Distribuzione Gaussiana

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Distribuzione Gaussiana"

Transcript

1 Nella maggioranza dei casi (ma non in tutti) facendo un istogramma delle misure acquisite si ottiene una curva a campana detta normale o Gaussiana. G,, G,, d 1 e 2 1 Distribuzione Gaussiana 1 2 = Valor Medio (vedi prossimo lucido) = deviazione standard (vedi prossimo lucido) Si puo dimostrare che l istogramma ha una forma Gaussiana quando tutte le sorgenti di inceretezza hanno un contributo molto piccolo e casuale Esistono tuttavia altre curve che incontreremo nel corso, come ad esempio la Binomiale o la Poissoniana Poiche la Gaussiana è simmetrica attorno al valore medio allora 2 Media = Mediana = Moda

2 Teoremi Nel caso di un numero N finito di misure, ripetibili ed indipendenti, che possano essere descritte da una distribuzione gaussiana allora 1- La migliore stima del parametro è la media G 1,, e N N i1 i 2 La migliore stima del parametro è la deviazione standard del campione N i1 ( i ) N L incertezza relativa sul valore di è data da incertezza sul valore di come stima di 2( N 1)

3 Distribuzione Gaussiana Nell ipotesi che i dati misurati si distribuiscano seguendo una curva Gaussiana è possibile dare una definizione più quantitativa della deviazione standard Il 68% delle misure cadrà all interno dell intervallo ; Il 95% delle misure cadrà all interno dell intervallo 1.96 ; il 99.7% delle misure cadrà all interno dell intervallo 3 ; 3

4 Perche il 68% o il 95%? Data una gaussiana normalizzata Allora 1,, 2 1,, d G e G ,,.95,,.68,, d G d G d G

5 Distribuzione Gaussiana Questa proprietà è vera esclusivamente per una distribuzione Gaussiana. Per altre distribuzioni potranno valere, caso per caso, percentuali differenti Per esempio 1 - Poissoniana con valor medio <> = 8 e = 2.8 In un intervallo di più o meno una deviazione standard cadono il 62% dei conteggi 2 - Poissoniana con valor medio <> = 1 e = 3.2 In un intervallo di più o meno una deviazione standard cadono il 73% dei conteggi 3 - Poissoniana con valor medio <> = 5 e = 2.2 In un intervallo di più o meno una deviazione standard cadono il 74% dei conteggi Nota: Valor medio e deviazione standard sono definite per un qualsiasi set di dati, tuttavia solo per il caso della Gaussiana è possibile dimostrare il legame con i parametri della distribuzione stessa.

6 Probabilità Integrale ERF Funzione degli errori Come ho fatto a calcolare gli integrali di prima? Come posso fare per calcolare l integrale di una gaussiana per altri intervalli di integrazione? Oppure.. più in generale? Come faccio a trovare la probabilità che una data misura faccia parte della distribuzione statistica Gaussiana che ha valor medio e? Il punto di partenza è l integrale parametrizzato

7 Probabilità Integrale ERF Funzione degli errori Come ho fatto a calcolare gli integrali di prima? Come posso fare per calcolare l integrale di una gaussiana per altri intervalli di integrazione? Oppure.. più in generale? Come faccio a trovare la probabilità che una data misura faccia parte della distribuzione statistica Gaussiana che ha valor medio e? Il punto di partenza è l integrale parametrizzato P Nota : G,, d G',, ' - t t d' t t d d' dove ' t Non è una uguaglianza matematica ma una equivalenza dopo un cambio di coordinate. Ricordatevi che una traslazione conserva le differenze

8 P G,, d P t G t,, d con t P(,, )

9 Sia per esempio t.32 P.32 G.32,, d Dobbiamo usare la tabella Quindi P.32 G.32,,d. 251 Pagina 289 taylor

10 Quindi: Data una misura Data una distribuzione gaussiana con valor medio e deviazione standard Sia t = / =.32 Allora ho una probabilità pari all area esterna alla gaussiana, P 1.32 G.32,, d % cioè il 74.9% di probabilità, di trovare una misura uguale o peggiore (cioè più lontana da ) di. Quindi ho il 74.9% di probabilità che appartenza alla distribuzione NOTA IMPORTANTE Cosa succede se t=1.96? In questo caso, ho solo il 5% di probabilità di avere una misura uguale o peggiore di, quindi è una cattiva misura.

11 . P(,, ) t t La probabilità di avere una misura uguale o peggiore di si calcola integrando su tutto l intervallo esterno a partire dal punto in questione ( ) su entrambi i lati della gaussiana

12 Esercizio: Provate a verificare sulle tabelle se è vero che P P P P G G G,, d G,,d. 68 2,, d G,,d ,, d G,,d. 99 G ,, d G,,d. 39.5

13 Nota importante Nei lucidi precedenti abbiamo definito l osservabile t definita come t L osservabile t indica, in questo caso, la distanza della misura dal valor medio in unità di deviazione standard Ovviamente il valore dell osservabile t dipende dalla corretta conoscenza di e della deviazione standard In una distribuzione Gaussiana, noto il valore dell osservabile t è possibile, in qualsiasi caso, calcolare la probabilità di avere una misura di valore uguale o maggiore (in modulo) di attraverso l uso della proprietà integrale e delle tavole. Nota: La deviazione standard nella formula di t è quella VERA non quella misurata!

14 Distribuzione Gaussiana Nell ipotesi che i dati misurati si distribuiscano seguendo una curva Gaussiana è possibile dare un carattere predittivo alla deviazione standard La prossima misura ha il 68 % di probabilità di cadere all interno dell intervallo La prossima misura ha il 95 % di probabilità di cadere all interno dell intervallo La prossima misura ha il 99.7 % di probabilità di cadere all interno dell intervallo ; 2 ; 2 3 ; 3 La deviazione standard quindi: E una quantita associata alla singola misura E una stima quantitativa della incertezza su una singola misura E una stima quantitativa della dispersione delle singole misure E una stima della larghezza della distribuzione di probabilità delle misure NON è una stima dell errore del valor medio ottenuto NON è una stima dell incertezza statistica presente nel nostro valor medio NON dipende dal numero di misure effettuate Che variabile statistica quantifica l errore/incertezza presente nel valor medio?

15 Deviazione Standard della Media E possibile Dimostrare che nel caso di dati che si distribuiscono seguendo una distribuzione Gaussiana l incertezza a cui è soggetto il valore medio è data dal rapporto della deviazione standard con la radice quadrata del numero di misure effettuate. Altri nomi della Deviazione Standard della media (SDOM) sono: Errore Standard Errore Standard della Media La Deviazione Standard della media decresce con l aumentare del numero di misure Nell ipotesi di: Deviazione standard della media m Aver effettuato N misure della medesima quantità (misure ripetute ed indipendenti). I dati misurati si distribuiscano seguendo una distribuzione Gaussiana. NON siano presenti errori sistematici. C e il 68% di probabilità che il valore vero sia all interno dell intervallo ( m ; + m ). Il valore è estratto atrraverso il processo di media. Analogamente per il 95% ed il 99.7% di probabilità con 1.96 m e 3 m N

16 Per comprendere in maniera intuitiva l origine della deviazione standard della media Immaginate di avere un numero infinito di dataset composti ciascuno da N misure di una osservabile fisica. I dati in ciascun dataset si distribuiranno secondo una gaussiana, con un valor medio ed una deviazione standard Media Dev. Std Media Dev. Std Media Dev. Std Media Dev. Std Media Dev. Std Posso ottenere un numero infinito di valori medi (uno per dataset). Costruiamo la distribuzione dei valori medi ottenuti in ciascun dataset. Questa distribuzione è una Gaussiana Questa distribuzione avrà come valore medio vero Questa distribuzione avrà come deviazione standard la deviazione standard della media di un singolo dataset

17 Nota importante La deviazione dalla media è uno strumento molto utile per valutare il numero di misure necessarie per ottenere un certo errore. P.es. Devo misurare una osservabile, una stima a priori mi dice che dovrei ottenere come valor medio <> ed una deviazione standard Se volessi una incertezza nel valore medio pari all 1% quante misure dovrei fare? N m m 1% N

18 Nonostante le proprietà della deviazione standard e della deviazione dalla media siano dimostrabili solo sotto precise ipotesi si generalizza la loro definizione e uso. DEFINIZIONI Deviazione Standard La deviazione standard è una stima dell incertezza sulla singola misura, in altre parole è una valutazione quantitativa delle fluttuazioni casuali e quindi di come si disperdono le singole misure attorno al valore medio. In particolare, nella gaussiana, esiste il 68% di probabilità che una singola misura sia all interno dell intervallo ( ; + ) Deviazione Standard della Media m La deviazione standard della media è una stima dell incertezza sul valor medio, in altre parole è una valutazione quantitativa di quanto (in assenza di errore sistematico) è lontano da vero. In particolare, esiste il 68% di probabilità che vero sia all interno dell intervallo ( m ; + m )

19 Nota Importante Voglio conoscere il valore di una osservabile attraverso una operazione di misura. Ipotizzo che i dati si distribuiscano secondo una gaussiana attorno al valore medio Effettuo N misure (indipendenti e ripetibili) dell osservabile. Estraggo il valore medio (la migliore stima del valore vero) Estraggo la deviazione standard del campione (la migliore stima di ) Estraggo la deviazione dalla media (la migliore stima del mio errore) Estraggo il valore dell osservabile t Posso quindi affermare che ho il 68% (t=1) di probabilità che il valore vero sia nell intervallo ( medio ± m ) o il 99.7% (t=3) che il valore vero sia nell intervallo ( medio ± 3 m ) Tuttavia: t per estrarre la deviazione dalla media devo usare la deviazione standard, che tuttavia non conosco ma di cui ho una stima (la deviazione standard del campione) non necessariamente corretta. Come posso stimare l errore della misura se non conosco il valore vero della deviazione standard? Se il numero di misure N è piccolo posso aspettarmi che il valore della deviazione standard del campione possa essere molto differente dal valore vero della deviazione standard

20 Il grafico riporta l andamento della deviazione standard al variare del numero di misure nel caso di un dado equiprobabile. Il valore vero è indicato dalla linea gialla. Osservate che dopo 3-5 tiri la deviazione standard del campione può essere molto differente dal valore vero della deviazione standard Per risolvere questo problema bisogna studiare la distribuzione dell osservabile t

21 La distribuzione dell osservabile t è definita Student s t distribution ed data dalla relazione: p( t, n ) 1 G n G n 1 n / / t 1 n n 1/ 2 Dove G indica una funzione matematica speciale (vedi pg. 196 del Bevington). Nella formula l osservabile n indica il numero di gradi di libertà (n = N-1 se dal medesimo set di dati si estrae anche il valor medio) e l osservabile t è data dalla relazione t valor medio estrattodai dati deviazione standard estrattadai dati P((t,n) indica quindi la probabilità di ottenere un determinato t avendo fatto un numero di misure pari a N

22 La pagina 266 del Bevington (e la tabella che segue) indicano il valore dell integrale della distribuzione della t di Student nell intervallo da 1 = <> - t a 2 = <> + t fissato il valore dell osservabile t e del numero di gradi di libertà. Facciamo un esempio: Vengono fatte n (numero piccolo, 2-7) misure e si ottiene un valor medio di 5,88 ed una deviazione della media di,31. Il valore atteso è pari a 6.5 Nel caso di una distribuzione gaussiana il parametro t assume un valore pari a t = (6.5-5,88)/.31 = 2, in altre parole il valor medio misurato dista due deviazioni standard della media misurate dal valore atteso. Se la deviazione standard fosse nota esattamente (e quindi anche la deviazione dalla media) potremmo dire che esiste il 4.55 % di probabilità che la distanza tra il valore misurato ed il valore atteso sia dovuto alle fluttuazioni statistiche la misura, tuttavia, ha dato solo una stima, non necessariamente precisa, della deviazione standard Questo è il tipico caso in cui è utile la distribuzione della t Student

23 La tabella degli integrali della distribuzione t riporta che per t = 2: Gradi di Liberta Numero Misure Probabilità che la differenza dal valor medio sia una fluttuazione statistica (t=2) % % % % % % % % infinite Infinite 4.6 % Notate che per un numero infinito di misure si ottengono gli stessi risultati della gaussiana Notate che il risultato dipende dal numero di misure Notate che la tabella non entra in gioco nel determinare il valore l errore ma - la compatibilità o meno di misure tra loro o verso un valore atteso - l intervallo di probabilità entro il quale ci aspettiamo di avere il valor medio

24 La tabella C.8 pg 266 del Bevington

25 Esercizio: Uno studente misura l accelerazione di gravità, g, cinque volte con i seguenti risultati 9.9 m/s2 9.6 m/s2 9.5 m/s2 9.7 m/s2 9.8 m/s2 Trovare il valor medio, la deviazione standard e l errore sulla misura di g. Calcolare con che probabilità la differenza tra il valore misurato e quello atteso possa essere ricondotta ad una fluttuazione statistica usando la proprietà integrale della gaussiana e la distribuzione della t di Student

26 In questo caso l osservabile t = ( )/.8 = 1.33 Secondo l integrale Gaussiano ho una probabilità del ( ) = 18.4 % che la differenza tra la misura ed il valore atteso sia una fluttuazione statistica. Secondo la distribuzione di student la probabilità è di circa 26.7 %

27 Esercizio Dopo aver misurato la velocita del suono v molte volte, uno studente conclude che la deviazione standard v è pari a 1 m/s. Assumendo che tutte le incertezze siano casuali, lo studente puo raggiungere una precisione desiderata facendo un numero sufficiente di misure e mediando. Quante misure sono necessarie per avere un errore sulla velocità del suono pari a 3 m/s? Quante misure sono necessarie per avere un errore sulla velocità del suono pari a.5 m/s? / 1 / m m m N s m s m N / 1 / m m m N s m s m N

28 ESERCIZI Provate a fare gli esercizi 4.15, 4.16, 4.17

29 Attenzione L errore finale su una qualsiasi quantità non puo essere di molto inferiore alla sensibilità strumentale. Altrimenti sarebbe possibile raggiungere precisioni NON fisiche semplicemente ripetendo le misure più e più volte indipendentemente dallo strumento utilizzato. Esempio: Vogliamo misurare la lunghezza di un tavolo con un metro a nastro con tacche da 1 mm. La sensibilità strumentale è di circa.5 mm. Eseguendo 9 misure otteniamo un valor medio di mm con una deviazione standard di 1.2 mm. La deviazione della media è di.4 mm dello stesso ordine di grandezza della sensibilità strumentale. Non ha il minimo senso fare più misure, tanto l errore sul valor medio non potrà essere ridotto in maniera significativa. questo anche se la matematica ci dice che misurando 9 volte potremmo ottenere una precisione di.4 mm (del decimillesimo di millimetro).

30 Esempio: Vogliamo misurare la posizione di una massa appesa ad una molla con un sensore ad ultrasuoni con la sensibilità di.5 millimetri. A cause di tutte le influenze esterne la massa non è mai ferma ma oscilla leggermente in tutte le direzioni. Queste oscillazioni casuali rendono ovviamente la misura meno precisa. Eseguendo 9 misure otteniamo un valor medio di 67.2 mm con una deviazione standard di 3.2 mm. La deviazione della media in questo caso è di 1.1 mm, valore superiore (più che doppio) alla sensibilità strumentale. In questo caso, potrebbe essere utile arrivare a circa 5 misure. In questo modo la deviazione dalla media sarebbe.45 mm. In questo caso l effetto delle fluttuazioni casuali è dominante rispetto alla sensibilità strumentale. Effettuare più misure, quindi, giova per aumentare la precisione della misura.

31 Livello di confidenza Abbiamo visto che nel caso di un numero infinito di misure ripetibili ed indipendenti che si distribuiscano secondo una gaussiana il 68 % dei dati sperimentali deve cadere all interno di una deviazione standard. In altre parole abbiamo un livello di confidenza che, eseguendo una misura più volte, nel 68% dei casi il risultato cadrà entro una deviazione standard. Spesso, ma non sempre, si sceglie la deviazione standard, un livello di confidenza del 68%, come riferimento. Ovviamente questo non vale per una distribuzione poissionana o piatta. Per distribuzioni non gaussiane di fa il viceversa, si dice o ± al 95% C.L. Questo significa che il 95% delle misure cadono nell intervallo o - o +

32 E tutto Chiaro? Dovreste aver chiari i seguenti argomenti: Deviazione standard della media Differenza tra la deviazione standard e la deviazione standard dalla media Gaussiana Distribuzione di t di Student Errore minimo Livello di Confidenza

Distribuzione Gaussiana - Facciamo un riassunto -

Distribuzione Gaussiana - Facciamo un riassunto - Distribuzione Gaussiana - Facciamo un riassunto - Nell ipotesi che i dati si distribuiscano seguendo una curva Gaussiana è possibile dare un carattere predittivo alla deviazione standard La prossima misura

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza:

Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza: Fenomeni aleatori Misure Meccaniche e Termiche Sezione di Misure e Tecniche Sperimentali I fenomeni aleatori (o casuali) sono fenomeni empirici il cui risultato non è prevedibile a priori, caratterizzati

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta L analisi dei dati Primi elementi Metodo dei minimi quadrati Negli esperimenti spesso si misurano parecchie volte due diverse variabili fisiche per investigare la relazione matematica tra le due variabili.

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

3) Vengono di nuovo ripetute le misure del punto 2 e i risultati sono s, s, s, s, s, s, s, 96.

3) Vengono di nuovo ripetute le misure del punto 2 e i risultati sono s, s, s, s, s, s, s, 96. Problema A Un pendolo e costituito da una massa di dimensioni trascurabili appesa a un filo considerato in estensibile, di massa trascurabile, lunghezza L, e fissato a un estremo. L Il periodo di oscillazione

Dettagli

La distribuzione delle frequenze. T 10 (s)

La distribuzione delle frequenze. T 10 (s) 1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MISURA GLI STRUMENTI DI MISURA Gli strumenti di misura possono essere analogici o digitali.

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Capitolo 5 Confidenza, significatività, test di Student e del χ 2

Capitolo 5 Confidenza, significatività, test di Student e del χ 2 Capitolo 5 Confidenza, significatività, test di Student e del χ 5.1 L inferenza Se conosciamo la legge di probabilità di un evento (a priori o a posteriori) possiamo fare delle previsioni su come l evento

Dettagli

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI. Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi

Dettagli

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows. Immettere Nome utente b## (##

Dettagli

Schema lezione 5 Intervalli di confidenza

Schema lezione 5 Intervalli di confidenza Schema lezione 5 Intervalli di confidenza Non centrerò quella barca, ne sono convinto al 95% COMPRENDERE: Significato di intervallo di confidenza Uso degli stimatori come quantità di pivot per stime intervallari

Dettagli

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n. 5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai

Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai necessari chiarimenti forniti a lezione. 1 MISURA DI UNA

Dettagli

Risultati esperienza sul lancio di dadi Ho ottenuto ad esempio:

Risultati esperienza sul lancio di dadi Ho ottenuto ad esempio: Dado B (6): 2 2 6 6 6 1 1 3 6 4 6 6 3 1 1 4 1 6 3 6 6 4 6 3 2 4 3 2 6 3 5 5 6 4 3 3 2 1 2 1 6 3 2 4 4 3 6 6 3 2 1 6 6 4 6 1 3 6 6 1 6 2 4 5 3 3 6 2 1 6 6 3 1 2 6 3 1 3 4 6 1 6 4 1 6 4 6 6 6 5 5 2 4 1 2

Dettagli

Tipi di variabili. Indici di tendenza centrale e di dispersione

Tipi di variabili. Indici di tendenza centrale e di dispersione Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)

Dettagli

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi) CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON

Dettagli

SCHEDA N 8 DEL LABORATORIO DI FISICA

SCHEDA N 8 DEL LABORATORIO DI FISICA SCHEDA N 1 IL PENDOLO SEMPLICE SCHEDA N 8 DEL LABORATORIO DI FISICA Scopo dell'esperimento. Determinare il periodo di oscillazione di un pendolo semplice. Applicare le nozioni sugli errori di una grandezza

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Prof. Franco Ferraris - Politecnico di Torino

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Prof. Franco Ferraris - Politecnico di Torino Generalità sulle Misure di Grandezze Fisiche Prof. - Politecnico di Torino - La stima delle incertezze nel procedimento di misurazione -modello deterministico -modello probabilistico - La compatibilità

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

05. Errore campionario e numerosità campionaria

05. Errore campionario e numerosità campionaria Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,

Dettagli

Avvertenza Iniziale. 1. Questi appunti potrebbero contenere errori, per favore se trovate affermazioni, formule o conti errati avvisate il docente.

Avvertenza Iniziale. 1. Questi appunti potrebbero contenere errori, per favore se trovate affermazioni, formule o conti errati avvisate il docente. Avvertenza Iniziale 1. Questi appunti potrebbero contenere errori, per favore se trovate affermazioni, formule o conti errati avvisate il docente. 2. Questi appunti O sostituiscono il libro di testo, che

Dettagli

Ulteriori applicazioni del test del Chi-quadrato (χ 2 )

Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Finora abbiamo confrontato con il χ 2 le numerosità osservate in diverse categorie in un campione con le numerosità previste da un certo modello

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIONE NORMALE Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma La più nota ed importante distribuzione di probabilità è, senza alcun dubbio, la Distribuzione normale, anche

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

PSICOMETRIA. Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI

PSICOMETRIA. Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI PSICOMETRIA Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI CAMPIONI INDIPENDENTI Campioni estratti casualmente dalla popolazione con caratteristiche omogenee Assegnazione

Dettagli

Criteri di Valutazione della scheda (solo a carattere indicativo)

Criteri di Valutazione della scheda (solo a carattere indicativo) Criteri di Valutazione della scheda (solo a carattere indicativo) Previsioni - A Sono state fatte le previsioni e discussi i valori attesi insieme al ragionamento con cui sono stati calcolati? E stata

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

DISTRIBUZIONI DISTRIBUZIONE DI GAUSS

DISTRIBUZIONI DISTRIBUZIONE DI GAUSS DISTRIBUZIONI ESPERIENZA a: DISTRIBUZIONE DI GAUSS SCOPO: Costruzione di una distribuzione di Gauss dai valori di una grandezza fisica ottenuti da una misura dominata da errori casuali. Studio dell influenza

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

Il metodo dei minimi quadrati. Molto spesso due grandezze fisiche x e y, misurabili direttamente, sono legate tra loro da una legge del tipo:

Il metodo dei minimi quadrati. Molto spesso due grandezze fisiche x e y, misurabili direttamente, sono legate tra loro da una legge del tipo: Il metodo dei minimi quadrati Molto spesso due grandezze fisiche x e y, misurabili direttamente, sono legate tra loro da una legge del tipo: Dove A e B sono costanti y = A + Bx (ad esempio in un moto uniformemente

Dettagli

Teoria e tecniche dei test

Teoria e tecniche dei test Teoria e tecniche dei test Lezione 9 LA STANDARDIZZAZIONE DEI TEST. IL PROCESSO DI TARATURA: IL CAMPIONAMENTO. Costruire delle norme di riferimento per un test comporta delle ipotesi di fondo che è necessario

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

LE MISURE. attendibilità = x i - X

LE MISURE. attendibilità = x i - X LE MISURE COCETTI PRELIMIARI: MISURA, ATTEDIBILITÀ, PRECISIOE, ACCURATEZZA Il modo corretto di fornire il risultato di una qualunque misura è quello di dare la migliore stima della quantità in questione

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

Proprietà della varianza

Proprietà della varianza Proprietà della varianza Proprietà della varianza Proprietà della varianza Proprietà della varianza Intermezzo: ma perché dovremmo darci la pena di studiare come calcolare la varianza nel caso di somme,

Dettagli

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L

Dettagli

Distribuzioni campionarie

Distribuzioni campionarie 1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari

Dettagli

Statistica. Lezione 4

Statistica. Lezione 4 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela

Dettagli

Esercitazione 8 maggio 2014

Esercitazione 8 maggio 2014 Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un

Dettagli

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi: DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme

Dettagli

Grandezze e Misure 1

Grandezze e Misure 1 Grandezze e Misure 1 Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Misure dirette e indirette Strumenti di misura Errori nelle

Dettagli

STATISTICA ESERCITAZIONE

STATISTICA ESERCITAZIONE STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in

Dettagli

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni

Dettagli

Quanti soggetti devono essere selezionati?

Quanti soggetti devono essere selezionati? Quanti soggetti devono essere selezionati? Determinare una appropriata numerosità campionaria già in fase di disegno dello studio molto importante è molto Studi basati su campioni troppo piccoli non hanno

Dettagli

Dispensa di Statistica

Dispensa di Statistica Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza

Dettagli

IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI

IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI Perchè confrontare le varianze stimate in due campioni? Torniamo all'esempio dei frinosomi Per poter applicare il test t avevamo detto che le varianze, e

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Si sono diverse distribuzioni di probabilità: quelle di cui parleremo sono la distribuzione binomiale, quella di Poisson, quella uniforme, quella normale, quella del χ² e la

Dettagli

Test di ipotesi. Test

Test di ipotesi. Test Test di ipotesi Test E una metodologia statistica che consente di prendere una decisione. Esempio: Un supermercato riceve dal proprio fornitore l assicurazione che non più del 5% delle mele di tipo A dell

Dettagli

Relazione di fisica ESPERIMENTO N 1

Relazione di fisica ESPERIMENTO N 1 ISTITUTO SUPERIORE "B. RUSSELL" DI ROMA Relazione di fisica ESPERIMENTO N 1 1.TITOLO Misurazione indiretta della massa di un cilindretto metallico mediante i metodi della tara di J.C. Borda e della doppia

Dettagli

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza.

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Misure ripetute forniscono dati numerici distribuiti attorno ad un valore centrale indicabile con un indice (indice

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente

Dettagli

REGRESSIONE E CORRELAZIONE

REGRESSIONE E CORRELAZIONE REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.

Dettagli

Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII

Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Un breve richiamo sul test t-student Siano A exp (a 1, a 2.a n ) e B exp (b 1, b 2.b m ) due set di dati i cui

Dettagli

Esperienza del viscosimetro a caduta

Esperienza del viscosimetro a caduta Esperienza del viscosimetro a caduta Parte del corso di fisica per CTF dr. Gabriele Sirri sirri@bo.infn.it http://ishtar.df.unibo.it/uni/bo/farmacia/all/navarria/stuff/homepage.htm Esperienza del viscosimetro

Dettagli

Esercizi di Ricapitolazione

Esercizi di Ricapitolazione Esercizio 1. Sono dati 150g di una soluzione S 1 concentrata al 12%. (a) Determinare quanti grammi di soluto occorre aggiungere a S 1 per ottenere una nuova soluzione S 2 concentrata al 20%. (b) Determinare

Dettagli

Cap. 7 Distribuzioni campionarie

Cap. 7 Distribuzioni campionarie Cap. 7 Distribuzioni campionarie 1 Popolazione e Campione Una popolazione è l insieme di tutte le unità oggetto di studio Tutti i potenziali votanti nelle prossime elezioni Tutti i pezzi prodotti oggi

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Incertezza di Misura: Concetti di Base

Incertezza di Misura: Concetti di Base Incertezza di Misura: Concetti di Base Roberto Ottoboni Dipartimento di Elettrotecnica Politecnico di Milano 1 Il concetto di misura Nella sua accezione più comune si è sempre inteso come misura di una

Dettagli

GLI ERRORI DI MISURA

GLI ERRORI DI MISURA Revisione del 26/10/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon GLI ERRORI DI MISURA Richiami di teoria Caratteristiche degli strumenti di misura Portata: massimo

Dettagli

Statistica Un Esempio

Statistica Un Esempio Statistica Un Esempio Un indagine sul peso, su un campione di n = 100 studenti, ha prodotto il seguente risultato. I pesi p sono espressi in Kg e sono stati raggruppati in cinque classi di peso. classe

Dettagli

Corso PAS Misure, strumenti ed Errori di misura. Didattica del Laboratorio di Fisica F. Garufi 2014

Corso PAS Misure, strumenti ed Errori di misura. Didattica del Laboratorio di Fisica F. Garufi 2014 Corso PAS Misure, strumenti ed Errori di misura Didattica del Laboratorio di Fisica F. Garufi 2014 Grandezze ed unità di misura grandezza (misurabile) si intende un attributo di un fenomeno, di un corpo

Dettagli

Errori di misura Teoria

Errori di misura Teoria Errori di misura Teoria a misura operazione di misura di una grandezza fisica, anche se eseguita con uno strumento precisissimo e con tecniche e procedimenti accurati, è sempre affetta da errori. Gli errori

Dettagli

Incertezza di misura concetti di base. Roberto Olmi IFAC-CNR

Incertezza di misura concetti di base. Roberto Olmi IFAC-CNR Incertezza di misura concetti di base Roberto Olmi IFAC-CNR Certezza dell incertezza Il display mostra: Inferenza sulla la massa, basata sulla lettura: La massa ha un valore tra 83.35 e 83.45 g La massa

Dettagli

Scheda n.3: densità gaussiana e Beta

Scheda n.3: densità gaussiana e Beta Scheda n.3: densità gaussiana e Beta October 10, 2008 1 Definizioni generali Chiamiamo densità di probabilità (pdf ) ogni funzione integrabile f (x) definita per x R tale che i) f (x) 0 per ogni x R ii)

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LE GRANDEZZE FISICHE Una grandezza fisica è una quantità che può essere misurata con uno strumento

Dettagli

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità CORSO DI LAUREA IN INFERMIERISTICA LEZIONI DI STATISTICA Parte II Elaborazione dei dati Variabilità Lezioni di Statistica VARIABILITA Si definisce variabilità la proprietà di alcuni fenomeni di assumere

Dettagli

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi

Dettagli

Il test (o i test) del Chi-quadrato ( 2 )

Il test (o i test) del Chi-quadrato ( 2 ) Il test (o i test) del Chi-quadrato ( ) I dati: numerosità di osservazioni che cadono all interno di determinate categorie Prima di tutto, è un test per confrontare proporzioni Esempio: confronto tra numero

Dettagli

MISURA DEFINIZIONE DI QUALITA METROLOGICHE

MISURA DEFINIZIONE DI QUALITA METROLOGICHE MISURA informazione costituita da: un numero, un'incertezza (con un certo grado di confidenza es. 95%) (ISO), ed un'unità di misura, assegnati a rappresentare un parametro in un determinato stato del sistema.

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologie. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità.

Università del Piemonte Orientale. Corso di laurea in biotecnologie. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità. Università del Piemonte Orientale Corso di laurea in biotecnologie Corso di Statistica Medica Le distribuzioni teoriche di probabilità. La distribuzione di probabilità binomiale Corso di laurea in biotecnologie

Dettagli

La misura e le incertezze

La misura e le incertezze 1. Gli strumenti di misura Gli strumenti di misura vengono utilizzati per effettuare la misura di una grandezza fisica. Esistono due tipologie di strumenti di misura: 1. strumenti analogici, in cui la

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

Contenuti: Capitolo 14 del libro di testo

Contenuti: Capitolo 14 del libro di testo Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE Errore di misura è la differenza fra l indicazione fornita dallo strumento e la dimensione vera della grandezza. Supponendo che la grandezza vera

Dettagli

È possibile trovare la popolazione di origine conoscendone un campione? o meglio. partendo dalla conoscenza di n, x e d.s.?

È possibile trovare la popolazione di origine conoscendone un campione? o meglio. partendo dalla conoscenza di n, x e d.s.? Statistica6-06/10/2015 È possibile trovare la popolazione di origine conoscendone un campione? o meglio. È possibile conoscere σ e μ partendo dalla conoscenza di n, x e d.s.? 1 A partire da un campione

Dettagli

LE DISTRIBUZIONI CAMPIONARIE

LE DISTRIBUZIONI CAMPIONARIE LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

Incertezza sperimentale e cifre significative

Incertezza sperimentale e cifre significative Incertezza sperimentale e cifre significative q La fisica è una scienza sperimentale e le misure e l incertezza con cui vengono effettuate sono il fulcro di ogni esperimento. q Le misure possono essere

Dettagli