Progetto di filtri numerici IIR da filtri analogici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Progetto di filtri numerici IIR da filtri analogici"

Transcript

1 Filtri selettivi 1. Butterworth: monotono nella banda passante e nella banda oscura 2. Chebyshev: oscillazione uniforme nella banda passante e monotona nella banda oscura 3. Ellittico: oscillazione uniforme nella banda passante e nella banda oscura Queste proprietà si mantengono se il filtro è realizzato con uno numerico tramite la trasformazione bilineare Nota: la distorsione dell asse frequenziale introdotta dalla trasf. bilineare si manifesta anche nel mapping di caratteristiche di ampiezza costanti a tratti - in termini di distorsione della caratteristica di fase associata al filtro (p.e.: filtro passa-basso numerico a fase lineare non ottenibile mediante trasf. bilineare da filtro passa-basso analogico a fase lineare). 265 A cura di M. Ruggieri, M. Pratesi

2 Esempio di progetto con trasformazione analogico/numerica: fitro numerico di Butterworth Definizione per filtri di Butterworth: risposta in ampiezza massimamente piatta in banda passante per filtro di ordine N: le prime 2N 1 derivate di H a (jω) 2 sono nulle in Ω = 0 inoltre: approssimazione è monotona sia in banda passante che oscura H a (jω) 2 = 1 risposta del filtro 1 + (jω/jω c ) 2N di Butterworth 266 A cura di M. Ruggieri, M. Pratesi

3 dalla fattorizzazione H a (s)h a ( s): poli di H a (s) 2 sono a coppie s p e s p per trovare H a (s) da H a (s) 2 si sceglie un polo da ogni coppia per stabilità e causalità si scelgono poli del semipiano sinistro nel filtro numerico ottenuto per trasf. bilineare: H(z) 2 ha 2N zeri in z = A cura di M. Ruggieri, M. Pratesi

4 268 A cura di M. Ruggieri, M. Pratesi

5 Poli s p = ( 1) 1/2N jω c = Ω c {j( 1) }{{ 1/2N } } j 2N 1 { [ ( π 2π = exp j 2 + 2N k + π )]} 2N k = 0,..., 2N A cura di M. Ruggieri, M. Pratesi

6 ( ) re jϑ 1/n = [r(cos ϑ + j sin ϑ)] 1/n [ = r 1/n cos ϑ + 2kπ + j sin ϑ + 2kπ n n k = 0,..., n 1 Nel nostro caso: n = 2N, r = 1 e ϑ = π dunque: ( 1) 1/2N = cos π + 2kπ π + 2kπ + j sin 2N 2N k = 0,..., 2N 1 c.v.d. ] 270 A cura di M. Ruggieri, M. Pratesi

7 Esempio N = 3 2N = 6 k = 0 : k = 1 : k = 2 : k = 2 : cos π 6 + j sin π 6 s p0 complesso cos 3 6 π + j sin 3 6 π = cos π 2 + j sin π 2 = j j j = 1 s p1 reale cos 5 6 π + j sin 5 6 π s p2 complesso cos 7 6 π + j sin 7 6 π s p3 complesso k = 4 : cos 9 6 π + j sin 9 6 π = cos 3 2 π + j sin 3 2 π = j j j = +1 s p4 reale k = 5 : cos π + j sin 6 6 π s p5 complesso 271 A cura di M. Ruggieri, M. Pratesi

8 272 A cura di M. Ruggieri, M. Pratesi

9 z = 1 + (T/2)s 1 (T/2)s per s = ±Ω c (cioè j( 1) 1/2N = ±1): 1 ± Ω ct/2 1 Ω c T/2 273 A cura di M. Ruggieri, M. Pratesi

10 Nel progetto di filtro di Butterworth: 1. determinazione di poli nel piano s (e non direttamente nel piano z) 2. mapping nel piano z - con la trasf. bilineare - dei poli nel semipiano sinistro 274 A cura di M. Ruggieri, M. Pratesi

11 Esempio: Specifiche: filtro numerico passa-basso di Butterworth con modulo della risposta in banda passante costante entro 1 db per frequenze inferiori a 0.2π e con attenuazione in banda oscura maggiore di 15 db per frequenze tra 0.3π e π (monotono) Normalizzando a 1 il modulo in banda passante per ω = 0: Specifiche: 20 log 10 H(e j0.2π ) 1 20 log 10 H(e j0.3π ) 15 da cui partire con il progetto secondo una delle tecniche viste, in particolare: a. invarianza all impulso b. trasformazione bilineare 275 A cura di M. Ruggieri, M. Pratesi

12 Ipotesi di lavoro: effetto di aliasing trascurabile (a progetto concluso si verificano le prestazioni del filtro risultante) Per comodità: T = 1 1 o passo: trasformazione delle specifiche in termini di frequenza analogica 20 log 10 H a (j0.2π) 1 20 log 10 H a (j0.3π) 15 2 o passo: dal filtro di Butterworth: H a (jω) 2 = (Ω/Ω c ) 2N Il progetto consiste nell individuare: Ω c e N che soddisfano specifiche 276 A cura di M. Ruggieri, M. Pratesi

13 In un primo momento: Ω c e N: 10 log 10 H a (j0.2π) 2 = 1 log 10 H a (j0.2π) 2 = 1 10 H a (j0.2π) 2 = = ( ) 2N 0.2π 1 + = Ω c Soluzione: N = e Ω c = log 10 H a (j0.3π) 2 15 log 10 H a (j0.3π) 2 = = 1.5 H a (j0.3π) 2 = = ( ) 2N 0.3π 1 + = Ω c N deve essere intero 277 A cura di M. Ruggieri, M. Pratesi

14 N = 6 arrotondamento per eccesso non è più possibile soddisfare specifiche con segno = sia su BP che su BO, ma si ha un miglioramento delle prestazioni suddiviso tra BP e BO in relazione al valore di Ω c Sostituendo N = 6 in specifica su BP: 1 + ( ) 2N 0.2π = Ω c = Ω c (quindi specifica su BP è soddisfatta esattamente) specifica su BO è soddisfatta in eccesso (per filtro analogico) riduzione dell effetto di aliasing sul filtro numerico! 278 A cura di M. Ruggieri, M. Pratesi

15 3 o passo: poli (di H a (s)) Nel piano s: 3 coppie di poli in semipiano σ < 0 (N = 6 N pari no poli su asse reale): s p1, s p1 : ± j s p2, s p2 : ± j s p3, s p3 : ± j A cura di M. Ruggieri, M. Pratesi

16 4 o passo: dalla identificazione dei poli si può scrivere: H a (s) = (s s ) 1 (s s ) 1 (s s ) con ciascun termine di 2 o ordine a denominatore: (s 2 + α k s + β k ) = (s s pk )(s s pk) k = 1, 2, 3 e ( ) 1 }{{} = coefficiente di s 6 che, dalla: H a (s)h a ( s) = (s/jω c ) 2N risulta essere (1/jΩ c ) N = (1/j0.7032) 6 ( ) = ( ): con di H a ( s) dà + si omette 280 A cura di M. Ruggieri, M. Pratesi

17 A = = (8.2704) 1 espandendo H a (s) in fratti semplici risulta, per il filtro numerico con z k = e s kt = e s k : z z 1 H(z) = z z z z z z z 2 realizzazione immediata in forma parallela 281 A cura di M. Ruggieri, M. Pratesi

18 Se si usano forme diretta o in cascata, i termini vanno opportunamente combinati. La H(z) trovata è: Risposta in frequenza del filtro Butterworth del sesto ordine trasformato secondo l invarianza all impulso. 282 A cura di M. Ruggieri, M. Pratesi

19 Nell esempio: filtro era sufficientemente limitato in banda per non avere problemi di aliasing. Se non è così, si può ritentare il progetto con ordine N > N oppure, a parità di N, ritoccando i parametri del filtro. Disposizione dei poli nel piano s per un filtro Butterworth del sesto ordine 283 A cura di M. Ruggieri, M. Pratesi

20 b. Trasformazione bilineare 1 o passo: specifiche su frequenze numeriche devono essere riportate nel caso analogico (corretto mapping di frequenze analogiche critiche, dal punto di vista della distorsione in frequenza, in frequenze numeriche critiche) assumendo T = 1 Ω = 2 T tan(ω/2) ( )) 0.2π 20 log 10 H a (j2 tan 1 ( 2 )) 0.3π 20 log 10 H a (j2 tan A cura di M. Ruggieri, M. Pratesi

21 1 + ( Ω Ω c ) 2N = 2 o passo: in un primo momento risoluzione esatta: { Ω ω = 0.2π Ω ω = 0.3π dunque: 1 + [ 2 tan(0.1π) Ω c ] 2N = [ 2 tan(0.15π) Ω c N = 1 log[( )/( )] 2 log[tan(0.15π)/ tan(0.1π)] = N intero N = 6 ] 2N = A cura di M. Ruggieri, M. Pratesi

22 Usando N = 6 in relazione sulla banda oscura: [ ] 2N 2 tan(0.15π) 1 + = Ω c = Ω c che soddisfa le specifiche sulla banda passante in eccesso e quelle sulla banda oscura esattamente (è ragionevole dal momento che con trasf. bilineare non ci si deve preoccupare dell aliasing - grazie a predistorsione introdotta) 3 o passo: poli Nel piano s: i 2N = 12 poli di H a ( ) 2 sono distribuiti su circonferenza di raggio Ω c = considerando i 6 poli dei 12 nel semipiano sinistro σ < A cura di M. Ruggieri, M. Pratesi

23 4 o passo: si scrive H a (s): H a (s) = (s s )(s s ) 1 (s s ) con: termini del 2 o ordine: 3 coppie di poli coniugati fattore = coefficiente di s 6 dato da: (Ω c ) 6 = ( ) A cura di M. Ruggieri, M. Pratesi

24 applicando la trasformazione bilineare a H a (s) con T = 1: (1 + z 1 ) 6 H(z) = ( z z 1 ) 1 ( z z 2 ) z z A cura di M. Ruggieri, M. Pratesi

25 Risposta in frequenza del filtro Butterworth del sesto ordine trasformato con la trasformazione bilineare. 289 A cura di M. Ruggieri, M. Pratesi

26 I grafici di Modulo e Guadagno (db) vanno a zero più rapidamente del filtro a., perché la trasformazione bilineare fa corrispondere l asse jω intero a C in piano z filtro di Butterworth analogico ha s = come zero di 6 o ordine filtro numerico ha z = 1 come zero di sesto ordine. (cioè ω = π altissima attenuazione in BO) 290 A cura di M. Ruggieri, M. Pratesi

27 Progetto di filtri numerici di Chebyshev Con filtri di Butterworth: se specifiche sono date in termini di massimo errore - p.e. - di approssimazione in BP possono essere soddisfatte con una precisione che eccede quella richiesta tanto più quanto più ci si avvicina a frequenza zero metodo più efficiente (filtri risultanti con ordine inferiore) distribuzione della precisione di approx. uniformemente in BP o in BO oppure in entrambe 291 A cura di M. Ruggieri, M. Pratesi

28 approx. con caratteristica di oscillazione (ripple) uniforme (equiripple) invece di monotona. Filtri di Chebishev: oscillazione uniforme in BP e monotona in BO (o viceversa): H a (Ω) 2 1 = 1 + ε 2 VN 2(Ω/Ω c) con: V : N(x) = cos(n cos 1 x) polinomio di Chebyshev di ordine N (N = 0: V 0 (x) = 1; N = 1: V 1 (x) = cos(cos 1 x) = x; N = 2: V 2 (x) = cos(2 cos 1 x) = 2x ) 292 A cura di M. Ruggieri, M. Pratesi

29 Parametri: ε ripple, Ω c taglio, N per banda oscura Approssimazione di Chebishev per un filtro passa-basso. 293 A cura di M. Ruggieri, M. Pratesi

30 Poli: su ellisse (definita da C L di raggio aω c e C H di raggio bω c ) Con: a = 1 2 (α1/n α 1/N ), b = 1 2 (α1/n +α 1/N ), α = 1 ε ε 2 Posizione dei poli per un filtro di Chebishev del terzo ordine (2N = 6 poli). 294 A cura di M. Ruggieri, M. Pratesi

31 Con metodo a. (inv. impulso): N = 4 (stesse specifiche di prima) Risposta in frequenza di un filtro passa-basso di Chebishev del quarto ordine trasformato usando l invarianza all impulso. (Ω c = 0.2π, ε = ) 295 A cura di M. Ruggieri, M. Pratesi

32 Metodo b.: trasf. bilineare Ω c = 2 tan(0.2π/2), ε = ; N min = 4 Risposta in frequenza di un filtro passa-basso di Chebyshev del quarto ordine trasformato usando la trasformazione bilineare. 296 A cura di M. Ruggieri, M. Pratesi

33 Approssimazione ad oscillazione uniforme sia in banda passante che in banda oscura. 297 A cura di M. Ruggieri, M. Pratesi

34 Progetto di filtri ellittici Con filtri di Chebyshev: distribuendo l errore uniformemente nell intera BP si riduce l ordine del filtro necessario al soddisfacimento delle specifiche rispetto al caso di Butterworth ulteriore miglioramento: distribuendo l errore della BO uniformemente nella banda con: oscillazione uniforme sia in BP che BO: 298 A cura di M. Ruggieri, M. Pratesi

35 Si può dim. che porta alla migliore approx per un dato ordine N del filtro, cioè per valori di Ω p, δ 1 e δ 2, la banda di transizione: Ω s Ω p è la più piccola possibile (pendenza alta) H a (jω) 2 = ε 2 U 2 N(Ω) }{{} ( ) ( ): U N (Ω) = funzione ellittica di Jacobi 299 A cura di M. Ruggieri, M. Pratesi

36 Con specifiche precedenti: N = 3 Risposta in frequenza di un filtro ellittico del terzo ordine (N = 3) trasformato usando la trasformazione bilineare. 300 A cura di M. Ruggieri, M. Pratesi

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Filtri analogici. Filtri analogici

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Filtri analogici. Filtri analogici IGEGERIA E TECOLOGIE DEI SISTEMI DI COTROLLO Prof. Carlo Rossi DEIS - Università di Bologna Tel: 05 09300 email: crossi@deis.unibo.it Il filtro passa basso ideale Si vuole ricostruire un segnale utile

Dettagli

Introduzione ai filtri Filtri di Butterworth Filtri di Chebishev

Introduzione ai filtri Filtri di Butterworth Filtri di Chebishev Introduzione ai filtri Filtri di Butterworth Filtri di Chebishev Filtri passivi 1 Filtri passivi 2 1 Filtri passivi 3 Filtri passivi 4 2 Filtri passivi 5 Filtri passivi 6 3 Filtri passivi 7 Filtri passivi

Dettagli

FILTRI ANALOGICI L6/1

FILTRI ANALOGICI L6/1 FILTRI ANALOGICI Scopo di un filtro analogico è l eliminazione di parte del contenuto armonico di un segnale, lasciandone inalterata la porzione restante. In funzione dell intervallo di frequenze del segnale

Dettagli

Gianmaria De Tommasi A.A. 2008/09

Gianmaria De Tommasi A.A. 2008/09 Controllo Gianmaria De Tommasi A.A. 2008/09 1 e discretizzazione del controllore 2 Controllore tempo-discreto e suo equivalente tempo- Nell ipotesi di segnale di errore e(t) a banda limitata, nell intervallo

Dettagli

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA INFINITA (IIR) [Cap. 7] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA INFINITA (IIR) [Cap. 7] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali PROGETTO DI FILTRI A RISPOSTA IMPULSIVA INFINITA (IIR) [Cap. 7] FILTRI IIR (Infinite Impulse Response) DOMINIO TEMPORALE (equaione alle differene finite, sistema causale) y M [ n] b [ ] [ ] x n a y n 0

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s).

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s). F I L T R I A T T I V I D E L 2 O R D I N E I filtri del 2 ordine hanno la caratteristica di avere al denominatore della funzione di trasferimento una funzione di 2 grado nella variabile s: oppure nella

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Esercitazione ENS sulle finestre (22 Aprile 2008)

Esercitazione ENS sulle finestre (22 Aprile 2008) Esercitazione ENS sulle finestre ( Aprile 008) D. Donno Esercizio : Separazione di due segnali Si consideri un segnale z(t) somma di due segnali x(t) e y(t) reali e di potenza simile, ciascuno con semi

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Teoria dei filtri. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo Ottobre 2006

Teoria dei filtri. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo Ottobre 2006 Teoria dei filtri Corso di Componenti e Circuiti a Microonde Ing. Francesco Catalfamo 17-18 Ottobre 6 Indice Funzioni di trasferimento: definizioni generali Risposta di Butterworth (massimamente piatta)

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi.

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi. .. 3.2 Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I

Dettagli

FILTRI in lavorazione. 1

FILTRI in lavorazione. 1 FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.

Dettagli

FILTRI ED AMPLIFICATORI ACCORDATI. Classificazione in termini di funzione di trasferimento

FILTRI ED AMPLIFICATORI ACCORDATI. Classificazione in termini di funzione di trasferimento FILTRI ED AMPLIFICATORI ACCORDATI Classificazione in termini di funzione di trasferimento Specifiche per un filtro passa basso (LP) Fattore di selettività ω / ω s p Esempio di Funzione di Trasferimento

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist Capitolo 8 Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist 8. Proprietà generali del diagramma di Nyquist Il diagramma di Nyquist (o polare ) della funzione W (jω) è definito

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

Tecniche di progettazione dei filtri FIR

Tecniche di progettazione dei filtri FIR Tecniche di progettazione dei filtri FIR 9.0 Introduzione I filtri FIR sono filtri nei quali la risposta all'impulso è generalmente limitata. I filtri FIR hanno la proprietà di essere facilmente vincolati

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /33 SISEMI DIGIALI DI CONROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

Filtraggio Digitale. Alfredo Pironti. Ottobre Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20

Filtraggio Digitale. Alfredo Pironti. Ottobre Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20 Filtraggio Digitale Alfredo Pironti Ottobre 2012 Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20 Filtri Analogici (1) Un filtro analogico è un sistema lineare tempo-invariante (LTI)

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi Capitolo 7: Circuiti TD-LTI nel dominio delle trasformate Rappresentazioni nel dominio

Dettagli

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona Corso di laurea in Informatica Regolatori Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/33 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche:

Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche: Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche: Tipologia di filtro: equiripple Numero di poli: 5 Massimo ripple in banda: 0.5 db Frequenza centrale: 2.45 Ghz Banda

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Filtri. - I filtri passivi, usano solo componenti passivi (resistenze, condensatori e induttanze).

Filtri. - I filtri passivi, usano solo componenti passivi (resistenze, condensatori e induttanze). Filtri Un filtro è un circuito selettivo in frequenza che lascia passare i segnali in una certa banda e blocca, oppure attenua, I segnali al di fuori di tale banda. I filtri possono essere attivi o passivi.

Dettagli

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FINITA (FIR) [Cap. 6] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali 1

PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FINITA (FIR) [Cap. 6] E. Del Re Fondamenti di Elaborazione Numerica dei Segnali 1 PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FIITA (FIR) [Cap. 6] E. Del Re Fondamenti di Elaborazione umerica dei Segnali Considerazioni generali sul progetto di filtri numerici Specifiche di progetto Operazione

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

PROGETTO DI UN FILTRO PASSA BASSO

PROGETTO DI UN FILTRO PASSA BASSO orso di elettronica per telecomunicazioni - esercitazione POGETTO DI UN FILTO PASSA BASSO Docente del corso: prof. Giovanni Busatto Galletti iccardo Matr. 65 relazione elettronica per telecomunicazioni

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

Progetto & Implementazione di Filtri Analogici alla mia maniera. Riccardo Bernardini

Progetto & Implementazione di Filtri Analogici alla mia maniera. Riccardo Bernardini Progetto & Implementazione di Filtri Analogici alla mia maniera Riccardo Bernardini 6 aprile 203 2 Indice Introduzione 5. Che è sta roba?....................................... 5.2 AVVERTENZA......................................

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Elaborazione numerica dei segnali

Elaborazione numerica dei segnali POLITECNICO DI TORINO Elaborazione numerica dei segnali Progetto di un filtro FIR Fiandrino Claudio Matricola: 138436 18 giugno 21 Relazione sul progetto di un filtro FIR Descrizione del progetto L obbiettivo

Dettagli

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2 Elettronica II Modello per piccoli segnali del diodo a giunzione Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

F I L T R I. filtri PASSIVI passa alto passa basso passa banda. filtri ATTIVI passa alto passa basso passa banda

F I L T R I. filtri PASSIVI passa alto passa basso passa banda. filtri ATTIVI passa alto passa basso passa banda F I L T R I Un filtro è un dispositivo che elabora il segnale posto al suo ingresso; tipicamente elimina (o attenua) determinate (bande di) frequenze mentre lascia passare tutte le altre (eventualmente

Dettagli

Regolazione e Controllo dei Sistemi Meccanici

Regolazione e Controllo dei Sistemi Meccanici Regolazione e Controllo dei Sistemi Meccanici 3--24 Numero di matricola =ρ =ɛ =β Si consideri il razzo vettore riportato in fig.. Figure : Vettore ARIANE-V. La dinamica planare semplificata e linearizzata

Dettagli

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t).

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t). Cenni alla Modulazione di Ampiezza (AM) Nella modulazione di ampiezza, si trasmette il segnale v(t) = (V 0 + k I x(t)) cos (πf 0 t), dove x(t) è il segnale di informazione, con banda B, e f 0 è la frequenza

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Risoluzioni di alcuni esercizi

Risoluzioni di alcuni esercizi Risoluzioni di alcuni esercizi Reti topografiche, trasformazioni di coordinate piane In una poligonale piana il punto è nell origine delle coordinate, l angolo (in verso orario fra il semiasse positivo

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Coniche - risposte 1.9

Coniche - risposte 1.9 Coniche - risposte. CAMBI DI COORDINATE ) ) cosπ/) sinπ/). a. Rotazione di π/, la matrice di rotazione è = sinπ/) cosπ/) ) ) ) X = Y X = Quindi le formule sono: cioè: Y = X e inversamente Y = = Y X = b.

Dettagli

Collegio di Merito Bernardo Clesio Università di Trento

Collegio di Merito Bernardo Clesio Università di Trento Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per

Dettagli

Annamaria Mazzia. Corso di Metodi Numerici per l Ingegneria dispense e altro materiale su

Annamaria Mazzia. Corso di Metodi Numerici per l Ingegneria dispense e altro materiale su Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione degli angoli conico di taglio ed elicoidale di taglio di una cremagliera Annamaria Mazzia Dipartimento di Metodi

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento.

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento. ITEC - ELETTRONICA ED ELETTROTECNICA Sessione ordinaria 206 ARTICOLAZIONE ELETTRONICA Tema di: ELETTROTECNICA ED ELETTRONICA Soluzione: prof. Stefano Mirandola PRIMA PARTE ) 2) Schema a blocchi e progetto

Dettagli

Esercitazioni 26/10/2016

Esercitazioni 26/10/2016 Esercitazioni 26/10/2016 Esercizio 1 Un anello sottile di raggio R = 12 cm disposto sul piano yz (asse x uscente dal foglio) è composto da due semicirconferenze uniformemente cariche con densità lineare

Dettagli

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ).

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ). RISPOSTA FORZATA SISTEMI LINEARI STAZIONARI u(t) G(s) = B(s) A(s) = b ns n + + b 0 s n + + a 0 y f (t) Classe di funzioni di ingresso. U := l Q(s) u( ) : U(s) = P (s) = i= (s z i ) ri= (s p i ), l r, A(p

Dettagli

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim AMA Ing.Edile - Prof. Colombo Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it Limiti - Soluzioni. Esercizio 5.2. ii) Dire che x 5 x + x = +, vuol dire che preso M > 0 sufficientemente

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

Banda passante e sviluppo in serie di Fourier

Banda passante e sviluppo in serie di Fourier CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Spettri e banda passante

Spettri e banda passante Banda passante - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Spettri e banda passante DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni Controlli Automatici: Raccolta di Prove Scritte con Soluzione Elena Zattoni Premessa Questo volumetto è rivolto agli Studenti dei corsi di Controlli Automatici e raccoglie una serie di prove scritte con

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

Funzioni di trasferimento

Funzioni di trasferimento 1 Funzioni di trasferimento Introduzione 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: introduzione uso dei decibel e delle scale logaritmiche diagrammi di Bode 4 Funzione di trasferimento

Dettagli

Tracciamento dei Diagrammi di Bode

Tracciamento dei Diagrammi di Bode Tracciamento dei Diagrammi di Bode L. Lanari, G. Oriolo Dipartimento di Ingegneria Informatica, Automatica e Gestionale Sapienza Università di Roma October 24, 24 diagrammi di Bode rappresentazioni grafiche

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 1.1 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s+1)(s +8s+5) y(t) Per una graficazione qualitativa

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI Fondamenti di Segnali e Trasmissione Risposta in requenza e banda passante La risposta in requenza di un sistema LTI e la trasormata di Fourier

Dettagli

Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti

Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti 4 Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti P-4.1: Dopo aver diviso per 0.5, cioè il coefficiente di, l equazione alle differenze finite data, si ottengono le strutture

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

2zdz (z 2 + 1)(2z 2 5z + 2)

2zdz (z 2 + 1)(2z 2 5z + 2) Esercizio. alcolare l integrale complesso 2zdz (z 2 + )(2z 2 5z + 2) usando il teorema dei residui e dove è la circonferenza avente centro nell origine e raggio 2 positivamente orientata. Svolgimento.

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Linee prive di perdite

Linee prive di perdite inee prive di perdite Una linea si dice priva di perdite se nel circuito equivalente risulta: R=G. Perché tale approssimazione sia valida deve risultare: α 1 essendo la lunghezza del tronco di linea che

Dettagli

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,

Dettagli

COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE

COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE Un sistema risponde ad una sinusoide in ingresso con una sinusoide in uscita della stessa pulsazione. In generale la sinusoide d uscita ha una diversa

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 2 - EQUAZIONI NON LINEARI Introduzione Problema: trovare le soluzioni di un equazione del tipo f() = 0 Esempio sin a = 0 e = 3 1.0 2.0 0.5

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it INTRODUZIONE STABILITÀ DEI SISTEMI Metodo

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni Algebriche Le equazioni algebriche sono equazioni del tipo P(x) = 0 dove P è un polinomio di grado n cioé P(x) = a 1 x n + a 2 x n

Dettagli

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella

Dettagli

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco) Sintesi diretta (Complementi di Controlli Automatici: prof. Giuseppe Fusco) La tecnica di progetto denominata sintesi diretta ha come obiettivo il progetto di un controllore C(s) il quale assicuri che

Dettagli

Il luogo delle radici. G(s) - H(s)

Il luogo delle radici. G(s) - H(s) Il luogo delle radici r + e D(s) u - H(s) G(s) Esempio: controllo proporzionale: u(t)=ke(t) Strumenti per analizzare la stabilita` del sistema a catena chiusa al variare di K (criteri di Routh e Nyquist)

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Banda passante e sviluppo in serie di Fourier Ing. Luigi Biagiotti e-mail:

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

Progettazione di filtri attivi passa-basso e passa-alto di ordine superiore

Progettazione di filtri attivi passa-basso e passa-alto di ordine superiore Progettazione di filtri attivi passabasso e passaalto di ordine superiore Collegando un numero opportuno di filtri del e del ordine è possibile ottenere filtri di ordine superiore, caratterizzati da una

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa

Dettagli

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/2010 Filtri Filtri del secondo ordine In generale la funzione di trasferimento è: H(s) = a 2 s 2 + a 1 s + a 0

Dettagli

SEGNALE ANALOGICO. Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo

SEGNALE ANALOGICO. Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo ACQUISIZIONE SEGNALE ANALOGICO 6 5 4 3 2 t Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo CONVERTITORE A/D Dispositivo che realizza la conversione tra i valori analogici del

Dettagli