni vincolari sulle medesime superfici. a. e b. Scegliamo un sistema di riferimento con l asse x diretto lungo il filo nella direzione del moto, l asse y sia perpendicolare a x, asse z in direzione uscente dal foglio. In questo sdr possiamo scrivere le leggi del moto (traslazione delle masse e rotazione della carrucola -tralasciamo considerazioni sull traslazione della carrucola, impedita dalla reazione vincolare R): 1 : T 1 F a,1 = m 1 a N A m A g = 0 2 : T 2 F a,1 F a,2 T 1 = m 2 a N B m A g m B g = 0

7 3 : m 3 g T 3 = m 3 a M : T 3 R + T 2 R = Iα = Ia/R dove il segno meno nell ultima relazione è dovuto al fatto che una rotazione negativa (oraria) corrisponde ad una accelerazione di traslazione positiva, data la scelta del sistema di riferimento. Si aggiungono poi le relazioni F a,1 = µn A e F a,2 = µn B. Risolvendo il sistema di equazioni si ricava m 3 = (3m 1 + m 2 )µg + (m 1 + m 2 + 1/2M)a g a mentre il valore di T 1 si ricava semplicemente dalla prima equazione: A. a. m 3 = 6.3 kg; b. T = 8.3 N B. a. m 3 = 5.2 kg; b. T = 7.1 N T 1 = F 1 + m 1 a = m 1 (µg + a)

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013 Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia Seminario didattico Ingegneria Elettronica Lezione 5: Dinamica del punto materiale Energia 1 Esercizio n 1 Un blocco di massa m = 2 kg e dimensioni trascurabili, cade da un altezza h = 0.4 m rispetto all

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

FISICA (modulo 1) PROVA SCRITTA 10/02/2014

FISICA (modulo 1) PROVA SCRITTA 10/02/2014 FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA 8. LA CONSERVAZIONE DELL ENERGIA MECCANICA IL LAVORO E L ENERGIA 4 GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA Il «giro della morte» è una delle parti più eccitanti di una corsa sulle montagne russe. Per

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio. LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO Esercizio Esercizio Esercizio Dati esercizio: I 1 =5,0 Kg m 2 I 2 =10 Kg m 2 ω i =10giri/sec

Dettagli

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo. Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

a t Esercizio (tratto dal problema 5.10 del Mazzoldi) 1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2

Dettagli

Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1

Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1 Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1 COMPITO A Un blocco di massa m 1 = 1, 5 kg si muove lungo una superficie orizzontale priva di attrito alla velocità v 1 = 8,2 m/s.

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme )

COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme ) COME SI RISOLVE UN PROBLEMA DI DINAMICA ROTAZIONALE (punto materiale ovvero corpo puntiforme ) 1. Caso dell'osservatore inerziale: l'analisi del problema procede in modo analogo a quanto fatto per la dinamica

Dettagli

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini Introduzione. Il metodo scientifico. Principi e leggi della Fisica. I modelli

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 20/2 Appello del 29/0/203. Tempo a disposizione: 2h30. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

[ ] ] = [ MLT 2. [ 3αx 2ˆ i 3αz 2 ˆ j 6αyz k ˆ ] = MLT 2. [ ] -[ 3αz 2 ˆ j ] = [ MLT 2 [ ] [ ] [ F] = [ N] = kg m s 2 [ ] = ML 1 T 2. [ ][ x 2.

[ ] ] = [ MLT 2. [ 3αx 2ˆ i 3αz 2 ˆ j 6αyz k ˆ ] = MLT 2. [ ] -[ 3αz 2 ˆ j ] = [ MLT 2 [ ] [ ] [ F] = [ N] = kg m s 2 [ ] = ML 1 T 2. [ ][ x 2. LVORO E ENERGI EX 1 Dato il campo di forze F α(3x ˆ i + 3z ˆ j + 6yz ˆ ): a) determinare le dimensioni di α; b) verificare se il campo è conservativo e calcolarne eventualmente l energia potenziale; c)

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

F 2 F 1. r R F A. fig.1. fig.2

F 2 F 1. r R F A. fig.1. fig.2 N.1 Un cilindro di raggio R = 10 cm e massa M = 5 kg è posto su un piano orizzontale scabro (fig.1). In corrispondenza del centro del cilindro è scavata una sottilissima fenditura in modo tale da ridurre

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA A.A. 204/5 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Energia potenziale Problema 26 Una molla ha una costante elastica k uguale a 440 N/m. Di quanto

Dettagli

Facoltà di Farmacia e Medicina - A.A. 2012-2013 12 giugno 2013 Scritto di Fisica (Compito A)

Facoltà di Farmacia e Medicina - A.A. 2012-2013 12 giugno 2013 Scritto di Fisica (Compito A) Facoltà di Farmacia e Medicina - A.A. 2012-2013 12 giugno 2013 Scritto di Fisica (Compito A) Corso di Laurea: Laurea Magistrale in FARMACIA Nome: Matricola Canale: Cognome: Aula: Docente: Riportare sul

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

DINAMICA, LAVORO, ENERGIA. G. Roberti

DINAMICA, LAVORO, ENERGIA. G. Roberti DINAMICA, LAVORO, ENERGIA G. Roberti 124. Qual è il valore dell'angolo che la direzione di una forza applicata ad un corpo deve formare con lo spostamento affinché la sua azione sia frenante? A) 0 B) 90

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

FAM. 1. Sistema composto da quattro PM come nella tabella seguente

FAM. 1. Sistema composto da quattro PM come nella tabella seguente Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente

Dettagli

Oscillazioni: il pendolo semplice

Oscillazioni: il pendolo semplice Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per

Dettagli

I ESERCITAZIONE. Soluzione

I ESERCITAZIONE. Soluzione I ESERCITAZIONE 1. Moto rettilineo uniforme Un bagnino B è sulla spiaggia a distanza d B = 50 m dalla riva e deve soccorrere un bagnante H che è in acqua a d H = 100 m dalla riva. La distanza tra il punto

Dettagli

DINAMICA. 1. La macchina di Atwood è composta da due masse m

DINAMICA. 1. La macchina di Atwood è composta da due masse m DINAMICA. La macchina di Atwood è composta da due masse m e m sospese verticalmente su di una puleggia liscia e di massa trascurabile. i calcolino: a. l accelerazione del sistema; b. la tensione della

Dettagli

Dinamica II Lavoro di una forza costante

Dinamica II Lavoro di una forza costante Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

Verifica sperimentale del principio di conservazione dell'energia meccanica totale

Verifica sperimentale del principio di conservazione dell'energia meccanica totale Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone

Dettagli

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un

Dettagli

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013.

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. FISICA NEVIO FORINI PROGRAMMA 11 LEZIONI DI 2 ORE + VERIFICA :

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore)

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore) L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Statica del Corpo Rigido Momento di una forza Unità 3 (4 ore) Condizione di equilibrio statico: leve

Dettagli

VERIFICA A ALUNNO. CLASSE I^. DATA...

VERIFICA A ALUNNO. CLASSE I^. DATA... VERIFICA A ALUNNO. CLASSE I^. DATA... N.B. SCHEMATIZZARE LA SITUAZIONE CON UN DISEGNO IN TUTTI GLI ESERCIZI INDICARE TUTTE LE FORMULE E TUTTE LE UNITA DI MISURA NEI CALCOLI 1-Quando spingi un libro di

Dettagli

6 Dinamica dei corpi rigidi

6 Dinamica dei corpi rigidi 6 Dinamica dei corpi rigidi (54 problemi, difficoltà 8, soglia 160) Formulario M O r F momento meccanico di una forza rispetto al polo O R risultante delle forze esterne p O r m v momento angolare di un

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

CdL in Biotecnologie Biomolecolari e Industriali

CdL in Biotecnologie Biomolecolari e Industriali CdL in Biotecnologie Biomolecolari e Industriali Corso di Matematica e Fisica recupero II prova in itinere di Fisica (9-1-2008) 1) Un sasso di 100 g viene lanciato verso l alto con una velocità iniziale

Dettagli

Fisica Generale I A.A. 2014-2015, 4 febbraio 2015. Esercizi di meccanica relativi al primo modulo del corso

Fisica Generale I A.A. 2014-2015, 4 febbraio 2015. Esercizi di meccanica relativi al primo modulo del corso Fisica Generale I A.A. 2014-2015, 4 febbraio 2015 Esercizi di meccanica relativi al primo modulo del corso Esercizio I.1 Una sbarra sottile di lunghezza l = 0.6 m e massa m = 2 kg è vincolata a ruotare

Dettagli

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi?

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi? MECCANICA Cinematica 1. Un oggetto che si muove di moto circolare uniforme, descrive una circonferenza di 20 cm di diametro e compie 2 giri al secondo. Qual è la sua accelerazione? 2. Un sasso cade da

Dettagli

L ENERGIA. L energia. pag.1

L ENERGIA. L energia. pag.1 L ENERGIA Lavoro Energia Conservazione dell energia totale Energia cinetica e potenziale Conservazione dell energia meccanica Forze conservative e dissipative Potenza Rendimento di una macchina pag.1 Lavoro

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre)

Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre) Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre) Un corpo viene lasciato cadere da un altezza di 30 m. dal suolo. In che posizione e che velocità possiede

Dettagli

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero

Dettagli

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1) 1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Suggerimenti per evitare errori frequenti nello scritto di fisica

Suggerimenti per evitare errori frequenti nello scritto di fisica Suggerimenti per evitare errori frequenti nello scritto di fisica Quelli che seguono sono osservazioni utili ad evitare alcuni degli errori piu frequenti registrati durante gli scritti di fisica. L elenco

Dettagli

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Elettrostatica 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Prof. Giovanni Ianne 1 L ELETTRIZZAZIONE PER STROFINIO Un

Dettagli

CONSERVAZIONE DELL ENERGIA MECCANICA

CONSERVAZIONE DELL ENERGIA MECCANICA CONSERVAZIONE DELL ENERGIA MECCANICA L introduzione dell energia potenziale e dell energia cinetica ci permette di formulare un principio potente e universale applicabile alla soluzione dei problemi che

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

n matr.145817 23. 01. 2003 ore 8:30-10:30

n matr.145817 23. 01. 2003 ore 8:30-10:30 Matteo Vecchi Lezione del n matr.145817 23. 01. 2003 ore 8:30-10:30 Il Moto Esterno Con il termine moto esterno intendiamo quella branca della fluidodinamica che studia il moto dei fluidi attorno ad un

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

Esercitazioni di fisica per biotecnologie

Esercitazioni di fisica per biotecnologie Esercitazioni di fisica per biotecnologie Fabrizio Grill Emanuele Zorzan Indice 1 Ripasso di matematica 3 2 Vettori e cinematica in una dimensione 8 3 Cinematica in due dimensioni 14 4 Leggi delle dinamica

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

Dinamica del corpo rigido: Appunti.

Dinamica del corpo rigido: Appunti. Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,

Dettagli

Lavoro di una forza costante

Lavoro di una forza costante Lavoro ed energia Per spostare un oggetto o per sollevarlo dobbiamo fare un lavoro Il lavoro richiede energia sotto varie forme (elettrica, meccanica, ecc.) Se compio lavoro perdo energia Queste due quantità

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili

Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Angolo di risalita = 25 Altezza massima della salita = 25,87 m Altezza della salita nel tratto lineare (fino all ultimo pilone di metallo)

Dettagli

Statica e dinamica dei fluidi. A. Palano

Statica e dinamica dei fluidi. A. Palano Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione

Dettagli

Controllo del moto e robotica industriale

Controllo del moto e robotica industriale Controllo del moto e robotica industriale (Prof. Rocco) Appello del 27 Febbraio 2008 Cognome:... Nome:... Matricola:... Firma:... Avvertenze: Il presente fascicolo si compone di 8 pagine (compresa la copertina).

Dettagli

Verifica di Fisica- Energia A Alunno. II^

Verifica di Fisica- Energia A Alunno. II^ Verifica di Fisica- Energia A Alunno. II^!!!!!!!!!!!!!! NON SARANNO ACCETTATI PER NESSUN MOTIVO ESERCIZI SVOLTI SENZA L INDICAZIONE DELLE FORMULE E DELLE UNITA DI MISURA!!!!!!!!!! 1-Il 31 ottobre ti rechi

Dettagli

IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti

IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti IL FORMULARIO DI FISICA PER LE CLASSI DI 3 E 4 LICEO SCIENTIFICO Di Pietro Aceti ATTENZIONE Quest opera è stata scritta con l intenzione di essere un comodo strumento di ripasso, essa non dà informazioni

Dettagli

Prova di auto-valutazione 2006

Prova di auto-valutazione 2006 Prova di auto-valutazione 2006 Questa prova permette ai candidati di valutare la propria abilità di risolvere problemi e di riconoscere le nozioni mancanti. La correzione sarà fatta dal proprio professore

Dettagli

La conservazione dell energia meccanica

La conservazione dell energia meccanica La conservazione dell energia meccanica Uno sciatore che scende da una pista da sci è un classico esempio di trasformazione di energia. Quando lo sciatore usa gli impianti di risalita per andare in vetta

Dettagli

I poli magnetici isolati non esistono

I poli magnetici isolati non esistono Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero

Dettagli

v = 4 m/s v m = 5,3 m/s barca

v = 4 m/s v m = 5,3 m/s barca SOLUZIONI ESERCIZI CAPITOLO 2 Esercizio n.1 v = 4 m/s Esercizio n.2 v m = 5,3 m/s = 7 minuti e 4 secondi Esercizio n.3 Usiamo la seguente costruzione grafica: fiume 1 km/h barca 7 km/h La velocità della

Dettagli

Equilibrio statico di un corpo esteso

Equilibrio statico di un corpo esteso Equilibrio statico di un corpo esteso Se una particella è in equilibrio statico, cioè se è ferma e resta ferma, la forza risultante che agisce su di essa deve essere nulla. Nel caso di un corpo esteso,

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013 Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013 Quesito 1 Due cubi A e B costruiti con lo stesso legno vengono trascinati sullo stesso pavimento.

Dettagli

R (E) = M a CM. M (E) = d L dt E k = L (E)

R (E) = M a CM. M (E) = d L dt E k = L (E) 1 CAP.7 - CORPI RIGIDI Parte I 1 Cap.7 - Corpi rigidi Corpi Rigidi Se il sistema di punti discreto diventa continuo allora i punti materiali sono elementi infinitesimi del corpo. Un sistema di punti continuo

Dettagli

Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1.

Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1. L accelerazione iniziale di un ascensore in salita è 5.3 m/s 2. La forza di contatto normale del pavimento su un individuo di massa 68 kg è: a) 2.11 10 4 N b) 150 N c) 1.03 10 3 N Un proiettile viene lanciato

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

DINAMICA e LAVORO esercizi risolti Classi terze L.S.

DINAMICA e LAVORO esercizi risolti Classi terze L.S. DINAMICA e LAVORO esercizi risolti Classi terze L.S. In questa dispensa verrà riportato lo svolgimento di alcuni esercizi inerenti la dinamica dei sistemi materiali, nei quali vengono discusse le caratteristiche

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Appunti di Fisica Generale anno accademico 2007/08

Appunti di Fisica Generale anno accademico 2007/08 Appunti di Fisica Generale anno accademico 2007/08 Francesco Fuso 1 Dipartimento di Fisica, Università di Pisa Largo Pontecorvo 3, 56127 Pisa versione 6-09.11.07 1 tel. 0502214305, e-mail: fuso@df.unipi.it,

Dettagli

MISURA DELL ACCELERAZIONE DI GRAVITA TERRESTRE

MISURA DELL ACCELERAZIONE DI GRAVITA TERRESTRE Elisa Bielli & Viviana Bosello 3 G 9/11/2015 Laboratorio di fisica 1 MISURA DELL ACCELERAZIONE DI GRAVITA TERRESTRE SCOPO: Misurare strumentalmente l accelerazione di gravità terrestre mediante l uso di

Dettagli

PROPULSORE A FORZA CENTRIFUGA

PROPULSORE A FORZA CENTRIFUGA PROPULSORE A FORZA CENTRIFUGA Teoria Il propulsore a forza centrifuga, è costituito essenzialmente da masse rotanti e rivoluenti attorno ad un centro comune che col loro movimento circolare generano una

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli