Perturbazioni Dipendenti dal tempo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Perturbazioni Dipendenti dal tempo"

Transcript

1 Perurbazioni dipendeni dal empo in Meccanica Quanisica, Perurbazioni Periodiche, Transizioni di Dipolo Elerico, Dipolo Magneico, Quadripolo Elerico e relaive Regole di Selezione Di Giorgio Busoni

2 Perurbazioni Dipendeni dal empo Traeremo ora il caso in cui l Hamiloniana del sisema non sia compleamene indipendene dal empo, ma olre a un ermine indipendene dal empo H 0 deo Hamiloniana imperurbaa, di cui conosciamo gli auovalori dell energia e i relaivi auosai con le auofunzioni: H 0 = E x = ψ x è presene un ermine di poenziale dipendene dal empo V(): H = H 0 + V() Possiamo allora cercare degli auosai con un meodo perurbaivo a parire dagli auosai imperurbai: i() = b i, () con b i, 0 = δ i, i(0) = i E quindi poremo definire una probabilià di ransizione da uno sao imperurbao i ad un alro sao imperurbao al empo dovua al poenziale V() come: P,i = i() = b i, () Dobbiamo ora rovare un meodo per calcolare i b i, (). L equazione di S. per il sisema è: i ψ i x, = H ψ i x, = H 0 ψ i x, + V()ψ i x, ib i, = b i, ()H 0 + b i, ()V() E proieando su uno sao s ib i, s = b i, () s H 0 + b i, () s V()

3 ib i,s = b i,s E s + b i, () s V() Conviene ora ogliere dai b i,s la normale dipendenza emporale che avrebbero nel caso imperurbao: Oeniamo b i,s = e ie s a i,s () ie ie s a i,s + e ie s a i,s E s = e ie s a i,s E s + s V() e ie a i, () ie ie s a i,s = s V() a i, ()e ie ia i,s = Usando ora la condizione iniziale e ie s s V() a i, ()e ie b i, 0 = δ i, Poriamo l equazione in forma inegrale a i,s = δ i,s i 0 e ie sτ V s, τ a i, τ e ie τ dτ Dove Facciamo ora l ipoesi aggiuniva che V s, = s V() V() = 0 Allora possiamo risolvere l equazione per approssimazioni successive: Con 0 1 a i,s = a i,s + a i,s + a i,s +...

4 n+1 a i,s = i 0 e ie sτ n V s, τ a i, τ e ie τ dτ E 0 a i,s = δ i,s Acconenandoci della soluzione al primo ordine oeniamo 0 1 a i,s = a i,s + a i,s = i 0 e ie sτ V s, τ e ie τ 1 i = s dτ Perurbazioni Periodiche Traeremo ora il caso in cui V = Fe iω + F + e iω Allora 0 1 a i,s = a i,s + a i,s = i Dove F s, e i ω s, ω 1 ω s, ω 1 i = s + F s, + ei ω s,+ω 1 ω s, + ω ω s, = E s E Considerando solo due sai, il primo ermine domina per Cioè ω s, ~ω E s E ~ω > 0 È una ransizione a un livello energeico superiore; invece il secondo ermine domina per ω s, ~ ω E s E ~ ω < 0

5 È una ransizione a un livello energeico inferiore. Per quano riguarda la probabilià di ransizione infine: P s,i = 1 ω F Sin s, ω ω + s, ω s, ω + F Sin s, + ω s, ω s, + ω + Re F s, F l,s e Sin ω s, ω Sin ω s,l + ω iω ω s, ω ω s,l + ω l Dove il erzo è il ermine di inerferenza. Per ω~ω s,i Si ha P s,i ~ 1 ω F Sin s,i ω s,i ω s,i ω Transizioni Eleromagneiche Mi limio a raare il caso di un aomo con un solo elerone e nell approssimazione di nucleo con massa infinia. Avremo che l Hamiloniana è: H = 1 m P e c c e + eφ() μ B() r Scelgo una gauge con φ = 0 e pongo μ = e mc gs Dove g è il faore giromagneico che per l elerone vale. H = P m e mc P A + A P + e mc A e r e mc S B() Trascuro ora il ermine in A e so il fao che P ed A commuano:

6 H = P m e r e e P A mc mc S B = H 0 + V() Prendiamo Il poenziale veore di un onda piana monocromaica: Con A r, = A 0 e i r ω + A 0 e i r ω A 0 = A 0 ε ε = 1 Possiamo inolre prendere A 0, e quindi ε reale: queso corrisponde a una scela arbiraria della fase a = 0. A r, = A 0 Cos r ω A r, E r, = = ωa 0 Cos r ω V = e mc E prendendo ε = z B r, = A r, = A 0 Sin r ω P A e mc S B = e mc P A 0Cos r ω + e mc S A 0 Sin r ω V = e mc P z A 0 e i y ω e mc P z A 0 e i yr ω ie mc S i y ω x A 0 e + ie mc S i y ω x A 0 e Sviluppiamo ora queso poenziale in serie di Taylor nell approssimazione r 1 Queso è ammissibile perché le lunghezze d onda in gioco sono molo maggiori delle dimensioni aomiche. Prendiamo lo sviluppo al primo ordine per i primi due ermini e all ordine 0 per i secondi :

7 V e mc P z A iy e iω e mc P z A 0 1 iy e +iω ie mc S x A 0 e iω + ie mc S x A 0 e +iω V = e mc A 0 P z Cos ω e mc A 0 P z ysin ω e mc A 0 S x Sin ω V = e mc A 0 P z Cos ω e mc A P zy zp y + P z y + zp y 0 e mc A 0 S x Sin ω V = e mc A 0 P z Cos ω e mc A 0 L x +S x Sin ω Transizioni di Dipolo Elerico Sin ω e mc A 0 P z y + zp y Sin ω = V d.e () + V d.m () + V q.e () V d.e = e mc A 0 P z Cos ω V i,f = f V d.e i = e mc A 0 f P z i Cos ω V i,f = e mc A 0 im f H, z i Cos ω V i,f = i e c A 0 f H z zh i Cos ω V i,f = i e c A 0 f z i E f E i Cos ω V i,f = i e c A 0 f z i ω f,i Cos ω P f,i = V i,f = 4 e c A 0 f z i ω f,i Cos ω P f,i = e c A 0 f z i ω f,i

8 Transizioni di Dipolo Magneico V d.m = e mc A 0 L x +S x Sin ω V i,f = f V d.m i = eω mc A 0 f L x +S x i Sin ω P f,i = V i,f = e ω Transizioni di Quadrupolo Elerico m c 4 A 0 f L x +S x i Sin ω P f,i = e ω m c 4 A 0 f L x +S x i V q.e = e mc A 0 P z y + zp y Sin ω V i,f = f V q.e i = e mc A 0 f P z y + zp y i Sin ω V i,f = e mc A 0 im f H, z y + z H, y i Sin ω V i,f = ie c A 0 f H zy zh y + zh y zyh i Sin ω V i,f = ie c A 0 f H zy zyh i Sin ω V i,f = ie c A 0 f zy i E f E i Sin ω V i,f = ie c A 0 f zy i ω f,i Sin ω P f,i = V i,f = e c A 0 f zy i ω f,i Sin ω P f,i = e c A 0 f zy i ω f,i

9 Regole di Selezione Le regole di selezione che possiamo usare sono: Teorema di Wigner Ecar: si può riassumere dicendo che se Q(x, y, z) è un polinomio omogeneo di grado, e i ed f sono sai a momeno angolare definio, allora f Q i può essere non nullo se e solo se la composizione del momeno angolare dello sao iniziale con un momeno angolare con l = può dare una componene del momeno angolare dello sao finale, cioè se l i l f l i + Parià: se è pari e i ed f sono sai a parià definia, P i = ( 1) i i e P f = ( 1) f f, allora P Q i = Q P i invece se è dispari si ha P Q i = Q P i, di conseguenza f Q i = f P + P Q i = ( 1) f P + Q P i = ( 1) +i+f f Q i e quindi se è pari l elemeno di marice è nullo se la parià dello sao finale è diversa da quella dello sao iniziale, viceversa se è dispari l elemeno di marice è nullo se la parià dello sao finale è uguale a quella dello sao iniziale. Nel caso in cui uno sao è s auosao di L, L s = l(l + 1) s allora P s = ( 1) l s. Momeno angolare azimuale: se e i ed f sono auosai di L z, L z i = m i i e L z f = m f f, sempre secondo il eorema di Wigner Ecar si può scomporre Q come combinazione lineare di poenze di operaori L +, L ed L z che aumenano o diminuiscono l auovalore di L z di 1, quindi si avranno elemeni di marici non nulli solo se Q i ha lo sesso auo valore per l operaore L z di f. Per esempio per Q = L allora L z Q i = m i 1 i l elemeno di marice è nullo se non vale m f = m i 1. Consideriamo ora gli auosai dell aomo di idrogeno n, l, m, s dove n è il numero quanico principale, l il numero quanico secondario, m il numero quanico magneico ed s il numero quanico di spin. Regole di Selezione per Transizioni di Dipolo Elerico Dobbiamo rovare le regola sull elemeno di marice f z i. Regole di selezione su L Per parià P z n i, l i, m i, s i = z P n i, l i, m i, s i

10 quindi deve essere P n i, l i, m i, s i = P n f, l f, m f, s f e quindi per avere un elemeno di marice non nullo deve valere l i l f 1 Per il eorema di W.E. Quindi l i 1 l f l i + 1 l f {l i 1, l i, l i + 1} Da cui dobbiamo ogliere il caso l f = l i perché non soddisfa la regola di parià. Regole di selezione su m Nel caso ε = z l f {l i 1, l i + 1} Si ha z n i, l i, m i, s i L z n i, l i, m i, s i n i, l i, m i, s i e quindi per avere un elemeno di marice non nullo deve valere m i = m f Nel caso ε = x+iy Si ha x+iy n i, l i, m i, s i L + n i, l i, m i, s i n i, l i, m i + 1, s i e quindi per avere un elemeno di marice non nullo deve valere m i + 1 = m f Nel caso ε = x iy Si ha x iy n i, l i, m i, s i L n i, l i, m i, s i n i, l i, m i 1, s i e quindi per avere un elemeno di marice non nullo deve valere m i 1 = m f Nel caso ε = x Si ha x n i, l i, m i, s i L + + L n i, l i, m i, s i n i, l i, m i + 1, s i + n i, l i, m i 1, s i e quindi per avere un elemeno di marice non nullo deve valere m f = m i ± 1

11 Nel caso ε = x Si ha y n i, l i, m i, s i L + L n i, l i, m i, s i n i, l i, m i + 1, s i + n i, l i, m i 1, s i e quindi per avere un elemeno di marice non nullo deve valere m f = m i ± 1 Regole di Selezione per Transizioni di Dipolo Magneico Dobbiamo rovare le regola sull elemeno di marice f L x +S x i. L x +S x n i, l i, m i, s i L + + L + S + + L n i, l i, m i, s i n i, l i, m i + 1, s i + n i, l i, m i 1, s i + n i, l i, m i, s i n i, l i, m i, s i 1 Quindi ho un elemeno di marice non nullo in uno dei segueni casi: l f = l i, m f = m i + 1, s f = s i l f = l i, m f = m i 1, s f = s i l f = l i, m f = m i, s f = s i Regole di Selezione per Transizioni di Quadripolo Elerico Dobbiamo rovare le regola sull elemeno di marice f zy i. Regole di selezione su L Per parià P zy n i, l i, m i, s i = zy P n i, l i, m i, s i quindi deve essere P n i, l i, m i, s i = P n f, l f, m f, s f e quindi per avere un elemeno di marice non nullo deve valere l i l f 0 Per il eorema di W.E. Quindi l i l f l i + l f {l i, l i 1, l i, l i + 1, l i + } Da cui dobbiamo ogliere i casi l f = l i ± 1 perché non soddisfano la regola di parià. l f {l i, l i, l i + }

12 Regole di selezione su m Nel caso ε = z Si ha zy n i, l i, m i, s i L z L + L n i, l i, m i, s i L z n i, l i, m i + 1, s i + L z n i, l i, m i 1, s i n i, l i, m i + 1, s i + n i, l i, m i 1, s i e quindi per avere un elemeno di marice non nullo deve valere m f = m i ± 1 Nel caso ε = x Si ha xz n i, l i, m i, s i L + + L L z n i, l i, m i, s i L + + L n i, l i, m i + 1, s i n i, l i, m i + 1, s i + n i, l i, m i 1, s i e quindi per avere un elemeno di marice non nullo deve valere m f = m i ± 1 Nel caso ε = y Si ha yx n i, l i, m i, s i L + L L + + L n i, l i, m i, s i L + + L n i, l i, m i + 1, s i + L + + L n i, l i, m i 1, s i n i, l i, m i +, s i + n i, l i, m i, s i + n i, l i, m i, s i e quindi per avere un elemeno di marice non nullo deve valere m f = m i ± 1 o m f = m i Nel caso ε = x+iy Si ha x + iy z n i, l i, m i, s i L + L z n i, l i, m i, s i L + n i, l i, m i, s i n i, l i, m i + 1, s i e quindi per avere un elemeno di marice non nullo deve valere m f = m i + 1

13 Nel caso ε = x iy Si ha x iy z n i, l i, m i, s i L L z n i, l i, m i, s i L n i, l i, m i, s i n i, l i, m i 1, s i e quindi per avere un elemeno di marice non nullo deve valere m f = m i 1

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Esercizi 5. Sistemi lineari

Esercizi 5. Sistemi lineari Esercizi 5 10\04\017 Sisemi lineari David Barbao Esercizio 1 (Appello 014-015 ese 3). Dao il sisema lineare: x 1 + x + 3x 3 + 4x 4 = 0 x + x 3 + 3x 4 = 0 x 1 x x 3 x 4 = 0 (1) sia T lo spazio delle soluzioni

Dettagli

Meccanica Introduzione

Meccanica Introduzione Meccanica 23-24 Inroduzione FISICA GENERALE Meccanica: -Sudio del moo dei corpi -Forza di gravià Termodinamica: - Calore, fenomeni ermici, applicazioni Eleromagneismo: - Cariche eleriche, magnei FISICA

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

1 FORMA GENERALE DELLE ONDE PIANE

1 FORMA GENERALE DELLE ONDE PIANE 1 FORMA GENERALE DELLE ONDE PIANE Quando abbiamo ricavato le equazioni delle onde piane, abbiamo scelto il sistema di riferimento in direzione z, e questo ha condotto, per una onda che si propaga in direzione

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Introduzione al Lab. di Ottica Quantistica

Introduzione al Lab. di Ottica Quantistica Inroduzione al Lab. di Oica Quanisica Effeo fooelerico e Fooconeggio Simone Cialdi Ouline Inroduzione Sorica Da Planck agli sai enangled Sruura del corso Disinguere ra classico e quanisico Scegliere ra

Dettagli

Il Value at Risk secondo l approccio parametrico: un esempio semplificato

Il Value at Risk secondo l approccio parametrico: un esempio semplificato Universià degli Sudi di Napoli Federico II Caedra di Economia delle Aziende di Assicurazione Il Value a Risk secondo l approccio paramerico: un esempio semplificao Domenico Curcio, Ph. D. Value a Risk

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Inroduzione e modellisica dei sisemi Modellisica dei sisemi eleromeccanici Principi fisici di funzionameno Moore elerico in correne coninua (DC-moor) DC-moor con comando di armaura DC-moor con comando

Dettagli

Appello di Meccanica Quantistica I

Appello di Meccanica Quantistica I Appello di Meccanica Quantistica I Facoltà di Scienze M.F.N. Università degli Studi di Pisa gennaio 007 (A.A. 06/07) Tempo a disposizione: 3 ore. Problemi e per il recupero Compitino I; problemi e 3 per

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

Proprietà razionali per il prezzo

Proprietà razionali per il prezzo Proprieà razionali per il prezzo delle opzioni call 8/09/0 Corso di Finanza quaniaiva L aricolo di Rober Meronpubblicao nel 973, heoryofraionalopionpricing idenifica una serie di proprieà che devono valere

Dettagli

Metalli alcalini: spettri ottici

Metalli alcalini: spettri ottici Metalli alcalini: spettri ottici l Rimozione della degenerazione. Aspetti quantitativi l Regole di selezione. Giustificazione. Possiamo introdurre un numero quantico principale efficace nel modo seguente:

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Osservatore asintotico dello stato

Osservatore asintotico dello stato Osservaore asinoico dello sao Si consideri il sisema: x () = Ax () + Bu () y () = Cx () () Problema: Deerminare un disposiivo in grado di inseguire asinoicamene lo sao di un processo assegnao con modalià

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Economia Politica H-Z Lezione 9

Economia Politica H-Z Lezione 9 Blanchard, Macroeconomia, Il Mulino 2009 Economia Poliica H-Z Lezione 9 Sergio Vergalli vergalli@eco.unibs.i Sergio Vergalli - Lezione 4 1 Blanchard, Macroeconomia, Il Mulino 2009 Capiolo XIII. Le aspeaive:

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

Generazione di corrente alternata - alternatore

Generazione di corrente alternata - alternatore . la forza eleromorice può essere indoa: a)..; b)..; c) variando l angolo ra B e la normale alla superficie del circuio θ( (roazione di spire o bobine) ezione Generazione di correne alernaa - alernaore

Dettagli

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero amedeo.argeniero@unipg.i Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

Corso di Misure Geodeiche Esercizio posizionameno relaivo Versione:. Jun. 00 Creao da Marco Scurai. remessa. La presene eserciazione risolve in modo compleo e deagliao un problema di sima della posizione

Dettagli

Struttura di un alimentatore da parete

Struttura di un alimentatore da parete Alimenaori 1 Sruura di un alimenaore da paree Alimenaori con regolaore lineare ensione sul condensaore di filro Poenza aiva e apparene Disorsione Alimenaori con regolaore swiching Condensaore di filro

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 28/29 (aggiornaa al 2/9/28) 2 Proprieà della rasformaa

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta Poliecnico di Torino etem Esercizi Scheda N. 0 45 Fisica II Esercizi con soluzione svola Esercizio 0. Si consideri il circuio V R T R T V I V 0 Vols R 5 Ω R 0 Ω µf sapendo che per 0 T on T off 5 µs T off

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Equazioni differenziali: formule

Equazioni differenziali: formule Equazioi differeziali: formule Equazioi a variabili separabili y ' A B y Vale eorema esiseza e uicià locale y ' dy Ad B y y y ' A B y y Si applicao le codizioi alla fie dei due iegrali idefiii, oppure

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

BREVE INTRODUZIONE STORICA

BREVE INTRODUZIONE STORICA Marco Giliberi, Elemeni per una didaica della Fisica Quanisica, CUSL, Milano 007. 1 BREVE INTRODUZIONE STORICA Marco Giliberi Diparimeno di Fisica Universià degli Sudi di Milano Premessa Dalla fine degli

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

Simbologia: lettere minuscole per indicare grandezze variabili nel tempo lettere maiuscole per indicare grandezze costanti nel tempo e parametri

Simbologia: lettere minuscole per indicare grandezze variabili nel tempo lettere maiuscole per indicare grandezze costanti nel tempo e parametri ANSO Premessa ransiorio: è l inerallo di empo che il sisema impiega per passare da no sao sazionario a n alro. egime: è lo sao in ci si roa n sisema in ci sono esarii i i ransiori. Simbologia: leere minscole

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Il circuito RC Misure e Simulazione

Il circuito RC Misure e Simulazione Il circuio R Misure e Simulazione Laboraorio di Fisica - Liceo Scienifico G.D. assini Sanremo 8 oobre 8 E.Smerieri & L.Faè Progeo Lauree Scienifiche 6-9 Oobre - Sanremo he cosa verrà fao in quesa esperienza

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Massimi e minimi relativi in R n

Massimi e minimi relativi in R n Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE Universià degli Sudi di assino - FOTÀ DI GGNI OSO DI U GGNI GSTION TTOTNI - prova scria del // SIZIO I - on riferimeno al seguene circuio, operane in regime sinusoidale, calcolare:. il circuio equivalene

Dettagli

SCELTA DI UN INNESTO A FRIZIONE

SCELTA DI UN INNESTO A FRIZIONE SELTA DI UN INNESTO A FRIZIONE Si conideri l'impiano in Fig. 1, coiuio da un moore elerico aincrono riae, un inneo a rizione ad azionameno eleromagneico, un riduore ad ingranaggi ed una macchina operarice.

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235 9.4. FILRAGGIO DI SEGNALI E PROCESSI 35 Rispose ) Calcoliamo la media emporale: P x = ; / / x () d = /4 /4 () d = 4 = ) Sappiamo che P y = Py (f) df, in cui Py (f) = Y (f), ed a sua vola Y (f) = X (f)

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

Raggiungibilità e controllabilità (2 )

Raggiungibilità e controllabilità (2 ) eoria dei sisemi - Capiolo 8 Raggiungibilià e conrollabilià ( ) Sisemi empo-coninui lineari empo-invariani... Inroduzione... Deerminazione del soospazio di raggiungibilià e crierio di Kalman... La conrollabilià...6

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11)

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) 1. Disegnare sul piano di Argand-Gauss e porre in forma trigonometrica-esponenziale (i.e. determinarne modulo

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale La Previsione della omanda La previsione della domanda è un elemeno chiave della gesione aziendale Cosi Cliene Vanaggio compeiivo esi I mod 001 1 ermiene rocesso oninuo Personalizzao Prodoo Indifferenziao

Dettagli

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Corso di Teoria dei Circuii Regime lenamene variabile Diparimeno di Ingegneria Elerica www.unipv.i/elecric/cad Regime lenamene variabile v(),

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Sistemi dinamici lineari

Sistemi dinamici lineari Capitolo 1. INTRODUZIONE 1.19 Sistemi dinamici lineari La funzione di stato che descrive un sistema dinamico lineare, è rappresentabile in forma matriciale nel seguente modo: Per sistemi continui: Per

Dettagli

Memoria cache. Corso di Laurea in Ingegneria dell Informazione Università degli Studi di Firenze AA 2008/2009

Memoria cache. Corso di Laurea in Ingegneria dell Informazione Università degli Studi di Firenze AA 2008/2009 Memoria cache Coo di Laurea in Ingegneria dell Informazione Univeià degli Sudi di Firenze AA 2008/2009 D S I Inroduzione Il problema delle presazioni dei calcolaori copre divei aspei, ma con l aumenare

Dettagli

Metodi I Secondo appello

Metodi I Secondo appello Metodi I Secondo appello Chi recupera la prima prova fa la parte A in due ore. Chi recupera la seconda prova fa la parte B in due ore. Chi fa l appello per intero fa A., B., le prime tre domande di A.2

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,

Dettagli

Lezione 2. Appendice 1. Il livello di inquinamento efficiente quando siamo in presenza di uno stock-damage pollution : un analisi di steady-state.

Lezione 2. Appendice 1. Il livello di inquinamento efficiente quando siamo in presenza di uno stock-damage pollution : un analisi di steady-state. 1 Lezione 2 Appendice 1 Il livello di inquinameno efficiene quando siamo in presenza di uno sock-damage polluion : un analisi di seady-sae. Quesa analisi è complicaa dal fao che i singoli isani emporali

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

Interpolazione. Corso di Calcolo Numerico, a.a. 2008/2009. Francesca Mazzia. Dipartimento di Matematica Università di Bari.

Interpolazione. Corso di Calcolo Numerico, a.a. 2008/2009. Francesca Mazzia. Dipartimento di Matematica Università di Bari. Interpolazione Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari 17 Aprile 2009 Francesca Mazzia (Univ. Bari) Interpolazione 17/04/2006 1 / 37 Interpolazione

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI Vogliamo determinare una funzione lineare che meglio approssima i nostri dati sperimentali e poter decidere sulla bontà di questa approssimazione. Sia f(x) = mx + q, la coppia di dati (x i, y i ) appartiene

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013 L atomo di idrogeno R. Dovesi, M. De La Pierre, C. Murace Corso di Laurea in Chimica A.A. 2012/2013 Chimica Fisica II Modello per l atomo di idrogeno Modello: protone fisso nell origine ed elettrone in

Dettagli