Lezione 2 Equazioni famose

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 2 Equazioni famose"

Transcript

1 Moduo 7 U.D. Lez. Laura Citrini - Matematica de continuo Lezione Equazioni amose Matematica de continuo Moduo 7 - Funzioni di più variabii Unità didattica 4 Equazioni dierenziai Laura Citrini Università degi Studi di Miano - SSRI - CdLOnine Equazione di Lapace Equazione di Lapace in R : Equazione di Lapace in R 3. Si può scrivere utiizzando operatore di Lapace, così deinito: e assume a orma 3 e assume a orma in cui non compaiono derivate seconde miste. In isica equazione di Lapace compare ne cacoo de potenziae gravitazionae, a esterno dea materia. 3

2 Moduo 7 U.D. Lez. Souzione dea equazione di Lapace Sappiamo daa isica che i potenziae è una unzione che decresce più ci si aontana daa sorgente (origine). Lo scopo è di determinare una souzione compatibie con tae esigenza isica. Per risovere questo probema, si cerca una souzione de tipo u u(r); cioè una souzione che dipenda soo daa distanza de punto P da origine O. z r OP y z P Tornando ae vecchie coordinate cartesiane, si perviene aa nota espressione de potenziae gravitazionae newtoniano: y O r H u (, y, z) K y z Equazione di D Aambert L equazione di D Aambert è detta anche equazione dee onde o equazione dea corda vibrante. u u v t Con u u(, t). In isica tae equazione dierenziae è utiizzata neo studio dea propagazione ondosa, inatti v è da intendersi come veocità di avanzamento di un ronte d onda, inteso come una supericie mobie neo spazio e che avanza nea direzione de vettore normae aa supericie. La souzione originae dovuta a D Aambert si rierisce ad una corda non vincoata e può scrivere nea orma: u(, t) F( vt) G( - vt) ed è vaida neo spazio ininito. Laura Citrini - Matematica de continuo

3 Moduo 7 U.D. Lez. Caso degi estremi vincoati () L equazione di D Aambert trova appicazione anche in isica neo studio di tutte e possibii osciazioni di un io eastico con i due estremi vincoati (issati). Dato un io eastico di unghezza issata, determinare tutte e possibii osciazioni (moto) de io tra gi estremi O ed A. La souzione competa porterà aa costruzione dea serie di Fourier. Per risovere competamente questo probema è necessario assegnare e condizioni iniziai e quee a contorno. Le osciazioni sono descritte da equazione di D Aambert. Per risovere tae probema, si utiizza i metodo di separazione dee variabii. u(, t) X()T(t) ne'ipotesi X(), T(t). A Caso degi estremi vincoati () Le condizioni iniziai mettono in evidenza che entrambi gi estremi devono essere vincoati su asse dee ascisse. Uteriori condizioni assegnano i proio iniziae (), ossia a orma de io a istante iniziae t e a veocità iniziae g() che viene impressa a io a medesimo istante. Cacoate e derivate dee unzioni e sostituite nea equazione di D Aambert, si devono risovere due equazioni dierenziai ineari ed omogenee a coeicienti costanti. A conti atti a generica souzione si esprime ne seguente modo: u(, t) sen C cos vt Dsen vt Dae condizioni a contorno, per ogni intero h, si ha: h h C h ( )sen d D h g d h ( )sen I risutato così ottenuto individua i coeicienti dea serie di Fourier. Laura Citrini - Matematica de continuo 3

4 Moduo 7 U.D. Lez. Serie di Fourier Abbiamo già introdotto a serie di Fourier nea prima parte de corso, parando di sviuppi in serie. La serie di Fourier ha a orma: a ( ) a cos b sen i termini che compaiono neo sviuppo in serie di Fourier di () vagono: a d ( ) cos b d ( ) sen e in particoare a ( ) d rappresenta i vaore medio di () ne intervao [-, ] Teorema di Dirichet Condizione soo suiciente (ma non necessaria) ainché una unzione () deinita in [-, ] sia sviuppabie in serie di Fourier, è che: () sia una unzione reae di variabie reae, con a più un numero inito di punti di discontinuità () sia periodica con periodo. () e '() siano continue a tratti ne intervao. I teorema di Dirichet è unica condizione nota sua sviuppabiità di una unzione in serie di Fourier. La serie di Fourier si può scrivere, in orma compessa, ne seguente modo: i i ( ) C e dove: C ( ) e d Laura Citrini - Matematica de continuo 4

5 Moduo 7 U.D. Lez. Equazione di Fourier La Equazione di Fourier è detta anche Equazione dea trasmissione de caore. u u u u h t t h u(, t) rappresenta a temperatura assouta de corpo in esame, mentre e variabii indipendenti, t rappresentano rispettivamente a posizione ed i tempo. I coeiciente (o h) tiene conto dea natura de mezzo in cui si propaga i caore e in prima approssimazione si può ritenere costante nea regione in questione. A dierenza dee atre contiene sia una derivata seconda che una derivata prima. In sintesi Abbiamo visto: Le equazioni dierenziai ae derivate parziai de secondo ordine più amose: L equazione di Lapace L equazione di D Aambert La serie di Fourier che da essa deriva. L equazione di Fourier FINE Laura Citrini - Matematica de continuo 5

IL PENDOLO REVERSIBILE DI KATER

IL PENDOLO REVERSIBILE DI KATER IL PENDOLO REVERSIBILE DI KATER I periodo dee osciazioni de pendoo sempice è dato daa formua: T 0 = π g Questa reazione è vaida per e piccoe osciazioni, quando, cioè, si può assimiare i seno de'angoo massimo

Dettagli

IL CALCOLO DEI LIMITI. Le operazioni sui limiti Le forme indeterminate le funzioni continue Gli asintoti Il grafico probabile di una funzione

IL CALCOLO DEI LIMITI. Le operazioni sui limiti Le forme indeterminate le funzioni continue Gli asintoti Il grafico probabile di una funzione IL CALCOLO DEI LIMITI Le operazioni sui imiti Le orme indeterminate e unzioni continue Gi asintoti I graico probabie di una unzione Pro. Giovanni Ianne Pro Giovanni Ianne 1/19 LE OPERAZIONI SUI LIMITI

Dettagli

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA http://www.itimarconi.ct.it/sezioni/didatticaonine/edie/ostruzioni/linea%0eastic... Pagina di 06/0/006 L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTIA. BREVI RIHIAMI SULLA TEORIA DELLE TRAVI INFLESSE Si

Dettagli

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo Dott. Ing aoo Serafini Cic per tutti gi appunti (AUTOAZIONE TRATTAENTI TERICI ACCIAIO SCIENZA dee COSTRUZIONI ) e-mai per suggerimenti Due incognite ipertstatiche con cedimento eastico ineare su vincoo

Dettagli

1 Limite finito per x che tende a un valore finito.

1 Limite finito per x che tende a un valore finito. CONCTTO DI LIMIT ite inito per che tende a un vaore inito. Si consideri a seguente unzione in un intorno de punto = escuso da dominio di esistenza: 6 : R \ R Acuni vaori numerici cacoati negi intorni destro

Dettagli

Equilibrio del corpo rigido

Equilibrio del corpo rigido Equiibrio de corpo rigido Probema1 Due sbarrette omogenee AB e BC aventi a stessa unghezza e a stessa massa di 6 kg, vengono sadate ne punto B in modo da formare un angoo di 90. Le due sbarrette così unite

Dettagli

Si supponga ora che, con le stesse condizioni iniziali, l urto avvenga elasticamente. Calcolare in questo caso:

Si supponga ora che, con le stesse condizioni iniziali, l urto avvenga elasticamente. Calcolare in questo caso: 1 Esercizio (tratto da Probema 8.21 de Mazzodi 2) Un asta rigida di sezione trascurabie, unga = 1 m e di massa M = 12 Kg è imperniata ne centro ed è ibera di ruotare in un piano orizzontae xy. Contro un

Dettagli

x -x-2 =3 x 2 x-2 lim

x -x-2 =3 x 2 x-2 lim G Limiti G Introduzione Si è visto, cacoando i dominio dee funzioni, che per certi vaori dea non è possibie cacoare i vaore dea Cò che ci si propone in questo capitoo è capire come si comporta a assegnando

Dettagli

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto;

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto; 1 Esercizio (tratto da Probema 8.29 de Mazzodi 2) Un asta di unghezza 1.2 m e massa M 0.5 Kg è incernierata ne suo estremo A ad un perno fisso e può osciare senza attrito in un piano verticae. A istante

Dettagli

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it Nicoa De Rosa Liceo scientiico sperimentae sessione straordinaria matematicamente.it PROBLEMA La sezione trasversae di un canae di imgazione ha a orma di un trapezio isoscee con a base maggiore in ato.

Dettagli

Scrittura delle equazioni del moto di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Scrittura delle equazioni del moto di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Scrittura dee equazioni de moto di un sistema ineare viscoso a più gradi di ibertà Prof. Adofo Santini - Dinamica dee Strutture 1 Matrice di rigidezza Teoricamente, i coefficienti dea matrice di rigidezza

Dettagli

Esercitazione 7 del corso di Statistica 2

Esercitazione 7 del corso di Statistica 2 Esercitazione 7 de corso di Statistica Prof. Domenico Vistocco Dott.ssa Paoa Costantini 9 Giugno 008 Esercizio La distribuzione dei pesi dei pesi pacchetti per confezionare per confezionare e caramee,

Dettagli

Scopo dell esperienza: verificare le leggi del pendolo e la validità dell approssimazione delle piccole oscillazioni.

Scopo dell esperienza: verificare le leggi del pendolo e la validità dell approssimazione delle piccole oscillazioni. Moto di un pendoo, soggetto a smorzamento. Scopo de esperienza: verificare e eggi de pendoo e a vaidità de approssimazione dee piccoe osciazioni. Un pendoo sempice è costituito da una massa puntiforme

Dettagli

Esercitazione 7 del corso di Statistica 2

Esercitazione 7 del corso di Statistica 2 Esercitazione 7 de corso di Statistica Dott.ssa Paoa Costantini 0 Marzo 009 Esercizio a distribuzione dei pesi dei pesi pacchetti per confezionare per confezionare e caramee, in grammi, prodotti da un

Dettagli

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE M. G. USTO ROTZIONI DEGLI ESTREMI DI UN TRVE PRISMTIC PPOGGIT LLE ESTREMITÁ E SOGGETT D UN CRICO VERTICLE CSO DEI CRICHI TRINGOLRE, UNIFORME E CONCENTRTO mgbstudio.net PGIN INTENZIONLMENTE VUOT SOMMRIO

Dettagli

Compito scritto di Elettricità e Magnetismo ed Elettromagnetismo 24 Giugno 2004

Compito scritto di Elettricità e Magnetismo ed Elettromagnetismo 24 Giugno 2004 Compito scritto di Eettricità e Magnetismo ed Eettromagnetismo 4 Giugno 4 ecupero I (II) esonero di Eettromagnetismo: esercizio C (D) in due ore Prova scritta di Eettricità e Magnetismo: esercizi A e B

Dettagli

LE POTENZE DEI NUMERI

LE POTENZE DEI NUMERI ARITMETICA LE POTENZE DEI NUMERI PREREQUISITI conoscere e proprietaá dee quattro operazioni svogere cacoi a mente ed in coonna con e quattro operazioni risovere espressioni con e quattro operazioni distinguere

Dettagli

Effetto di carichi distribuiti

Effetto di carichi distribuiti Effetto di carichi distribuiti In acune appicazioni non si può più considerare carichi appicati mediante forze concentrate per a determinazione dee azioni interne. Si pensi a peso proprio (soai, bracci

Dettagli

LIMITI E CONTINUITA. 1. Sul concetto di limite

LIMITI E CONTINUITA. 1. Sul concetto di limite LIMITI E CONTINUITA. Su concetto di imite I concetto di imite nasce da esigenza di conoscere i comportamento di una funzione agi estremi de suo insieme di definizione D. Quaora esso sia costituito da unione

Dettagli

Il piano cartesiano, la retta e le funzioni di proporzionalità

Il piano cartesiano, la retta e le funzioni di proporzionalità MATEMATICAperTUTTI I piano cartesiano, a retta e e funzioni di proporzionaità ESERCIZIO SVOLTO I piano cartesiano. Per fissare un sistema di riferimento ne piano si considerano due rette orientate fra

Dettagli

I materiali. I materiali. Introduzione al corso. Tecnologia di produzione I materiali La misura della durezza. Le prove meccaniche distruttive

I materiali. I materiali. Introduzione al corso. Tecnologia di produzione I materiali La misura della durezza. Le prove meccaniche distruttive I materiai I materiai Introduzione a corso Tecnoogia di produzione I materiai La misura dea durezza Prove non distruttive La meccanica dei materiai 2 26 Poitecnico di Torino 1 Obiettivi dea ezione Conoscere

Dettagli

Rappresentazione e codifica dell informazione

Rappresentazione e codifica dell informazione Rappresentazione e codifica de informazione Premessa I cacoatore è una macchina digitae - I suo inguaggio è composto da due soi simboi Gi esseri umani sono abituati a comunicare utizzando più simboi Come

Dettagli

Esercitazione 4 - Forze distribuite

Esercitazione 4 - Forze distribuite Università degi Studi di ergamo orso di Laurea in Ingegneria essie orso di Eementi di eccanica Esercitazione 4 - Forze distribuite Esercizio n. acoare e reazioni vincoari e e azioni interne per asta di

Dettagli

La scala logaritmica

La scala logaritmica La scaa ogaritmica Obiettivi utiizzare coordinate ogaritmiche e semiogaritmiche 1. COORDINATE LOGARITMICHE Se un numero k eá maggiore di 10, i suo ogaritmo in base 10 eá moto piuá piccoo de numero stesso:

Dettagli

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili Esempio di risouzione di struttura iperstatica co metodo misto ompemento aa ezione 47/50: Teai a nodi mobii La struttura in figura è soggetta ad un cedimento verticae dea cerniera. Tutto i teaio ha sezione

Dettagli

Studio dei vincoli di un solaio

Studio dei vincoli di un solaio Studio dei vincoi di un soaio ttraverso gi schemi statici per un determinato soaio, vengono definiti i gradi di vincoo per a vautazioni dee caratteristiche dee soecitazioni, agenti sua struttura. Tai vautazioni

Dettagli

I Segnali nella comunicazione

I Segnali nella comunicazione I Segnali nella comunicazione Nella lingua italiana il termine segnale indica una convenzione, la cui unzione è quella di comunicare qualcosa ( segnale di Partenza, segnale di aiuto, segnale stradale ecc.).

Dettagli

METODO DEGLI SPOSTAMENTI

METODO DEGLI SPOSTAMENTI Corso / MTODO DGLI SPOSTAMNTI.. Introuzione ee conizioni a contorno e souzione Per trovare gi spostamenti incogniti ei noi bisogna introurre nea reazione matriciae i equiibrio e conizioni a contorno, espresse

Dettagli

Un metodo di calcolo per le strutture monodimensionali piane

Un metodo di calcolo per le strutture monodimensionali piane www.carosantagata.it n metodo di cacoo per e strutture monodimensionai piane bstract. Si propone un metodo di cacoo per a determinazione dea configurazione di equiibrio dee strutture monodimensionai piane.

Dettagli

( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la

( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la . Limiti di una funzione LIMITI DI UNA FUNZIONE Per ottenere un informazione competa su di una funzione occorrerebbe cacoare tutti i vaori dea funzione per ogni vaore di, ma ciò è impossibie perché tai

Dettagli

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili.

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili. TEMI ESAME Esercizio 1 Tema d esame de 1/09/1998 Si consideri a struttura iustrata in figura, con EJ costante. I vaore de azione concentrata F è pari a: Figura 1.1 1 F p 4 La struttura iustrata in figura

Dettagli

FUNZIONE DI TRASFERIMENTO ASSOCIATA A UN CODICE CONVOLUZIONALE

FUNZIONE DI TRASFERIMENTO ASSOCIATA A UN CODICE CONVOLUZIONALE FUNZIONE DI TRASFERIMENTO ASSOCIATA A UN CODICE CONVOLUZIONALE La funzione di trasferimento de codice convouzionae fornisce tutte e informazioni riguardo i pesi dei cammini che si dipartono da S 0 e riconfuiscono

Dettagli

Le Condizioni per l Equilibrio

Le Condizioni per l Equilibrio Le Condizioni per Equiibrio La Statica studia e condizioni di equiibrio dei corpi ovvero e eggi cui azioni e reazioni devono soddisfare affinché aa struttura sia garantita inamovibiità. Le strutture, soggette

Dettagli

Le acque sotterranee. Tipi di acque nei terreni

Le acque sotterranee. Tipi di acque nei terreni Tipi di acque nei terreni L contenuta in un terreno può essere cassificata in modo diverso a seconda de egame esistente con i granui di terreno. Acqua di ritenuta E che aderisce ai grani di terreno, non

Dettagli

Grafici di particolari funzioni lineari

Grafici di particolari funzioni lineari A Grafici di particoari funzioni ineari Vogiamo tracciare i grafico dea funzione y ˆ jxj. x quando x 0 Sappiamo che jxj significa x quando x < 0 Possiamo aora riscrivere 'equazione di questa funzione in

Dettagli

Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Corso di Laurea in Ingegneria Aerospaziale

Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Corso di Laurea in Ingegneria Aerospaziale Università degi Studi di Roma La Saienza Facotà di Ingegneria Corso di Laurea in Ingegneria erosaziae Insegnamento di Scienza dee Costruzioni Comito scritto de 27 gennaio 2001 (4 ore) 1. Meccanica dea

Dettagli

Sfruttando le considerazioni appena fatte come misureresti il coefficiente di attrito statico μ s?

Sfruttando le considerazioni appena fatte come misureresti il coefficiente di attrito statico μ s? MISURA DEL COEFFICIENTE DI ATTRITO STATICO Materiae occorrente: piano incinato monete Nota a unghezza de piano, qua è a reazione che sussiste fra i coefficiente di attrito statico μ s e a configurazione

Dettagli

1. LA PARABOLA CON GEOGEBRA

1. LA PARABOLA CON GEOGEBRA 1. LA PARABOLA CON GEOGEBRA Dopo aver avviato i programma, chiudiamo a Vista Agebra, togiamo gi assi cartesiani e a grigia da quea grafica in modo da avorare iniziamente ne piano eucideo. Affrontiamo poi

Dettagli

La statistica descrittiva

La statistica descrittiva MATEMATICAperTUTTI Dee seguenti indagine statistiche individua a popoazione, i carattere oggetto di studio e e possibii modaità di tae carattere. 1 ESERCIZIO SVOLTO Indagine: utiizzo de tempo ibero da

Dettagli

I TEOREMI DEL CALCOLO DIFFERENZIALE

I TEOREMI DEL CALCOLO DIFFERENZIALE I TEOREMI DEL CALCOLO DIFFERENZIALE 1. DEFINIZIONI. TEOREMI DEL CALCOLO DIFFERENZIALE.1 TEOREMA DELL ESTREMANTE LOCALE. TEOREMI DI ROLLE, CAUCHY, LAGRANGE.3 TEOREMI CONSEGUENTI AL T. DI LAGRANGE 3. DETERMINAZIONE

Dettagli

Modelli di progetto delle reti di trasporto collettivo

Modelli di progetto delle reti di trasporto collettivo UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA Dipartimento di Ingegneria Civie Corso di Trasporti Urbani e Metropoitani Docente: Ing. Pieruigi Coppoa Mei di progetto dee reti di trasporto coettivo (Bozza

Dettagli

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne LA ERIVATA I UNA FUNZIONE Pro. Giovanni Ianne /22 Come si determina la retta tangente a una curva in un punto P? Per una circonerenza, la tangente è la retta che interseca la curva solo in P. IL PROBLEMA

Dettagli

Prima esercitazione progettuale Progetto di un capannone industriale in acciaio

Prima esercitazione progettuale Progetto di un capannone industriale in acciaio Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 Prima esercitazione progettuae Progetto di un capannone industriae in acciaio 1 Verifica di stabiità fesso-torsionae dea capriata....

Dettagli

MODELLI DI PROGETTO DELLA RETE DI TRASPORTO COLLETTIVO

MODELLI DI PROGETTO DELLA RETE DI TRASPORTO COLLETTIVO DIPARIMENO INGEGNERIA CIVILE UNIVERSIÀ DI ROMA OR VERGAA corso di RASPORI URBANI E MEROPOLIANI MODELLI DI PROGEO DELLA REE DI RASPORO COLLEIVO 1 PROGEO DELLA REE DI RASPORO COLLEIVO SOMMARIO Introduzione

Dettagli

Convegno Nazionale XIV ADM XXXIII AIAS Innovazione nella Progettazione Industriale Bari, 31 Agosto - 2 Settembre 2004

Convegno Nazionale XIV ADM XXXIII AIAS Innovazione nella Progettazione Industriale Bari, 31 Agosto - 2 Settembre 2004 Convegno Nazionae XIV DM XXXIII IS Innovazione nea Progettazione Industriae ari, 3 gosto - Settembre 4 PPLICZIONE DEL METODO CINEMTICO PER L STIM DELL EFFETTO DELLE TOLLERNZE SUGLI ERRORI DI POSIZIONE

Dettagli

Le equazioni e le disequazioni lineari

Le equazioni e le disequazioni lineari MATEMATICAperTUTTI Le equazioni e e disequazioni ineari Le equazioni ineari ESERCIZIO SVOLTO Le equazioni. Chiamiamo equazione ad una incognita un uguagianza fra due espressioni agebriche di cui ameno

Dettagli

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE Nel paragrafo 4 del capitolo «e onde elastiche» sono presentate le equazioni e y = acos T t +0l (1) y = acos x+0l. () a prima descrive l oscillazione di

Dettagli

LIMITI E CON TIN UITÀ DELLE FUN ZION I REALI A VARIABILE REALE

LIMITI E CON TIN UITÀ DELLE FUN ZION I REALI A VARIABILE REALE UNIVERSITÀ DEGLI STUDI DI FERRARA SCUOLA DI SPECIALIZZAZIONE PER L INSEGNAMENTO SECONDARIO Casse di Speciaizzazione A49-A59 Unità Didattica LIMITI E CON TIN UITÀ DELLE FUN ZION I REALI A VARIABILE REALE

Dettagli

RELAZIONE TECNICA BATTELLO CATAMARANO A PROPULSIONE ELETTRICA/FOTOVOLTAICA

RELAZIONE TECNICA BATTELLO CATAMARANO A PROPULSIONE ELETTRICA/FOTOVOLTAICA ELAZIONE TECNICA BATTELLO CATAMAANO A POPULSIONE ELETTICA/FOTOVOLTAICA ELAZIONE TECNICO-ILLUSTATIVA DI NATANTI PE NAVIGAZIONE ACQUE INTENE, INEENTI A TE MODELLI: Modeo A Modeo B Modeo C - Struttura competamente

Dettagli

Problemi di scelta. y ˆ 5x 800 y ˆ 1500

Problemi di scelta. y ˆ 5x 800 y ˆ 1500 A Probemi di sceta CioÁ che abbiamo studiato a proposito dea retta ci puoá essere di aiuto per risovere probemi in cui si deve fare una sceta tra diverse possibiitaá. Per esempio quando si acquista un'auto

Dettagli

5. Concetto di funzione. Dominio e codominio.

5. Concetto di funzione. Dominio e codominio. 5. Concetto di unzione. Dominio e codominio. Intro (concetto intuitivo) Che cosa e una unzione? Esempi di unzioni? Concetto di unzione Il concetto di unzione è legato all esistenza di una relazione tra

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

II parte: Teoria delle Piccole Oscillazioni

II parte: Teoria delle Piccole Oscillazioni COMPLEMENTI di MECCANICA RAZIONALE Appunti dae ezioni de Prof. Giovanni FROSALI II parte: Teoria dee Piccoe Osciazioni Università degi Studi di Firenze Dipartimento di Matematica e Informatica U.Dini Firenze

Dettagli

Integrali definiti secondo Riemann

Integrali definiti secondo Riemann Analisi matematica ntegrali deiniti secondo Riemann Calcolo integrale ntegrali deiniti secondo Riemann Trapezoide di una unzione Funzione a scala ntegrale deinito 2 2006 Politecnico di Torino 1 Analisi

Dettagli

Organi di collegamento

Organi di collegamento Organi di coegamento Linguette Ciavette Aeri scanaati Organi di coegamento - Carmine apoi pag. 1 di 10 LIGUETTA Per inguetta si intende un organo meccanico caettato in opportune cave degi aeri ed utiizzato

Dettagli

Le funzioni goniometriche

Le funzioni goniometriche CAPITOLO 1 MATEMATICA PER LA FISICA Le funzioni goniometriche Obiettivi definire e funzioni goniometriche fondamentai in riferimento ai triangoi rettangoi e aa circonferenza goniometrica risovere triangoi

Dettagli

La trasformata di Fourier

La trasformata di Fourier La trasformata di Fourier (Metodi Matematici e Cacoo per Ingegneria) Enrico Bertoazzi DIMS Università di Trento anno accademico 2005/2006 La trasformata di Fourier 1 / 15 Outine 1 La serie di Fourier La

Dettagli

B a) le velocità del corpo; C b) le componenti tangenziale e normale alla guida della sua accelerazione;

B a) le velocità del corpo; C b) le componenti tangenziale e normale alla guida della sua accelerazione; Università degi Studi di Udine, Corso di Laurea in Ingegneria Gestionae.. 13/14, Sessione di Gennaio/Febbraio 15, Prio ppeo FISIC GENERLE I 1 CFU, Prova scritta de 8 Gennaio 15 TESTI E SOLUZIONI DEI PROBLEMI

Dettagli

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE Classe V H INSEGNANTE: Marco Cerciello Testo: Matematica a colori vol. 5 ed. Petrini Concetto di unzione di variabile reale FUNZIONI REALI DI VARIABILE REALE Rappresentazione analitica di una unzione,

Dettagli

F. Piacentini - Roma1. F. Piacentini - Roma1. Il cielo a microonde spettro di potenza angolare. Mappe della radiazione di fondo cosmico (CMB)

F. Piacentini - Roma1. F. Piacentini - Roma1. Il cielo a microonde spettro di potenza angolare. Mappe della radiazione di fondo cosmico (CMB) Lo spettro di potenza angoare dea radiazione di fondo cosmica Lo spettro di potenza angoare dea radiazione di fondo cosmica F. Piacentini - Roma F. Piacentini - Roma Page Mappe dea radiazione di fondo

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2012/2013 Meccanica Razionale

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2012/2013 Meccanica Razionale orso di Laurea in Ingegneria Meccanica nno ccadeico 2012/2013 Meccanica azionae Noe... N. Matricoa... ncona, 11 gennaio 2013 1. Un punto P di assa si uove senza attrito su una guida verticae. Una oa di

Dettagli

C è in realtà un quarto sistema, meno utilizzato, che è quello del cavo.

C è in realtà un quarto sistema, meno utilizzato, che è quello del cavo. 0c - Principi costruttivi degi edifici Sua base di quanto appena detto, e interazioni tra gi eementi costruttivi (o strutturai) degi edifici portano a distinguere tre diversi principi statico-costruttivi,

Dettagli

I grafici derivati e la periodicità

I grafici derivati e la periodicità A I grafici derivati e a periodicità A partire dai grafici dee funzioni goniometriche fondamentai possiamo costruire queo di atre funzioni appicando opportune isometrie. Di seguito vediamo acuni esempi.

Dettagli

1. MISURIAMO GLI ANGOLI CON GEOGEBRA

1. MISURIAMO GLI ANGOLI CON GEOGEBRA . MISURIAMO GLI ANGOLI CON GEOGEBRA Nascondiamo gi assi cartesiani in modo da usare a finestra grafica come piano eucideo. Disegniamo un punto C che rappresenti i centro di una circonferenza e creiamo

Dettagli

Il Principio dei Lavori Virtuali e le sue applicazioni

Il Principio dei Lavori Virtuali e le sue applicazioni I T O L O 12 I rincipio dei Lavori Virtuai e e sue appicazioni di Giuiano ugusti e aoo Maria Mariano I rincipio dei Lavori Virtuai appassiona da moti secoi gi studiosi di Meccanica. Le figure sopra riportate

Dettagli

Marco Ferrando - Appunti del corso Architettura Navale 1: Principio di similitudine

Marco Ferrando - Appunti del corso Architettura Navale 1: Principio di similitudine Marco Ferrando Appunti de corso Architettura Naae 1: Principio di simiitudine 2. PRINCIPIO DI SIMILITUDINE Neo studio dea resistenza e dea propusione dee imbarcazioni si à aro uso dea simiitudine in quanto

Dettagli

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2 ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. 1) Risovere e seguenti equivaenze CLASSE 1TGC2 1 5 m = mm 6 44 km 2 = m 2 2 34,5 dam 2 = dm 2 7 9 cm 3 = m 3 3 5 cm 2 = m 2

Dettagli

Le disequazioni CAPITOLO 2 1. LE DISEQUAZIONI CON DERIVE

Le disequazioni CAPITOLO 2 1. LE DISEQUAZIONI CON DERIVE CAPITOLO Le disequazioni 1. LE DISEQUAZIONI CON DERIVE Le disequazioni si risovono con o stesso comando che abbiamo imparato ad usare per risovere e equazioni, sia che si tratti di disequazioni intere

Dettagli

Interazione tra forze verticali e longitudinali: effetti anti 5.5 aggiornato 19-11-2013

Interazione tra forze verticali e longitudinali: effetti anti 5.5 aggiornato 19-11-2013 Interazione tra forze verticai e ongitudinai: effetti anti 5.5 aggiornato 19-11-2013 Ne piano frontae si studia interazione tra forze verticai Fz e forze aterai Fy sviuppate a iveo de impronta a terra.

Dettagli

Il campo magnetico: introduzione.

Il campo magnetico: introduzione. ** ITN - Caboto - Gaeta ** isica - prof. Vinice Luigi - **IISS-Caboto- Gaeta**isica-prof. Vinice Luigi- I campo magnetico: introuzione. acciamo 'ipotesi i avere un eettrone che viaggia a veocità v e è

Dettagli

Onde. si definisce onda una perturbazione che si propaga. Non si ha propagazione di materia ma solo di energia

Onde. si definisce onda una perturbazione che si propaga. Non si ha propagazione di materia ma solo di energia Onde onde meccaniche (mezzo) onde elettromagnetiche (uoto, c = 9979458 m/s) si deinisce onda una perturbazione che si propaga. Non si ha propagazione di materia ma solo di energia Onde Meccaniche perturbazione

Dettagli

Appunti delle lezioni di Tecnica delle costruzioni

Appunti delle lezioni di Tecnica delle costruzioni ppunti dee ezioni di Tecnica dee costruzioni Teoria dee strutture La souzione eastica. La trascurabiità dea deformazione tagiante rispetto a uea fessionae: considerazioni e imiti. La trascurabiità dea

Dettagli

Origine fisica di equazioni alle derivate parziali

Origine fisica di equazioni alle derivate parziali Origine fisica di equazioni alle derivate parziali Equazione del calore Dato un corpo nello spazio, rappresentato con un sottoinsieme A di 3, indichiamo con u(, y, z, t) la temperatura del corpo nel punto(,

Dettagli

1 - Dimostrare che i vettori. formano un triangolo rettangolo. 2 - Dimostrare che se a+ b+ c = 0 (cioè se i tre vettori formano un triangolo) allora:

1 - Dimostrare che i vettori. formano un triangolo rettangolo. 2 - Dimostrare che se a+ b+ c = 0 (cioè se i tre vettori formano un triangolo) allora: CALCOLO VETTORIALE Moti degi esercizi proposti possono essere risoti considerando e proprietà dee figure geometriche formate dai vettori. Si richiede invece di risoveri utiizzando i cacoo vettoriae. -

Dettagli

Comportamento meccanico dei materiali Unità 4: Cinematica ed equilibrio del corpo rigido

Comportamento meccanico dei materiali Unità 4: Cinematica ed equilibrio del corpo rigido omportamento meccanico dei materiai Unità 4: inematica ed equiibrio de corpo rigido Definizioni Gradi di ibertà Numero minimo di coordinate con e quai è possibie definire in modo non ambiguo a posizione

Dettagli

Capitolo 5. Calcolo infinitesimale

Capitolo 5. Calcolo infinitesimale Capitolo 5 Calcolo ininitesimale 5 Derivazione a b R ed ] a, Siano ( :(, DEFINIZINE Diremo che ( è derivabile nel punto se esiste inito il seguente ite ( ( e porremo per deinizione ( ( ( La unzione : (

Dettagli

ROMA Guida all ICI 2011

ROMA Guida all ICI 2011 ROMA Guida a ICI 2011 Roma Capitae è un ente territoriae speciae dotato di particoare autonomia che amministra i territorio di Roma. A partire da 3 ottobre 2010 Roma Capitae si sostituisce a Comune di

Dettagli

Le equazioni di alcune superfici dello spazio

Le equazioni di alcune superfici dello spazio A Le equazioni di acune suerfici deo sazio L equazione di una suerficie ciindrica In geometria anaitica si dice suerficie ciindrica una quaunque suerficie ce a come direttrice una curva aartenente ad un

Dettagli

ZANICHELLI. Marco Bramanti Carlo D. Pagani Sandra Salsa Analisi matematica 2

ZANICHELLI. Marco Bramanti Carlo D. Pagani Sandra Salsa Analisi matematica 2 Copyright 2009 Zanichei editore S.p.A., yia Imerio 34, 40126 Boogna [6485) I diritti di eaborazione in quasiasi forma o opera, di memorizzazione anche digitae, su supporti di quasiasi tipo (incusi magnetici

Dettagli

Chimica fisica superiore. Modulo 1. Esercitazione 6. Laboratorio di diffrazione Campione reale: identificazione e dimensione dei cristalliti

Chimica fisica superiore. Modulo 1. Esercitazione 6. Laboratorio di diffrazione Campione reale: identificazione e dimensione dei cristalliti Chiica fisica superiore Moduo 1 Esercitazione 6 Laboratorio di diffrazione Capione reae: identificazione e diensione dei cristaiti Sergio Brutti Esercitazione in aboratorio 1. I diffrattograi dei 5 capioni

Dettagli

Fig. 1. Fig. 2. = + +ωc

Fig. 1. Fig. 2. = + +ωc Rifasamento monofase Sia dato i iruito di fig. 1 ostituito da un generatore di tensione indipendente reae di f.e.m. ed impedenza serie Z, da una inea di aimentazione di impedenza Z e da un ario + (a maggior

Dettagli

Fondazioni di Comunità

Fondazioni di Comunità Ufficio Nazionae per i probemi sociai e i avoro dea CEI 3 seminario estivo Lamezia Terme, 19-22 ugio 2017 Fondazioni di Comunità Davide Maggi Università degi Studi de Piemonte Orientae Cambiamenti in atto

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1 APPLICAZIONI LINEARI Applicazioni lineari tra spazi R n spazi di matrici spazi di polinomi e matrice associata rispetto ad una coppia di basi Endomorismi e matrice associata rispetto

Dettagli

1.0 I SISTEMI IPERSTATICI

1.0 I SISTEMI IPERSTATICI F. Cucco Lezioni di Scienza dee costruzioni. I SISTEMI IPERSTTICI E stato più vote ripetuto che o scopo precipuo dea Scienza dee Costruzioni è queo di poter stabiire se un manufatto, da noi progettato

Dettagli

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE DIDTTIC DI DISEGNO E DI PROGETTZIONE DELLE COSTRUZIONI PROF. CRELO ORN ING. LUR SGRBOSS ODULO DUE IL PROBLE DELL TRVE DI DE SINT VENNT (PRTE B) ODULI PER LO SPECILIZZNDO oduo 0 IN QUESTO ODULO: IL PROBLE

Dettagli

ELEMENTI COSTRUTTIVI DI MACCHINE BIOMEDICHE

ELEMENTI COSTRUTTIVI DI MACCHINE BIOMEDICHE ELEMENTI COSTRUTTIVI DI MACCHINE BIOMEDICHE PROBLEMA DELLA LINEA ELASTICA INSTABILITA DELLA TRAVE A CARICO DI PUNTA (PROBLEMA BUCKLING O DI EULERO) A cura di ing. Andrea Spezzaneve Ph.D. Mechanica Engineer

Dettagli

Corso di Economia ed Estimo

Corso di Economia ed Estimo UNIVERSITA DEGLI STUDI DELLA ASILICATA FACOLTA DI INGEGNERIA Corso di Economia ed Estimo Prof. enedetto Manganei dapit Esercitazione : I vaore di trasformazione impiegato come procedimento I quesito: La

Dettagli

I vettori CAPITOLO 2 1. I VETTORI CON GEOGEBRA. Ci sono due comandi selezionabili dai menu di disegno che operano sui vettori:

I vettori CAPITOLO 2 1. I VETTORI CON GEOGEBRA. Ci sono due comandi selezionabili dai menu di disegno che operano sui vettori: CAPITOLO 2 I vettori 1. I VETTORI CON GEOGEBRA Ci sono due comandi seezionabii dai menu di disegno che operano sui vettori: 3-Vettore tra due punti permette di disegnare un vettore che ha origine ne primo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Eettromagnetismo Prof. Francesco Ragusa Università degi tudi di Miano Lezione n. 6 2.2.26 Condizioni a contorno Equazione di Lapace nei dieettrici Corrente eettrica. Equazione di continuità Legge di Ohm

Dettagli

Modello del moto vario nelle correnti a superficie libera

Modello del moto vario nelle correnti a superficie libera Modello del moto vario nelle correnti a superficie libera 1. Schematizzazione della corrente a superficie libera Nei casi in cui la corrente, pur se in condizioni evolutive di moto vario turbolento, mantiene

Dettagli

Risoluzione di un telaio iperstatico col metodo degli spostamenti

Risoluzione di un telaio iperstatico col metodo degli spostamenti Risouzione di un teaio iperstatico co etodo degi spostaenti opeento aa ezione 9/50: enni sugi eeenti finiti per 'anaisi strutturae La struttura in figura è soggetta ad una coppia appicata ne nodo. I teaio

Dettagli

LEZIONE 12 - RESISTENZA DEI MATERIALI 1 ( acciaio per fili ortodontici, ossa, materiali per protesi)

LEZIONE 12 - RESISTENZA DEI MATERIALI 1 ( acciaio per fili ortodontici, ossa, materiali per protesi) LEZIONE 12 - ESISTENZA DEI MATEIALI 1 ( acciaio per fii ortodontici, ossa, materiai per protesi) La prova di trazione/compressione consiste ne misurare e deformazioni in un provino di materiae sottoposto

Dettagli

Guida alle applicazioni ESF Lexmark

Guida alle applicazioni ESF Lexmark Guida ae appicazioni ESF Lexmark Aiutate i vostri cienti a sfruttare a massimo e stampanti e e mutifunzione Lexmark abiitate per e souzioni Le appicazioni Lexmark sono state progettate per consentire ae

Dettagli

Lexmark Print Management

Lexmark Print Management Lexmark Print Management Ottimizzate a stampa in rete e create un vantaggio informativo con una souzione di gestione dee stampe che potrete impementare in sede o attraverso coud. Riascio stampe sicuro

Dettagli

Introduzione alla spettroscopia. Spettroscopia infrarossa e spettrometria di massa

Introduzione alla spettroscopia. Spettroscopia infrarossa e spettrometria di massa 12 12 Introduzione aa spettroscopia. Spettroscopia infrarossa e spettrometria di massa Neo studiare a chimica organica, abbiamo finora dato per scontato che, quando si isoa da una reazione un composto

Dettagli

UNIVERSITA' DEGLI STUDI ROMA TRE

UNIVERSITA' DEGLI STUDI ROMA TRE UNIVESITA' DEGLI STUDI OMA TE POVA SCITTA DI ELETTOMAGNETISMO II 7//3 ) Un condensatore piano, con armature di superficie S cm, è riempito da due astre di dieettrico, di spessore d mm e d 3mm, e di costante

Dettagli

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Meccanica dei Manipoatori Corso di Robotica Prof. Davide Brugai Università degi Studi di Bergamo Definizione di robot industriae Un robot industriae è un manipoatore mutifunzionae riprogrammabie, comandato

Dettagli

La solarità nelle varie zone italiane per il fotovoltaico

La solarità nelle varie zone italiane per il fotovoltaico Energia e Ambiente La soarità nee varie zone itaiane per i fotovotaico Modena 5 marzo 2008 Gianni Leanza Energia e Ambiente QUANTA ENERGIA ARRIVA DAL SOLE? Da Soe, si iberano enormi quantità di energia

Dettagli

Marzia Re Fraschini - Gabriella Grazzi - Claudia Spezia. per la classe 5

Marzia Re Fraschini - Gabriella Grazzi - Claudia Spezia. per la classe 5 Marzia Re Fraschini - Gabriea Grazzi - Caudia Spezia per a casse 5 ISBN 978-88-68-9058-6 Edizioni 1 3 4 5 6 7 8 9 10 013 014 015 016 017 Direzione Editoriae: Roberto Invernici Redazione: Domenico Gesmundo,

Dettagli

i(t) + v(t) S + + R C

i(t) + v(t) S + + R C 3 ANALISI DI CIRCUITI NEL DOMINIO DEL TEMPO 32 3 Anaisi di circuiti ne dominio de tempo (utimo aggiornamento: 9 Marzo 2001) In questo capitoo si considerano circuiti in cui e grandezze eettriche variano

Dettagli