Studio del segno di un prodotto

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Studio del segno di un prodotto"

Transcript

1 Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare di x. Studiamo il segno di ogni fattore e rappresentiamo i risultati in uno schema grafico. Per ogni fattore segniamo sulla retta orientata uno 0 in corrispondenza dei valori per cui si annulla, dei segni + dove è positivo e dei segni dove è negativo. Aggiungiamo poi una riga per il prodotto, mettendo 0 dove si annulla almeno uno dei fattori e i segni ricavati facendo il prodotto dei segni in verticale. Gli intervalli contenenti i segni del prodotto corrispondenti alla richiesta della disequazione sono la soluzione della disequazione Il fattore x 1 si annulla quando x 1 = 0 cioè x = 1 è positivo quando x 1 > 0 cioè x > 1 è negativo quando x 1 < 0 cioè x < 1 Il fattore 4 x si annulla quando 4 x = 0 cioè x = è positivo quando 4 x > 0 cioè x < è negativo quando 4 x < 0 cioè x > Il fattore x + 3 si annulla quando x = 3 è positivo quando x > 3 è negativo quando x < 3 x 1 4 x x Segni del prodotto (x 1)(x 1)(x 1) Segni richiesti dalla disuguaglianza Soluzione della disequazione > 0 S = x < 3 1 < x < ( ; 3) U ( 1; )

2 Disequazioni di grado intere La forma normale di una disequazione di grado intera è del tipo: ax + bx + c > 0 dove il segno di disuguaglianza può essere qualsiasi. Il procedimento di risoluzione algebrica può essere effettuato scomponendo in fattori il polinomio e studiando il segno del prodotto ottenuto. Ricorda che ax + bx + c = a ( x x1 )( x x ) dove e x sono le soluzioni dell equazione ax + bx + c = 0. Per evitare la fattorizzazione, che tra l altro non è sempre possibile o comoda, si può procedere come segue: Se il coefficiente a dell incognita x è negativo, renderlo positivo cambiando segno a tutta la disequazione e girando il verso della disuguaglianza. Risolvere l equazione associata ax + bx + c = 0. Se l equazione associata ha due soluzioni distinte e x, allora la disequazione ax + bx + c > 0 è verificata per x < x > x cioè per valori esterni all intervallo, x ; ax + bx + c 0 è verificata per x x x ; ax + bx + c < 0 è verificata per < x < x cioè per valori interni all intervallo, x ; ax + bx + c 0 è verificata per x x. una sola soluzione, ovvero due coincidenti = x, allora la disequazione ax + bx + c > 0 è verificata per ogni x ; ax + bx + c 0 è verificata per ogni x; ax + bx + c < 0 non è mai verificata; ax + bx + c 0 è verificata solo per x =. nessuna soluzione, allora la disequazione ax + bx + c > 0 è verificata per ogni x; ax + bx + c 0 è verificata per ogni x; ax + bx + c < 0 non è mai verificata; ax + bx + c 0 non è mai verificata. In sintesi: se a > 0 > 0 = 0 < 0 ax + bx + c > 0 ax + bx + c 0 x x ax + bx + c < 0 nessuna soluzione nessuna soluzione x ax + bx + c 0 x nessuna soluzione Attenzione: quanto detto vale solo se il coefficiente a di x è positivo. Però a questo caso ci si può sempre ricondurre, come detto, cambiando segno a tutta la disequazione e girando il verso della disuguaglianza. Diversamente occorre ricordare ulteriori regole valide nel caso in cui il coefficiente di x sia negativo. Spesso ricordare tutti i casi e le relative soluzioni non è agevole, può essere invece più comodo il procedimento grafico che risulta più semplice da ricordare

3 Il procedimento di risoluzione grafica fa ricorso alla parabola, infatti nel piano cartesiano, l equazione y = ax + bx + c rappresenta una parabola con asse di simmetria parallelo all asse y. La risoluzione della disequazione si traduce pertanto nel determinare per quali valori di x il grafico della parabola si trova sopra l asse x (y positiva) o sotto l asse x (y negativa). Ricorda che le intersezioni della parabola con l asse x sono le soluzioni dell equazione ax + bx + c = 0; se a > 0 la parabola volge la concavità verso l alto, se a < 0 la parabola volge la concavità verso il basso. Sfruttando queste due caratteristiche e tracciando un grafico approssimato della parabola si riescono a determinare le soluzioni della disequazione. Vediamo i casi che si possono presentare. a > 0 e > 0 ax + bx + c > 0 per x < x > x ax + bx + c 0 per x x x x ax + bx + c < 0 per < x < x ax + bx + c 0 per x x a > 0 e = 0 ax + bx + c > 0 per x ax + bx + c 0 per ogni x ax + bx + c < 0 non ha soluzioni ax + bx + c 0 per x = a > 0 e < 0 ax + bx + c > 0 per ogni x ax + bx + c 0 per ogni x ax + bx + c < 0 non ha soluzioni ax + bx + c 0 non ha soluzioni Anche per il procedimento grafico ci si può sempre ricondurre al caso in cui a > 0, ma non è difficile ricordare anche i casi in cui a <

4 a < 0 e > 0 ax + bx + c > 0 per < x < x x ax + bx + c 0 per x x ax + bx + c < 0 per x < x > x ax + bx + c 0 per x x x a < 0 e = 0 ax + bx + c > 0 non ha soluzioni ax + bx + c 0 per x = ax + bx + c < 0 per x ax + bx + c 0 per ogni x 0 a < 0 e < 0 ax + bx + c > 0 non ha soluzioni ax + bx + c 0 non ha soluzioni ax + bx + c < 0 per ogni x ax + bx + c 0 per ogni x Regola pratica Dai grafici dei segni risulta evidente una proprietà del trinomio di grado: sia nell intervallo più a destra che nell intervallo più a sinistra il segno è sempre uguale a quello del coefficiente a di x, nell eventuale intervallo intermedio il segno è sempre opposto (non importa il segno degli altri termini). Possiamo pertanto risolvere la disequazione studiando il segno del polinomio ax + bx + c: Risolvere l equazione associata ax + bx + c = 0 per trovare gli eventuali zeri del polinomio. Segnare sulla retta orientata uno 0 in ognuno dei punti eventualmente trovati. Scrivere sia nell intervallo più a destra che nell intervallo più a sinistra il segno uguale a quello del coefficiente a di x Scrivere nell eventuale intervallo intermedio il segno opposto. Valutare la richiesta della disequazione e scegliere i valori che la soddisfano

5 Esempi: 3x + x + 1 > 0 Calcoliamo = 4ac = ( ) 4( 3)( 1) = b = 16 Risolviamo l equazione associata 3x + x + 1 = 0 per determinare i valori di e x : + 4 x1 = = b ± ( ) ± 16 ± x 1, = = = a ( 3) 6 4 x = = 1 6 Disegniamo approssimativamente la parabola: a < 0 quindi la parabola ha concavità verso il basso > 0 quindi ci sono due intersezioni con l asse x x La disequazione richiede i valori positivi (> 0), cioè dove il grafico sta al di sopra dell asse x, allora le soluzioni sono i valori di x compresi tra le intersezioni: < x < x Costruiamo il grafico dei segni del polinomio: Mettiamo uno 0 in corrispondenza di e uno in corrispondenza di x. Mettiamo nell intervallo a destra di x e nell intervallo a sinistra di i segni (uguali al segno di a che è negativo) Mettiamo nell intervallo al centro i segni contrari cioè x La disequazione richiede i valori positivi (> 0), quindi le soluzioni sono i valori di x compresi tra gli zeri del polinomio: < x < x In entrambi i casi si giunge alla conclusone < x < 1 ovvero S = ;

6 x 3x + 5 < 0 Calcoliamo = b 4ac = ( 3) 4( 1)( 5) = 9 0 L equazione associata non ha soluzioni. = 11 < 0 non ci sono intersezioni con l asse x La disequazione richiede i valori negativi (< 0), cioè dove il grafico sta al di sotto dell asse x, quindi non ci sono soluzioni. Il polinomio ha sempre il segno di a (non ci sono punti in cui si annulla) quindi è sempre positivo La disequazione richiede i valori negativi (< 0) quindi non ci sono soluzioni. x 4x = b 4ac = = 16 = 0 Calcoliamo ( ) ( )( ) 16 = 0 c è una sola (doppia) intersezione con l asse x La disequazione richiede i valori positivi o nulli ( 0), quindi tutti i valori di x sono soluzioni. Mettiamo uno 0 in corrispondenza di. a > 0 quindi mettiamo sia a destra che a sinistra di i segni + non c è intervallo intermedio quindi non ci sono segni contrari La disequazione richiede i valori positivi o nulli ( 0), quindi tutti i valori di x sono soluzioni. In entrambi i casi si giunge alla soluzione S = ( ; + )

7 x + 3x 4 0 Calcoliamo = b 4ac = ( 3) 4( 1)( 4) = = 5 Risolviamo l equazione associata x + 3x 4 = 0 per determinare i valori di e x : 3 5 x1 = = 4 b ± ( 3) ± 5 3 ± 5 x 1, = = = a (1) x = = 1 > 0 ci sono due intersezioni con l asse x x La disequazione richiede i valori positivi o nulli ( 0), quindi le soluzioni sono i valori di x esterni alle intersezioni con l asse x, comprese le intersezioni: x x x Segniamo uno 0 in corrispondenza di e uno in corrispondenza di x. a > 0 quindi mettiamo a destra di x e a sinistra di i segni + e nell intervallo al centro i segni La disequazione richiede i valori positivi o nulli ( 0), quindi le soluzioni sono i valori di x esterni, compresi gli zeri: x x x In entrambi i casi si giunge alla conclusone 4 < < 1 x + x + 6 > 0 Calcoliamo = b 4ac = ( ) 4( 1)( 6) = 4 4 L equazione associata non ha soluzioni x x ovvero S = ( ; 4] U [ 1; + ) = 0 < 0 non ci sono intersezioni con l asse x La disequazione richiede i valori positivi (> 0), cioè dove il grafico sta al di sopra dell asse x, quindi tutti i valori di x sono soluzioni. Il polinomio ha sempre il segno di a (non ci sono punti in cui si annulla) quindi è sempre positivo La disequazione richiede i valori positivi (> 0) quindi tutti i valori di x sono soluzioni. In entrambi i casi S = ( ; + )

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa):

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa): P. \ Disequazioni di secondo grado Maggio 0 Copyright-I.S. DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI INTERE DI SECONDO GRADO Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 4 Andrea Susa PROPRIETÀ GENERALI DISEQUAZIONI 1 Proprietà disuguaglianze Siano,,, allora valgono le seguenti proprietà se

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria.

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. 1 Disequazioni fratte Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. Prima di affrontare le disequazioni fratte, ricordiamo il procedimento che utilizziamo per

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1 RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Le disequazioni frazionarie (o fratte)

Le disequazioni frazionarie (o fratte) Le disequazioni frazionarie (o fratte) Una disequazione si dice frazionaria (o fratta) se l'incognita compare al denominatore. Esempi di disequazioni fratte sono: 0 ; ; < 0 ; ; Come per le equazioni fratte,

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado

Dettagli

Richiami di Matematica - Esercizi 21/98

Richiami di Matematica - Esercizi 21/98 Richiami di Matematica - Esercizi 1/98 ESERCIZI. Principi di equivalenza: 1) A(x) > B(x) A(x) + C(x) > B(x) + C(x) ) Se k > 0 allora A(x) > B(x) ka(x) > kb(x) 3) Se k < 0 allora A(x) > B(x) ka(x) < kb(x)

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Elementi sulle diseguaglianze tra numeri relativi

Elementi sulle diseguaglianze tra numeri relativi Elementi sulle diseguaglianze tra numeri relativi Dati due numeri disuguali a e b risulta a>b oppure ao oppure a-b

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Scheda 1. Concavo e convesso

Scheda 1. Concavo e convesso Scheda 1 Concavo e convesso Scheda 2 Concavità Fig.1 Concavità rivolta verso l alto Concavità rivolta verso il basso Fig.3 Concavità rivolta verso l alto Fig.2 Concavità rivolta verso il basso Fig.4 Scheda

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Equazioni Polinomiali II Parabola

Equazioni Polinomiali II Parabola Equazioni Polinomiali II Parabola - 0 Equazioni Polinomiali del secondo grado (Polinomi II) Forma Canonica e considerazioni La forma canonica dell equazione polinomiale di grado secondo è la seguente:

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Y = ax 2 + bx + c LA PARABOLA

Y = ax 2 + bx + c LA PARABOLA LA PARABOLA La parabola è una figura curva che, come la retta, è associata ad un polinomio che ne definisce l'equazione. A differenza della retta, però, il polinomio non è di primo grado, ma è di secondo

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari)

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari) Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari). Piano cartesiano Per piano cartesiano si intende un piano dotato

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Esercizi sulle Disequazioni

Esercizi sulle Disequazioni Esercizi sulle Disequazioni Esercizio Trovare le soluzioni delle seguenti disequazioni:.).).).) ).) ) ).).7) 8.8).) Esercizio Trovare le soluzioni delle seguenti disequazioni tratte dal secondo parziale

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita.

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita. 1 Le equazioni Consideriamo espressioni algebriche contenenti una sola incognita, che indicheremo con x, le quali verranno indicate con i simboli f(x), g(x), h(x),.... Il valore assunto dall espressione

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometria Analitica Domande, Risposte & Esercizi La parabola. Dare la definizione di parabola come luogo di punti La parabola è un luogo di punti, è cioè un insieme di punti del piano che verificano tutti

Dettagli

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene:

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene: 1 EQUAZIONI 1. (Da Veterinaria 2006) L equazione di secondo grado che ammette per soluzioni x1 = 3 e x2 = -1/ 2 è: a) 2x 2 + (2 3-2)x - 6 = 0 b) 2x 2 - (2 3-2)x - 6 = 0 c) 2x 2 - (2 3-2)x + 6 = 0 d) 2x

Dettagli

Sistema di due equazioni di primo grado in due incognite

Sistema di due equazioni di primo grado in due incognite Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore

Dettagli

MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO

MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO 1 Propedeutica alle Funzioni Premessa Questo documento vuole essere una preparazione per lo studio delle funzioni, comprendendo tutte quelle

Dettagli

Definizione. Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è.

Definizione. Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è. VALORE ASSOLUTO Definizione a a, a, se a se a 0 0 Esempi.. 7 7. 9 9 4. x x, x, se x se x Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è. Utilizzando

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esercizi sullo studio di funzione Seconda parte Come visto nella prima parte, per poter descrivere una curva, data la sua equazione cartesiana esplicita y f () occorre procedere secondo l ordine seguente:

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 3. DERIVATE E STUDIO DI FUNZIONE (II parte): Massimi, minimi e derivata prima. Flessi e derivata seconda. Schema per lo studio qualitativo completo di una funzione y=f(x) Crescenza

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

asse fuoco vertice direttrice Fig. D3.1 Parabola.

asse fuoco vertice direttrice Fig. D3.1 Parabola. D3. Parabola D3.1 Definizione di parabola come luogo di punti Definizione: una parabola è formata dai punti equidistanti da un punto detto fuoco e da una retta detta direttrice. L equazione della parabola

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Prodotti Notevoli. 1. Prodotto della somma di due monomi per la loro differenza

Prodotti Notevoli. 1. Prodotto della somma di due monomi per la loro differenza Prodotti Notevoli I prodotti notevoli sono particolari prodotti o potenze di polinomi, che si sviluppano secondo formule facilmente memorizzabili. Questi consentono di effettuare i calcoli in maniera più

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

(x x 0 ) 2. Lezione del 24 ottobre

(x x 0 ) 2. Lezione del 24 ottobre Lezione del 4 ottobre 1. Premessa I fatti descritti nei punti seguenti si possono vedere come molto lontani sviluppi di alcuni fatti elementari riguardanti le funzioni polinomiali di II grado. Diamo per

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Il valore assoluto di un numero è uguale a 3 quando quel numero vale +3 oppure vale 3! Quindi: Graficamente:

Il valore assoluto di un numero è uguale a 3 quando quel numero vale +3 oppure vale 3! Quindi: Graficamente: 355 C) LE EQUAZIONI COL SIMBOLO DI VALORE ASSOLUTO Iniziamo da alcuni casi particolari. 1) 5 = 3 Il valore assoluto di un numero è uguale a 3 quando quel numero vale +3 oppure vale 3! Quindi: Graficamente:

Dettagli

Equazioni con valore assoluto

Equazioni con valore assoluto Equazioni del tipo A(x) =a, con a Є R Equazioni con valore assoluto 1. a

Dettagli

raggruppiamo il quadrato di binomio dividiamo per 0 effettuiamo i calcoli a secondo membro Distinguiamo i tre casi: 2 ± 2 ; 2 = 0 ; + si ottiene, =

raggruppiamo il quadrato di binomio dividiamo per 0 effettuiamo i calcoli a secondo membro Distinguiamo i tre casi: 2 ± 2 ; 2 = 0 ; + si ottiene, = Equazioni di II grado Equazione di II grado completa Un equazione di II grado è un equazione che, ridotta a forma normale, è del tipo ++=0 con 0. Per risolverla occorre calcolare il discriminante dell

Dettagli

LA PARABOLA E LE DISEQUAZIONI

LA PARABOLA E LE DISEQUAZIONI LA PARABOLA E LE DISEQUAZIONI DI SECONDO GRADO 6 Per ricordare H Una funzione di secondo grado la cui equazione assume la forma y ˆ a b c si chiama arabola. Le sue caratteristiche sono le seguenti (osserva

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase Luigi Lecci\Compito 2D\Lunedì 10 Novembre 2003 1 Oggetto: compito in Classe 2D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 60 minuti Argomenti: Equazioni e disequazioni immediate

Dettagli

Studio di funzione appunti

Studio di funzione appunti Studio di unzioni algebriche ratte Studio di unzione appunti 1. Ricerca del dominio (C.E.);. Intersezioni con gli assi cartesiani; 3. Ricerca degli intervalli di positività (Studio del segno S.D.S.); 4.

Dettagli

CAMPO DI ESISTENZA. Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale, cioè: C.E. = {x R: < x < + } 2 x1,2 C +

CAMPO DI ESISTENZA. Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale, cioè: C.E. = {x R: < x < + } 2 x1,2 C + y = x + 7x + 5 CAPO DI ESISTENZA. Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale, cioè: C.E. = {x R: < x < + } INTERSEZIONI CON GLI ASSI. Per determinare l intersezione

Dettagli

La parabola. Tutti i diritti sono riservati.

La parabola. Tutti i diritti sono riservati. La parabola Copyright c 8 Pasquale Terrecuso Tutti i diritti sono riservati. La parabola di equazione y = a + b + c Concavità............................................................... Se a varia................................................................

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE UNITÀ. DISEQUAZIONI ALGEBRICHE. Generalità e definizioni sulle diquazioni algebriche.. Diquazioni di primo grado.. Diquazioni di condo grado.. Diquazioni di grado superiore al condo.. Diquazioni fratte.

Dettagli

matematica per le quarte

matematica per le quarte lorenzo pantieri matematica per le quarte degli istituti professionali www.ipscesena.it Questo lavoro, scrit- to per gli alunni dell Istituto Versari-Macrelli di Cesena, spiega il programma di matematica

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE DISEQUAZIONI ALGEBICHE Classe II a.s. 00/0 prof.ssa ita Schettino INTEVALLI DI Impariamo cosa sono gli intervalli di numeri reali Sono sottoinsiemi continui di numeri reali e possono essere limitati o

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli