Esercitazioni Capitolo 12 Carichi termici estivi attraverso il perimetro

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni Capitolo 12 Carichi termici estivi attraverso il perimetro"

Transcript

1 Esercitzioni Cpitolo 12 Crichi termici estivi ttrverso il perimetro 1) Si vluti il crico termico estivo trsmesso il 21 luglio lle ore 6.00 e lle ore 15.00, ttrverso un prete con esposizione Ovest e Est vente un superficie S 100 m 2 e trsmittnz K 1,11 W/m 2. L mss per unità di re dell prete si 300 kg/m 2 Per effetture quest vlutzione si può ricorrere (in prim pprossimzione) ll seguente tbell che riport le differenze di tempertur equivlente d dottre per le diverse orientzioni e msse specifiche di prete. Le tbelle sono, rigori, vlide solo per le tipologie cui si riferiscono e tengono conto dell esposizione, dell mss specific dell prete [kg/m 2 ] e del colore dell prete. L potenz trsmess ttrverso l prete si clcol trmite l espressione seguente ricvndo dll tbell, per un mss di 300 kg/m 2, i vlori dell t eq (differenze di tempertur equivlente) per le due esposizioni: Risult per prete espost Ovest ore 6.00 ore φ p KS t eq φ p 1, (0,8) 90W φ p 1, (10.5) 1170 W Risult per prete espost Est ore 6.00 φ p 1, (-0,8) -90W ore φ p 1, (6.9) 770 W

2 2) Un locle rettngolre (h 3.3 [m]) d un pino intermedio di un edificio sito in enov, è esposto Est sul lto 9 [m]. L prete perimetrle opc present un finestr (S v 3 m 2 ) munit di vetro termossorbente (3 mm) (SC 0.83). Si suppone che le crtteristiche geometriche, termofisiche ed il colore esterno dell prete sino coerenti con le t eq (differenze di tempertur equivlente) per l mss specific di 500 [kg/m 2 ]. L trsmittnz dell prete opc è K1.5 [W/m 2 K]; l trsmittnz dell superficie vetrt K v 5.6 [W/m 2 K]. Nell ipotesi che l tempertur intern si t 26 [ C] si vlutino i vlori orri del crico sensibile trsmesso il 21 luglio e l or in cui questo ssume il mssimo vlore. Si vlutino i crichi orri supponendo che l stess prete si espost Nord Il crico termico per trsmissione termic cus di differenze di tempertur è esprimibile con: φ p KS t eq + K v S v (t e -t ) Il crico termico diretto ttrverso l superficie vetrt è: Il crico complessivo trsmesso dll esterno è: φ vt S v SC φ vto φ p + φ vt KS t eq + K v S v (t e -t )+ S v SC φ vto Per l orientzione Est si ottiene l seguente tbell di vlori orri : Or t eq KS t eq t e (t e -t ) K v S v (t e -t ) φ vto φ vt S v SC φ vto φ p + φ vt (EST) (EST) 6 2, ,10-0,90-15, , , ,35-0,65-10, , , ,80-0,20-3, , , ,45 0,45 7, , , ,20 1,20 20, , , ,05 2,05 34, , , ,85 2,85 47, , , ,45 3,45 57, , , ,85 3,85 64, , , ,00 4,00 67, , , ,85 3,85 64, ,39 704

3 Per l orientzione Nord si ottiene l seguente tbell di vlori orri : Or t eq KS t eq t e (t e -t ) K v S v (t e -t ) φ vto φ vt S v SC φ vto φ p + φ vt (NORD) (NORD) 6 0, ,10-0,90-15, , , ,35-0,65-10, , , ,80-0,20-3, , , ,45 0,45 7, , , ,20 1,20 20, , , ,05 2,05 34, , , ,85 2,85 47, , , ,45 3,45 57, , , ,85 3,85 64, , , ,00 4,00 67, , , ,85 3,85 64, , Come si può osservre il crico trsmesso ttrverso l involucro del locle risult mssimo lle ore 8 del mttino Est e lle 14 Nord. Il crico mssimo Est super di circ 3,5 volte il crico mssimo Nord.

4 3) In regime invernle, si vuole mntenere un sl conferenze ll tempertur t A 20 C e i A 50%, note le condizione esterne t E 4 C e i E 30%. Si ttu un pre-miscelzione in cui l ri di di ricircolo (A) è l metà di quell di rinnovo (E). Noti il crico sensibile φ sen -27 kw e φ lt 15 kw, vlutre: ) le crtteristiche dell ri d immettere in mbiente (B), ipotizzndo di pre-riscldre l ri fino ll tempertur di 13 C ( ) ed effetture sturzione dibtic ( ) b) l portt d ri necessri c) il flusso termico scmbito dll btteri di pre-riscldmento e post-riscldmento d) l quntità di cqu che si è trsformt in vpore nel sturtore dibtico (btteri di umidificzione). ) Il fttore di crico R < 0 risult: R g t v ( sen + lt lt ) r 0 ( ) kJ / kg Sul digrmm ASHRAE l pendenz R di un segmento di rett si individu in riferimento ll scl semicircolre in lto sinistr, che però f riferimento ll umidità ssolut espress in grmmi. Si h pertnto: R h x 10 3 h w h w R kj g Si vlut or lo stto dell ri invit ll UTA: E R x x A x x E 7,25 x 2 x x 1,6 g 3,5 kg v s Le crtteristiche termoigrometriche dell miscel entrnte nell btteri sono dunque: t 9,5 C x 3,5 g v /kg s h 19 kj/kg s i 47% Dopo il pre-riscldmento (stto ) le proprietà dell ri risultno: t 13 C x 3,5 g v /kg s h 22 kj/kg s i 38 %

5 E dopo l btteri di umidificzione (stto ): t 7 C x 6 g v /kg s h 22 kj/kg s i 100 % A questo punto si post-riscld fino d incontrre l rett dei crichi. Il punto individuto (stto B) rppresent le condizioni in cui l ri deve essere immess in mbiente: t B 26 C x B 6 g v /kg s h B 42 kj/kg s i B 28 % b) L portt d ri di immissione è clcolbile come: sen h - h B A kg 38,5 s kg 8 s c) I flussi termici impiegti nell btteri di pre-ricldmento e post-riscldmento risultno rispettivmente: kg kj PRE -R (h ' - h ) 8 (22 19) s kg 24 kw kg kj (h B - h ' ' ) 8 (42 22) s kg POST -R 160 kw d) H kg g v O (x'' x ' ) 8 (6 3,5) 2 s kg g 20 H O s 2

6

CONDIZIONAMENTO DELL ARIA

CONDIZIONAMENTO DELL ARIA Corso di Impinti Tecnici.. 009/00 Docente: Prof. C. Isetti CAPITOLO 7 7. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del

Dettagli

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009 Corso di Fisic tecnic mbientle e Impinti tecnici.. 008/009 CAPITOLO. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del contenuto

Dettagli

CONDIZIONAMENTO DELL ARIA

CONDIZIONAMENTO DELL ARIA CAPITOLO. Generlità Come nticipto, col termine condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del contenuto di vpore dell'ri in un mbiente. L intervento consiste

Dettagli

Problema Q & SOLUZIONE

Problema Q & SOLUZIONE Problem 2..2.2 Un portt di,00 0 4 m / di ri umid, inizilmente ll tempertur di 2,0 C con umidità reltiv del 60% viene rffreddt e deumidifict. L tempertur in ucit è di 0,0 C ed il grdo igrometrico del 00%

Dettagli

Corso di Componenti e Impianti termotecnici IL PROGETTO TERMOTECNICO PARTE SECONDA

Corso di Componenti e Impianti termotecnici IL PROGETTO TERMOTECNICO PARTE SECONDA IL PROGETTO TERMOTECNICO PARTE ECONDA 1 I ponti termici Il ponte termico può essere definito come: un elemento di elevt conduttività inserito in un prete o elemento di prete di minore conduttività. I ponti

Dettagli

GESTIONE DELL ENERGIA A.A II PROVA INTERMEDIA, 11 Luglio 2007

GESTIONE DELL ENERGIA A.A II PROVA INTERMEDIA, 11 Luglio 2007 II PROVA INTERMEDIA, 11 Luglio 2007 1- Economi bst su risorse non rinnovbili. Illustrre l influenz sul prezzo del petrolio dei costi di estrzione in generle e nel cso di costi di estrzione costnti ricvre

Dettagli

Fisica Tecnica Ambientale

Fisica Tecnica Ambientale Università degli Studi di Perugi Sezione di Fisic Tecnic Fisic Tecnic Ambientle Lezione del 11 mrzo 2015 Ing. Frncesco D Alessndro dlessndro.unipg@cirif.it Corso di Lure in Ingegneri Edile e Architettur

Dettagli

IL MINISTRO DELLO SVILUPPO ECONOMICO

IL MINISTRO DELLO SVILUPPO ECONOMICO Decreto del Ministero dello sviluppo economico 11 mrzo 2008 Attuzione dell'rt. 1, comm 24, letter ), dell Legge 24/12/2007, n 244, per l definizione dei vlori limite di fbbisogno di energi primri nnuo

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 [m 3 ]) l rnnovo d r è n 0.5 (1/h). Nell potes d un tempertur estern t e - 5 [ C], qunto vle l flusso termco per ventlzone v.

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

Aria Umida Proprietà, Trasformazioni, Diagramma Psicrometrico

Aria Umida Proprietà, Trasformazioni, Diagramma Psicrometrico Lezione 11 Ari Umid Proprietà, Trsformzioni, Digrmm Psicrometrico Prte I Il clcolo delle proprietà dell Ari Umid ed il Digrmm Psicrometrico Ari Umid, Climtizzzione ed Inolucro Edilizio Autori: L. Belli,

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio :

L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio : Strumenti di misur dell umidità relti: psicrometro bulbo bgnto e entilto. Deduzione dell equzione psicrometric. Tempertur del bulbo bgnto e umidità relti. Relzione con il punto di ruggid. Lo psicrometro

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Misure ed incertezze di misura

Misure ed incertezze di misura Misure ed incertezze di misur Misurzione e Misur Misurre signiic quntiicre un grndezz isic chimt misurndo trmite un processo (misurzione) il cui risultto detto misur. L misur deve poter essere ripetut

Dettagli

Compitino di Fisica II del 14/6/2006

Compitino di Fisica II del 14/6/2006 Compitino di Fisic II del 14/6/2006 Ingegneri Elettronic Un solenoide ssimilbile d un solenoide infinito è percorso d un corrente I(t) = I 0 +kt con k > 0. Se il solenoide h un lunghezz H, rggio, numero

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

FLESSIONE E TAGLIO (prof. Elio Sacco)

FLESSIONE E TAGLIO (prof. Elio Sacco) Cpitolo FLESSIONE E TALIO (prof. Elio Scco). Sollecitzione di flessione e tglio Si esmin il cso in cui l risultnte delle tensioni genti sull bse dell trve x = L consist in un forz tglinte V, tlechev e

Dettagli

APPUNTI DALLE LEZIONI UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI ARCHITETTURA A.A.

APPUNTI DALLE LEZIONI UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI ARCHITETTURA A.A. UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI ARCHITETTURA A.A. 007 008 CORSO DI LAUREA IN SCIENZE DELL ARCHITETTURA INSEGNAMENTO DI FISICA TECNICA PROFF.

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA 2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA UMIDA 2.1. Ari Atmosferic L'ri tmosferic é costituit d un insieme di componenti gssosi (N 2, O 2, Ar, CO 2, Ne, He, ) e d ltre sostnze che possono presentrsi in

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 13 LA TERMODINAMICA DELL ARIA UMIDA

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 13 LA TERMODINAMICA DELL ARIA UMIDA TERMODINAMICA E TERMOFLUIDODINAMICA Cp. 13 LA TERMODINAMICA DELL ARIA UMIDA T bu T ARIA UMIDA gocce d cqu liquid (rugid) T

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico LE GRANDEZZE FISICHE estensive dipendono dll quntità di mteri mss, volume, lunghezz Grndezze intensive non dipendono dll quntità di mteri tempertur, peso specifico LA MISURA DI UNA GRANDEZZA FISICA Per

Dettagli

P8 Ponti radio terrestri e satellitari

P8 Ponti radio terrestri e satellitari P8 Ponti rdio terrestri e stellitri P8.1 Un collegmento in ponte rdio 11 GHz impieg due ntenne prboliche uguli venti gudgno G 40 db ed efficienz η 0,5. Gli pprti di ricetrsmissione sono collegti lle rispettive

Dettagli

3.1. Schema dei flussi (termici e massici) entranti ed uscenti in un generatore di vapore

3.1. Schema dei flussi (termici e massici) entranti ed uscenti in un generatore di vapore 3.1. Schem dei flussi (termici e mssici) entrnti ed uscenti in un genertore di vpore G.izzo;G.Lngell Per cpire il significto dei termini che compiono in Fig.1, si fcci riferimento Tb.1 Fig.1 Q IN Q VAP

Dettagli

Corso di Termodinamica Applicata Esercitazione n 2

Corso di Termodinamica Applicata Esercitazione n 2 Corso di Termodinamica Applicata Esercitazione n 2 13 maggio 2013 Indice Consegna 1 1 Dati ed Ipotesi 2 2 Soluzione e Risultati 5 3 Discussione dei Risultati 20 Consegna Si consideri un impianto di condizionamento

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportmento meccnico dei mterili rtteristiche di sollecitione inemtic ed equilirio del corpo rigido rtteristiche di sollecitione efiniione delle crtteristiche Esempio 1: trve rettiline Esempio : struttur

Dettagli

P t V = n t R T. P v = n v R T / V

P t V = n t R T. P v = n v R T / V Corso di Impiti Tecnici.. 009/00 Docente: Prof. C. Isetti CAPITOLO TERMODINAMICA DELL ARIA UMIDA. Generlità Nell'ri è sempre presente un piccol quntità di por d'cqu, indictimente circ % in mss, per cui

Dettagli

Travi soggette a taglio e momento flettente

Travi soggette a taglio e momento flettente Trvi soggette tglio e momento flettente Qundo i crichi o i momenti hnno vettori perpendicolri ll sse si prl di sollecitzioni su trvi o bems Il pino di inflessione è quello ove giscono i crichi e che contiene

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Distributori per serie R2 - WR2

Distributori per serie R2 - WR2 Distributori per serie - Il distributore BC, il cuore dell serie / Il distributore BC dell serie CMB-P-V-G colleg sino d un mssimo di 16 unità e con l unità estern e distribuisce efficcemente il refrigernte

Dettagli

Esercizi sul calcolo dei carichi invernali ed estivi di progetto

Esercizi sul calcolo dei carichi invernali ed estivi di progetto Esercz sul clcolo de crch nvernl ed estv d progetto CESARE MARIA JOPPOLO, STEFANO DE ANTONELLIS, LUCA MOLINAROLI DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO C. M. Joppolo, S. De Antonells, L. Molnrol

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA Freni e frizioni ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA 1. forz di ttuzione del meccnismo. coppi trsmess 3. perdit di energi 4. incremento di tempertur 1

Dettagli

Esercitazione 2-15 Ottobre Equilibrio idrostatico

Esercitazione 2-15 Ottobre Equilibrio idrostatico Esercitione di Meccnic dei fluidi con Fondmenti di Ingegneri Chimic Esercitione 2-15 Ottobre 2015 Equilibrio idrosttico È stt ricvt leione l equione fondmentle dell sttic dei fluidi pesnti e incomprimibili,

Dettagli

Il problema delle scorte tomo G

Il problema delle scorte tomo G Il prolem delle scorte tomo G Esercizi corretti: esercizio pg 6; esercizio 3 pg. 59 N. 5 PAG 389; N. 6 PAG. 389; N. 7 PAG 389; N. 8 PAG. 389; N 9 PAG. 390; N. 30 pg 390, N. 3 pg. 390, N. 33 pg. 390. Per

Dettagli

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche.

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche. Prestzioni PONTI TERMICI Normlmente il clcolo delle dispersioni termiche di un edificio viene svolto considerndo che le temperture interne ed esterne sino costnti (Regime Termico tzionrio). Questo signific

Dettagli

REQUISITI ENERGETICI DEGLI EDIFICI. 1. Indice di prestazione energetica per la climatizzazione invernale

REQUISITI ENERGETICI DEGLI EDIFICI. 1. Indice di prestazione energetica per la climatizzazione invernale Allegto C REQUISITI ENERGETICI DEGLI EDIFICI 1. Indice di prestzione energetic per l climtizzzione invernle 1.1 Edifici residenzili dell Clsse E1, esclusi collegi, conventi, cse di pen e cserme Tbell 1.1

Dettagli

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H eccnic Un bcino d cqu, profondo, e` contenuto d un prti verticle di lunghezz (orizzontle, lungo y) L, vincolt l terreno nel punto B. Per sostenere l prti si usno lcuni pli fissti d un estremit` sull prti,

Dettagli

Corso di Componenti e Impianti Termotecnici DIAGRAMMA PSICROMETRICO TEORIA ED ESEMPI DI APPLICAZIONE PRATICA

Corso di Componenti e Impianti Termotecnici DIAGRAMMA PSICROMETRICO TEORIA ED ESEMPI DI APPLICAZIONE PRATICA Corso di Comonenti e Iminti Termotecnici DIAGRAMMA PSICROMETRICO TEORIA ED ESEMPI DI APPLICAZIONE PRATICA 1 IL DIAGRAMMA PSICROMETRICO Corso di Comonenti e Iminti Termotecnici Il digrmm sicrometrico è

Dettagli

RADAR (radio detection and ranging)

RADAR (radio detection and ranging) ENERALITÀ RAAR (rdio detection nd rnging) Il rdr è un complesso pprto rdioelettronico ce esplet utonommente (senz iuti d terr) l funzione di rilevre e loclizzre tutti gli oggetti (coste, nvi,...ecc.) situti

Dettagli

Serie 240 Valvola pneumatica Tipo e Tipo Valvola a via diritta Tipo 3241

Serie 240 Valvola pneumatica Tipo e Tipo Valvola a via diritta Tipo 3241 Serie 240 Vlvol pneumtic Tipo 3241-1 e Tipo 3241-7 Vlvol vi diritt Tipo 3241 Appliczione Vlvol di regolzione per l impintistic Dimetri DN 15 DN 300 Pressioni PN 10 PN 40 Temperture 196 450 C Vlvol vi diritt

Dettagli

Università degli studi di Roma Tre Facoltà di Architettura. Corso di Fisica Tecnica. Docenti: arch. Francesco Bianchi ing.

Università degli studi di Roma Tre Facoltà di Architettura. Corso di Fisica Tecnica. Docenti: arch. Francesco Bianchi ing. Università degli studi di Roma Tre Facoltà di Architettura Corso di Fisica Tecnica Docenti: arch. Francesco Bianchi ing. Francesco Cocco DIMENSIONAMENTO DEGLI IMPIANTI PER UN EDIFICIO RESIDENZIALE A PATIO

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Relè termici di sovraccarico

Relè termici di sovraccarico /2 ABB Relè termici di sovrccrico Pnormic Relè termici di sovrccrico bimetlli ed elettronici /2 Relè termici di sovrccrico bimetlli T16 (0,10 16 A) Informzioni di dettglio per l'ordinzione /4 Dti tecnici

Dettagli

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita?

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita? Vettori e sclri Nello studio dell meccnic si incontrno due principli ctegorie di grndezze: sclri e vettori. Cos distingue queste quntit? Domenic sono ndto in iciclett per due ore L informzione sul tempo

Dettagli

3. Modellistica dei sistemi dinamici a tempo continuo

3. Modellistica dei sistemi dinamici a tempo continuo Fondenti di Autotic 3. Modellistic dei sistei dinici tepo continuo Esercizio 1 (es. 10 del Te d ese del 18-9-2002) Si consideri il siste dinico elettrico riportto in figur, i cui coponenti ssuono i seguenti

Dettagli

Pressioni nelle condotte

Pressioni nelle condotte 10 Pressioni nelle condotte 10.1 Sovrppressioni ccidentli L e sovrppressioni ccidentli si possono verificre cus delle vrizioni del moto dell cqu nell tubzione. In questo cso si dirà che il moto non viene

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Oggetto dell'attestato

Oggetto dell'attestato DATI GENERALI Destinzione d'uso Nuov costruzione Oggetto dell'ttestto Residenzile Intero edificio Pssggio di proprietà Non residenzile Unità immobilire Loczione Gruppo di unità immobiliri Ristrutturzione

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

TERMODINAMICA DELL ARIA UMIDA

TERMODINAMICA DELL ARIA UMIDA Corso di Fisic tecnic e mbientle.. 0/0 - Docente: Prof. Crlo Isetti TERMODINAMICA DELL ARIA UMIDA. GENERALITÀ Nell'ri è sempre presente un piccol quntità di por d'cqu, indictimente circ % in mss, per cui

Dettagli

SOLEX : film di copertura a micro-sfere di vetro Valutazione Agronomica su colture orticole di pomodoro e melanzane

SOLEX : film di copertura a micro-sfere di vetro Valutazione Agronomica su colture orticole di pomodoro e melanzane SOLEX : film di copertur micro-sfere di vetro Vlutzione Agronomic su colture orticole di pomodoro e melnzne M. Cscone* - A. Ferrresi* - G.Mgnni** - F. Filippi** * Soc. Agriplst S.r.L., Vittori (Itli) **Diprtimento

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Esercitazioni Capitolo 11 Impianti di condizionamento

Esercitazioni Capitolo 11 Impianti di condizionamento serczon Cpolo Impn d condzonmeno ) S suppon ce r emperur 0 C e umdà rel 80% en rffredd fno ll emperur d 0 C. Vlure l qunà d pore condenso per d r secc l lello del mre (P 000 (P) ) ed ll quo d 000 (m )

Dettagli

FISICA TECNICA (Ingegneria Medica)

FISICA TECNICA (Ingegneria Medica) NOME N. MATRICOLA N. CREDITI E-MAIL Prova di esame del 11 Febbraio 2014 1. Sia dato un ciclo frigorifero, in cui il fluido evolvente è R134a, a cui in cascata è collegato un secondo ciclo il cui fluido

Dettagli

PROVE PER L ESAME. Peso specifico. Ricordando che ps = P/V e quindi P = ps V, rispondi alle seguenti domande:

PROVE PER L ESAME. Peso specifico. Ricordando che ps = P/V e quindi P = ps V, rispondi alle seguenti domande: PROVE PER L ESAME PROVE PER L ESAME Un tomo di ferro h numero tomico e peso tomico 5. Qunti elettroni contiene? Qunti protoni? Qunti neutroni? [Contiene elettroni e protoni. Il numero di neutroni ugule

Dettagli

Fondamenti di Climatizzazione Ambientale Prof. C.M. JOPPOLO Prova scritta 29/01/2010

Fondamenti di Climatizzazione Ambientale Prof. C.M. JOPPOLO Prova scritta 29/01/2010 Fondamenti di Climatizzazione Ambientale Prof. C.M. JOPPOLO Prova scritta 29/01/2010 Nome Cognome Matricola Quesito n 1 - CICLO DI CONDIZIONAMENTO PER IMPIANTO MISTO In un locale adibito a biblioteca di

Dettagli

. G EN E ER E ALIZ I ZATA TIT I OLAZIO I NI

. G EN E ER E ALIZ I ZATA TIT I OLAZIO I NI 1 TEORIA GENERALIZZATA DELLE TITOLAZIONI Approccio trdizionle ll insegnmento dei metodi titrimetrici: Trttmento mtemtico degli equilibri in soluzione lcolo dell concentrzione di tutte le specie in soluzione

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

La progettazione degli impianti di climatizzazione negli edifici Anna Magrini

La progettazione degli impianti di climatizzazione negli edifici Anna Magrini La progettazione degli impianti di climatizzazione negli edifici Anna Magrini Uno strumento indispensabile per tutti coloro che devono progettare, realizzare e installare impianti di climatizzazione negli

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

RISPARMIO ENERGETICO EDIFICI

RISPARMIO ENERGETICO EDIFICI RISPARMIO ENERGETICO EDIFICI COME FACCIO A RISPARMIARE ENERGIA? COME FACCIO AD AVERE AGEVOLAZIONI? COME UTILIZZARE LE ENERGIE ALTERNATIVE? INSERTO A CURA DI CONFCONSUMATORI DELL EMILIA ROMAGNA Decreto

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

Metodo degli elementi finiti in una dimensione

Metodo degli elementi finiti in una dimensione Metodo degli elementi finiti in un dimensione Luci Gstldi DICATAM - Sez. di Mtemtic, http://luci-gstldi.unibs.it Indice 1 Problemi di diffusione-rezione del secondo ordine Formulzione debole Metodo di

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

INCENTIVI FISCALI RISPARMIO ENERGETICO AGEVOLAZIONI FISCALI IN TERMINI DI DETRAZIONI IRPEF / IRES DEL 65%

INCENTIVI FISCALI RISPARMIO ENERGETICO AGEVOLAZIONI FISCALI IN TERMINI DI DETRAZIONI IRPEF / IRES DEL 65% INCENTIVI FISCALI RISPARMIO ENERGETICO AGEVOLAZIONI FISCALI IN TERMINI DI DETRAZIONI IRPEF / IRES DEL 65% IN COSA CONSISTE? L gevolzione consiste nel riconoscimento di detrzioni dll impost IRPEF / IRES,

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

CELLE GALVANICHE E TITOLAZIONI POTENZIOMETRICHE

CELLE GALVANICHE E TITOLAZIONI POTENZIOMETRICHE CLL GALVANICH TITOLAZIONI POTNZIOMTRICH Rezione di ossidoriduzione spontne del Zinco metllico conttto con un soluzione di Solfto di Rme Cu (q.) Zn(s) Cu(s) Zn (q) Costnte di equilibrio dell rezione 5 C

Dettagli

. Rxt-90 smaltata nera

. Rxt-90 smaltata nera TERMOCUCINE SERIE Rxt/Rxtd Rxt-60 Rxt-80 Rxt-90 Bse (mm) 600 800 900 Altezz (mm) 850/860 850/860 850/860 Profondità (mm) 600 600 600 Altezz zoccolo di serie (mm) 100 100 100 Peso (Kg) 179 218 229 Pistr

Dettagli

Scambiatori di calore

Scambiatori di calore Appunti di ISIA ENIA Scmbitori di clore Introduzione... Progetto e scelt di uno scmbitore di clore... ipi più comuni di scmbitori di clore... Differenz medi di tempertur...3 Medi logritmic delle differenze

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

UNITA DI MISURA. distanze

UNITA DI MISURA. distanze Unità di misur. ppunti di Topogrfi UNIT DI MISUR distnze L unità di misur bitulmente impiegt per esprimere le distnze è il metro. Per grndezze molto piccole è opportuno ricorrere i sottomultipli, centimetro

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

Disposizioni inerenti all efficienza energetica in edilizia Regione Lombardia DGR 8745 del 22 dic 2008

Disposizioni inerenti all efficienza energetica in edilizia Regione Lombardia DGR 8745 del 22 dic 2008 Attività di di FORMAZIONE tecnici comunli Disposizioni inerenti ll efficienz energetic in edilizi Regione Lombrdi DGR 8745 del 22 dic 2008 BANDO CARIPLO Audit Energetico degli edifici comunli AUDIT AUDITEECERTIFICAZIONE

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Cap. 5. Rappresentazioni grafiche di modelli

Cap. 5. Rappresentazioni grafiche di modelli 5.1 Schemi strutturli e schemi funzionli Cp. 5 Rppresentzioni grfiche di modelli Nello studio dei sistemi vengono usulmente impiegte rppresentzioni grfiche convenzionli, denominte schemi. Questi ultimi

Dettagli

LABORATORIO DI MATEMATICA LE FUNZIONI

LABORATORIO DI MATEMATICA LE FUNZIONI LABORATORIO DI MATEMATICA LE FUNZIONI Le funzioni ESERCITAZIONE GUIDATA Dt l funzione fx ( ) = x+ b, con! 0, con Excel costruimo un foglio elettronico che: legg i vlori dei coefficienti e b; stbilisc il

Dettagli

Umidificazione (2) Raffreddamento con evaporazione

Umidificazione (2) Raffreddamento con evaporazione Umidificazione (2) Raffreddamento con evaporazione Termodinamica dell Aria Umida - 27 Nel secondo caso, parte dell acqua spruzzata nella corrente evapora, sottraendo all aria calore sensibile ed abbassandone

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

RIF RE 003D. 87a CODE. * Laguna +15 / 54. }Vedere schema RE 003D/b H 1. Strumento temperatura K L

RIF RE 003D. 87a CODE. * Laguna +15 / 54. }Vedere schema RE 003D/b H 1. Strumento temperatura K L 9 RE D BC C 9 CODE B 9 C D B C D E B * Lgun B + / F D C E 9 9 G }Vedere schem RE D/b H Strumento tempertur K L LEGEND RE D ( vno motore lto psseggero vicino supporto motore per Megne e Scenic ) ( vno motore

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Calcolo dei carichi termici estivi secondo il metodo Carrier Pizzetti e calcolo delle dispersioni invernali dei locali campione

Calcolo dei carichi termici estivi secondo il metodo Carrier Pizzetti e calcolo delle dispersioni invernali dei locali campione Calcolo dei carichi termici estivi secondo il metodo Carrier Pizzetti e calcolo delle dispersioni invernali dei locali campione EDIFICIO INDIRIZZO COMMITTENTE FABBRICATI 1D- 1E Politecnico Torino Sede

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli