ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice"

Transcript

1 ITIS J.F. Kennedy prof. Maurilio Bortolussi 1 Indice 1 I SISTEMI LINEARI E CONTINUI NEL DOMINIO DEL TEMPO Introduzione La funzione di trasferimento Risposta all impulso di Dirac Risposta al gradino Trasformazione dei componenti elettrici elementari Esempi Funzione di trasferimento di una rete RLC Ordine di un sistema Sistemi di ordine Sistemi del primo ordine Sistemi del secondo ordine Risposta al gradino di un sistema del secondo ordine Caso τ2 2 > 4 τ 1 τ Caso τ2 2 = 4 τ 1 τ Caso τ2 2 > 4 τ 1 τ Parametri della risposta al gradino Modello matematico del motore in c.c. a magneti permanenti Domande Esercizi Laboratorio Lab. 5: Analisi sperimentale nel dominio del tempo della risposta al gradino di una rete RC e di una rete CR

2 2 Sistemi nel dominio del tempo - v I SISTEMI LINEARI E CONTINUI NEL DOMINIO DEL TEMPO 1.1 Introduzione Scopo del presente capitolo e l esposizione dei metodi di analisi del comportamento temporale dei sistemi lineari continui a costanti concentrate a seconda delle particolari sollecitazioni presenti in ingresso e delle particolari condizioni iniziali. Il significato degli aggettivi lineare e continuo sono già stati analizzati in precedenza. Ci soffermiamo ora sul significato dell espressione a costanti concentrate. Quando si rappresenta un circuito elettrico inserendo una resistenza R, un condensatore C e/o un induttore L in realtà si sta effettuando una semplificazione (i modelli sono semplificazioni) ovvero che il comportamento resistivo del circuito sia tutto localizzato, o meglio concentrato, nel resistore, trascurando così la componente resistiva dei cavi di connessione, del condensatore e dell induttore stessi. Lo stesso si può dire del comportamento induttivo proprio dei cavi stessi, ecc. ecc.. In realtà tale semplificazione è accettabile finché le correnti e le tensioni in gioco variano con frequenze relativamente basse ed i cavi di connessione non sono particolarmente lunghi. E evidente che l analisi che seguirà non può essere applicata ai sistemi discreti, tra i quali si annoverano i diffusissimi sistemi a microprocessore, ma comunque essa è un passo ineludibile per comprendere i metodi che si applicano nel discreto. Per effettuare l analisi nel dominio del tempo è necessario costruire il modello matematico del sistema attraverso un percorso che può essere riassunto nei seguenti passi: Definizione dei limiti del sistema e degli elementi che lo compongono Formulazione delle ipotesi semplificative Determinazione delle equazioni algebriche e/o integro-differenziali Soluzione delle equazioni in base alle sollecitazioni di prova ad esso applicate Passare dal modello astratto al modello concreto attraverso delle prove sperimentali Confrontare la risposta teorica con la risposta reale Correggere il modello matematico o rivedere il procedimento utilizzato se la previsione teorica si discosta eccessivamente dal risultato sperimentale La fase teorica di analisi deve essere sempre seguita da una verifica sperimentale. Nelle applicazioni pratiche le difficoltà maggiori si incontrano proprio nel trasferire i risultati teorici al fenomeno fisico reale a causa delle ipotesi semplificative assunte nella fase di elaborazione del modello. D altro canto nei modelli dei sistemi utilizzati nei controlli automatici spesso si sacrifica la precisione a favore della semplicità; è inutile ricorrere a modelli sofisticati quando i valori dei parametri che in essi compaiono si conoscono solo approssimativamente. 1.2 La funzione di trasferimento Partiamo da un esempio. Si consideri la rete RC di figura 1. Vogliamo determinare l andamento temporale dell uscita vo qualora in ingresso venga applicato in un primo caso un impulso di Dirac ed in un secondo caso un gradino unitario. La rete RC è costituita da un resistore ed un condensatore collegati in serie. Da un punto di vista sistemico essa può essere rappresentata mediante lo schema a blocchi riportato in figura 1. Determiniamo il modello matematico del circuito RC. Dal II principio di Kichhoff si ha: v R (t) + v C (t) = v i (t)

3 ITIS J.F. Kennedy prof. Maurilio Bortolussi 3 R vi R C C vo vi vo Figura 1: Rete RC - schema elettrico e schema a blocchi Applicando la legge di Ohm otteniamo: Ricordando la relazione v-i nel condensatore: R i(t) + v C (t) = v i (t) R C dv C(t) + v C (t) = v i (t) Poiché v O (t) = v C (t), si ottiene la seguente equazione differenziale del primo ordine che lega tra loro ingresso ed uscita: R C dv O(t) + v O (t) = v i (t) (1) Determinare v o (t) equivale a risolvere l equazione differenziale precedente. Utilizziamo a tale scopo il metodo di Laplace e trasformiamo ambo i membri dell equazione differenziale: [ L R C dv ] O(t) + v O (t) = L[v i (t)] Applichiamo le proprietà fondamentali della trasformata di Laplace [ ] dvo (t) R C L + L[v O (t)] = L[v i (t)] Nell ipotesi che v o (0) = V 0, (condensatore carico alla tensione V 0 all istante t = 0) antitrasformando otteniamo: R C (s V O (s) V 0 ) + V O (s) = V I (s) Raccogliamo V O (s) ed otteniamo V O (s) = R C V 0 R C s R C s + 1 V I (s) (2) L espressione di V O (s) così ottenuta è valida per qualsiasi segnale V I (s) presente in ingresso. Si può notare che essa è data dalla somma di due componenti, una dipendente dalle sole condizioni iniziali V 0, denominata risposta libera, ed una dipendente dalla sollecitazione di ingresso V I (s), denominata risposta forzata. Ipotizziamo, per ora, che il condensatore sia inizialmente scarico. Pertanto, il legame tra sollecitazione e risposta si riduce a: V O (s) = 1 R C s + 1 V I (s) (3)

4 4 Sistemi nel dominio del tempo - v. 0.1 Questa equazione afferma che la risposta V O (s) dipende dalla sollecitazione V I (s) tramite la funzione G(s) così definita: G(s) = V O (s) (4) V I (s) Tale funzione viene denominata più generalmente funzione di trasferimento, in breve F.d.T.. Essa costituisce il modello matematico del sistema nel campo complesso ed esprime il legame esistente tra la trasformata della sollecitazione applicata e la trasformata della risposta ad essa corrispondente. Ogni sistema lineare continuo è caratterizzato da una propria funzione di trasferimento che contiene tutte le informazioni per individuare le caratteristiche del sistema stesso. Essa non dipende né dal tipo di sollecitazione applicata né dalla risposta, come si può desumere dall esempio precedente.,ma solo dai parametri del sistema. Il concetto di funzione di trasferimento è valido pertanto non solo per i sistemi elettrici, ma si estende anche a qualsiasi sistema lineare sia esso meccanico,termico od idraulico. Riassumendo la funzione di trasferimento G(s) di un sistema è il rapporto tra la trasformata di Laplace della risposta U(s) e la trasformata di Laplace della sollecitazione I(s) della sollecitazione ad esso applicata 1. G(s) = U (s) I (s) La conoscenza della funzione di trasferimento consente di ricavare la risposta del sistema se è (5) Vi(s) G(s) Vo(s) Figura 2: La funzione di trasferimento nota la sollecitazione, come si può vedere nei seguenti esempi. Questo aspetto è molto importante perché nella pratica si ha interesse a conoscere l evoluzione di un sistema quando esso è sottoposto a sollecitazioni diverse Risposta all impulso di Dirac Consideriamo V I (s) = E, ovvero un impulso non unitario. Per trovare l andamento della risposta è necessario antitrasformare la seguente funzione razionale fratta: V Opulse (s) = G(s) E = E R C 1 s + 1 RC Il risultato della operazione di antitrasformazione è il seguente: [ ] E v O pulse (t) = L 1 R C 1 s + 1 = E R C e R C Risposta al gradino Applichiamo in ingresso alla rete RC un segnale a gradino non unitario, di ampiezza E, la cui trasformata è pari a E s. la trasformata del segnale in uscita assume la seguente espressione: V O step (s) = G(s) E s = 1 Ovviamente nell ipotesi di condizioni iniziali nulle. E R C 1 ( s + 1 R C ) s t R C

5 ITIS J.F. Kennedy prof. Maurilio Bortolussi 5 Sviluppando l espressione precedente in frazioni parziali ed applicando i procedimenti di antitrasformazione si ottiene: [ ] E v ostep (t) = L 1 s E ( ) s + 1 = E 1 e t R C R C 1.3 Trasformazione dei componenti elettrici elementari Il comportamento dei componenti elettrici elementari è regolato da relazioni funzionali nel dominio del tempo che mettono in relazione tra loro tensione e corrente elettrica. Applicando la trasformata di Laplace a tali relazioni possiamo ottenere delle corrispondenti relazioni algebriche nel dominio della variabile s. La tabella 1 riassume tale operazione di trasformazione. Si noti che nel caso del condensatore e dell induttore si deve tenere presente che le condizioni iniziali, rispettivamente la tensione iniziale e la corrente iniziale, possono essere nulle o diverse da zero. Figura 3: Bipoli elettrici elementari Consideriamo per esempio il caso di un condensatore inizialmente carico ad una tensione V 0 all istante t=0. dv (t) i(t) = C v (0) = V O Applicando le proprietà della trasformata di Laplace si ottiene: Dopo alcuni passaggi si ottiene: I (s) = C s V (s) C V 0 V (s) = 1 C s I (s) + V 0 s L espressione precedente si traduce circuitalmente nel modello equivalente del condensatore carico. Esso consiste in una impedenza di valore Z C = 1 C s in serie ad un generatore di tensione di valore pari a V0 s, come si si può osservare riportato in figura 4. Se si associa a ciascun componente elettrico elementare la sua impedenza generalizzata risulta relativamente agevole determinare la funzione di trasferimento di sistemi più complessi della rete RC Esempi 1. Rete LR Sia data la rete elettrica di figura 5 a cui viene applicata in ingresso una sollecitazione in tensione a gradino, di ampiezza 5V, e che l induttore sia inizialmente scarico, determinare:

6 6 Sistemi nel dominio del tempo - v. 0.1 Figura 4: Condensatore carico Tabella 1: Componenti elettrici elementari Componente Relazione nel dominio di t Relazione nel dominio di s Legge di Ohm generalizzata Resistore v (t) = R i(t) V (s) = R I (s) Z R = V (s) I(s) = R Condensatore inizialmente scarico i(t) = C dv(t) I (s) = C s V (s) Z C = 1 C s Condensatore inizialmente carico i(t) = C I (s) = C s V (s) C a dv(t) v (0) = V O V 0 Induttore inizialmente scarico v (t) = L di(t) V (s) = L s I (s) Z L = L s Induttore inizialmente carico v(t) = L di(t) i(0) = I O (a) La funzione di trasferimento G(s) = V0(s) V I(s) (b) L espressione analitica dell andamento temporale della risposta. (c) I diagrammi temporali della sollecitazione e della risposta. (d) I comandi MATLAB che permettono di tracciare la funzione. Traccia di svolgimento Figura 5: Rete LR Applicando la regola del partitore di tensione possiamo scrivere la seguente relazione: Da cui si ottiene: V O (s) = R R + L s V I (s) 1 G(s) = L R s + 1 La funzione di trasferimento così ottenuta è molto simile a quella ottenuta in precedenza nel caso della rete RC, pertanto si può già intuire che l espressione analitica e l andamento temporale delle risposte della rete LR all impulso di Dirac e al gradino sono molto simili alle risposte determinate nel caso della rete RC.

7 ITIS J.F. Kennedy prof. Maurilio Bortolussi Funzione di trasferimento di una rete RLC Si consideri, ad esempio, una rete elettrica RLC composta da un resistore, un induttore e da un condensatore. Ipotizziamo, per ora, che l induttore ed il condensatore siano completamente scarichi all istante t=0. Per ricavare la funzione di trasferimento si applicano a ciascun elemento della rete le regole di trasformazione riportate nella tabella precedente. In tal modo si ottiene una rete elettrica trasformata. Figura 6: Rete RLC trasformata Applicando il secondo principio di Khirchoff possiamo scrivere la seguente relazione: V I (s) = V R (s) + V L (s) + V O (s) = Z R I (s) + Z I I (s) + V O (s) Tenendo conto che I (s) = VO(s) Z C e dopo alcuni passaggi algebrici si intravvede già la funzione di trasferimento: 1 V O (s) = Z L Z C + ZR Z C + 1 V I (s) Poiché Z R = R, Z C = 1 C s, Z L = L s si ottiene: Dividendo ambo i mebri della relazione precedente si ottiene la funzione di trasferimento: G(s) = 1 L C s 2 + R C s + 1 A questo punto si è in grado di conoscere l evoluzione del sistema elettrico RLC quando esso è sottoposto a sollecitazioni diverse. 1.5 Ordine di un sistema Si è già visto che i sistemi si comportano in modo diverso a seconda della presenza o assenza di accumulatori di energia (cfr. modelli statici e modelli dinamici). In realtà, nel caso dei sistemi dinamici, si ha una ulteriore differenziazione di comportamento a seconda del numero di elementi di accumulatori di energia indipendenti presenti nel sistema stesso. Il numero di elementi accumulatori di energia è in stretta relazione con l ordine dell equazione differenziale che descrive il funzionamento dinamico del sistema, ed è per questo indicato anche come ordine del sistema stesso Sistemi di ordine 0 Nei sistemi di ordine 0 non sono presenti elementi accumulatori di energia e pertanto le relazioni funzionali tra le sollecitazioni applicate e le corrispondenti risposte sono costituite da semplici equazioni algebriche. La funzione di trasferimento si riduce in questo caso ad una semplice costante indipendente dalla variabile complessa s. G(s) = k

8 8 Sistemi nel dominio del tempo - v. 0.1 Si rammenta che una equazione algebrica può essere vista come una equazione differenziale di ordine 0. Nei sistemi di ordine 0, detti anche sistemi algebrici, l uscita dipende istante per istante solo dall ingresso. Ciò equivale a dire che i sistemi di ordine 0 sono sistemi statici, ovvero senza memoria. Restando nell ambito elettrico, esempio di sistemi di ordine 0 sono le reti elettriche costituite da sole resistenze come, ad esempio, quella riportata nella seguente figura. In questo caso la G(s) Figura 7: Sistema di ordine 0: schema elettrico e schema a blocchi si riduce ad una costante, come la seguente espressione evidenzia: Sistemi del primo ordine R 2 G(s) = R 1 + R 2 I sistemi del primo ordine sono costituiti da un solo accumulatore indipendente di energia e da elementi dissipatori. Vediamo alcuni esempi: sistema elettrico (condensatore + resistore), (induttore + resistore) sistema meccanico (molla+smorzatore) sistema termico (capacità termica + resistenza termica) Tutti i precedenti sistemi del primo ordine sono caratterizzati dalla seguente equazione differenziale lineare del primo ordine: τ du (t) + u (t) = k i(t) dove i(t) e u(t) rappresentano rispettivamente la sollecitazione e la risposta. Essa porta ad una funzione di trasferimento del tipo: G(s) = k τ s + 1 La costante τ è denominata anche costante di tempo del sistema e si esprime in secondi. Esempio di sistema del primo ordine Si riportano gli andamenti temporali delle risposte di una rete RC all impulso di Dirac ed al gradino nell ipotesi che R = 1kΩ e C = 100µF e l ampiezza E della sollecitazione di ingresso sia pari a 5V. In questo caso τ = RC e la funzione di trasferimento G(s) è pari a: 1 G(s) = 0.1 s + 1 Per determinare i grafici della risposta all impulso e al gradino si è utilizzato il software MATLAB. Qui di seguito è riportato il testo dello file di script utilizzato. % Sistema 1 ordine % Risposta all impulso ed al gradino

9 ITIS J.F. Kennedy prof. Maurilio Bortolussi 9 n1 = [5]; d1 = [0.1 1] t= [0:0.01:1] [yp,x,t] = impulse(n1,d1,t) [ys,x,t] = step(n1,d1,t) subplot(2,1,1); plot(t,yp) title( Risposta all impulso ) xlabel( t [s] ) ylabel( u(t) ) subplot(2,1,2); plot(t,ys) title( Risposta al gradino ) xlabel( t [s] ) ylabel( u(t) ) Figura 8: Risposta di un sistema del primo ordine all impulso e al gradino Sistemi del secondo ordine Essi sono costituiti da due accumulatori indipendenti di energia e da elementi dissipatori. I sistemi del secondo ordine sono notevolmente diffusi in natura; essi descrivono una grande varietà di fenomeni ondulatori. Alcuni esempi sono il circuito RCL, sistemi meccanici in cui sono presenti masse e molle, i motori in c.c. a magnete permanente. Tutti i precedenti sistemi del secondo ordine sono caratterizzati dalla seguente equazione differenziale lineare del secondo ordine: τ 1 τ 2 d2 u (t) 2 + τ 2 du (t) + u (t) = k i(t) (6) dove i(t) e u(t) rappresentano rispettivamente la sollecitazione e la risposta. Essa porta ad una

10 10 Sistemi nel dominio del tempo - v. 0.1 funzione di trasferimento il cui denominatore è un polinomio in s di secondo grado del tipo: G(s) = k τ 1 τ 2 s 2 + τ 2 s + 1 Le costanti τ 1 e τ 2 sono denominate costanti tempo del sistema, si esprimono in secondi e dipendono dai parametri del sistema. E interessante osservare che questo sistema ammette due poli complessi coniugati quando è soddisfatta la seguente condizione: (7) τ 2 < 4 τ 1 (8) Esempio di sistema del secondo ordine Si consideri il sistema costituito dal circuito RCL riportato nella figura 9: Figura 9: Un esempio di sistema del secondo ordine In questo caso la funzione di trasferimento è pari a: G(s) = 1 L C s 2 + R C s + 1 (9) e τ 1 = L R e τ 2 = R C. Si può notare che τ 1 coincide con la costante tempo del circuito RL e τ 2 coincide con la costante tempo del circuito RC. Poiché nel caso specifico di figura si ha che τ 1 = 0.01s e τ 2 = 0.05s la G(s) diventa: T RIALREST RICT ION Per determinare le risposte si è utilizzato anche in questo caso il seguente M-file MATLAB: % Sistema 2 ordine % Risposta all impulso ed al gradino n1 = [5]; d1 = [500e ] t= [0:0.001:0.4] [yp,x,t] = impulse(n1,d1,t) [ys,x,t] = step(n1,d1,t) subplot(2,1,1); plot(t,yp) title( Risposta all impulso ) xlabel( t [s] ) ylabel( u(t) ) subplot(2,1,2); plot(t,ys) title( Risposta al gradino ) xlabel( t [s] ) ylabel( u(t) ) 1.6 Risposta al gradino di un sistema del secondo ordine Il comportamento di un sistema del secondo ordine è generalmente più complesso di quello di un sistema del primo ordine. In particolare, in base ai valori assunti dalle due costanti tempo τ 1 e τ 2, e quindi dai parametri si possono distinguere tre casi: τ 2 2 > 4 τ 1 τ 2

11 ITIS J.F. Kennedy prof. Maurilio Bortolussi 11 Figura 10: Risposta di un sistema del secondo ordine all impulso e al gradino τ 2 2 = 4 τ 1 τ 2 τ 2 2 < 4 τ 1 τ 2 A ciascuna di queste tre condizioni corrisponde una particolare configurazione dei due poli della funzione di trasferimento, come si avrà modo di vedere nei prossimi paragrafi Caso τ 2 2 > 4 τ 1 τ 2 In questo caso i poli della funzione di trasferimento sono reali e negativi e giacciono nel semipiano sinistro del piano complesso. La risposta del sistema è esponenziale crescente asintotica e quindi aperiodica. Essa assomiglia fortemente alla risposta di un sistema del primo ordine. La u(t) assume un andamento esponenziale crescente asintotico Caso τ 2 2 = 4 τ 1 τ 2 I poli della funzione di trasferimento sono ancora reali e negativi ma sono coincidenti. Questa è la condizione limite oltre la quale si ottiene un andamento temporale notevolmente differente, come si potrà osservare più avanti. Nel caso pratico in esame la condizione è soddisfatta se si pone, ad esempio, C = 400µF. La u(t) assume un andamento esponenziale crescente asintotico, ma essa raggiunge la condizione di regime in un tempo minore rispetto al precedente Caso τ 2 2 > 4 τ 1 τ 2 In questo caso i due poli della funzione di trasferimento sono complessi coniugati, a parte reale ancora negativa. La presenza dei poli complessi coniugati impone una componente sinusoidale, e quindi oscillatoria, alla risposta. Tale situazione si ottiene, ad esempio, se riduciamo ulteriormente la capacità a 50 µf. Dalla figura si può notare che siamo in presenza di un andamento oscillatorio smorzato. Si dice anche che il sistema del 2 ordine è sottosmorzato. La pulsazione ω n del moto oscillatorio smorzato è la pulsazione naturale del sistema in assenza di fenomeni dissipativi. Essa dipende dai parametri del sistema.

12 12 Sistemi nel dominio del tempo - v. 0.1 Figura 11: Risposta al gradino: due poli reali distinti Figura 12: Risposta al gradino di un sistema del secondo ordine: due poli reali coincidenti

13 ITIS J.F. Kennedy prof. Maurilio Bortolussi 13 Figura 13: Risposta al gradino con poli complessi coniugati Parametri della risposta al gradino I sistemi del secondo ordine sono di particolare interesse perché i sistemi retroazionati 2, anche se di ordine elevato, presentano una risposta analoga a quella dei sistemi del secondo ordine. Ciò accade perché la loro configurazione poli-zeri è caratterizzata dalla presenza di una coppia di poli dominanti 3 complessi coniugati. I principali parametri temporali della risposta al gradino sono: S massima sovraelongazione (overshot) Essa è normalmente espressa in % del valore finale. T R Tempo di ritardo (delay time) Esso è il tempo necessario per raggiungere il 50% del valore finale. T S tempo di salita (rise time) Tempo necessario per passare dal 10% al 90% del valore finale. T A tempo di assestamento tempo occorrente perché si assesti entro il 5% del valore finale. T M tempo di massima sovraelongazione Istante di tempo in cui si presenta la massima sovraelongazione 2 I sistemi retroazionati sono una delle tipologie più importanti di sistemi di controllo automatico. 3 I poli dominanti sono quelli più vicini all asse immaginario, il cui contributo nell espressione del transitorio è notevolmente più importante rispetto a quello degli altri poli.

14 14 Sistemi nel dominio del tempo - v Modello matematico del motore in c.c. a magneti permanenti Un motore elettrico è un sistema dinamico in cui avvengono trasformazioni di energia elettrica, meccanica e termica. Possiamo quindi distinguere: Un transitorio elettrico che riguarda direttamente le correnti e le f.e.m. dei circuiti interessanti Un transitorio meccanico legato direttamente alla coppia della macchina Un transitorio termico che riguarda la temperatura della macchina. Il transitorio termico, però, a causa della sua notevole durata rispetto al transitorio elettrico ed al transitorio termico viene tenuto separato rispetto a questi due ultimi. Infatti l ordine di grandezza delle costanti tempo è di circa ms per i fenomeni elettromagnetici, di 10 ms 10s per i fenomeni meccanici e di parecchi minuti per i fenomeni termici. Figura 14: Modello elettrico del motore in corrente continua ad eccitazione indipendente Le equazioni che descrivono il comportamento elettrico e meccanico del motore in c.c. sono: v A (t) = R A i A (t) + L A di A (t) C M (t) = J + e C (t) (10) e C (t) = K E ω (t) (11) C M (t) = K T i A (t) (12) dω (t) + K AV ω (t) + C R (t) (13) La (10) è l equazione elettrica del circuito di armatura. In (11) K E è la costante di tensione fornita dal costruttore; essa si misura in [ V s rad]. TRIALRESTRICTION dove K T è la costante di coppia TRIALRESTRICTION, T RIALREST RICT ION equazione meccanica del rotore Trasformando con Laplace ciascuna delle precedenti equazioni ed ipotizzando condizioni iniziali nulle si ottiene rispettivamente: T RIALREST RICT ION T RIALREST RICT ION T RIALREST RICT ION T RIALREST RICT ION

15 ITIS J.F. Kennedy prof. Maurilio Bortolussi 15 Dalla prima delle precedenti equazioni si ottiene: T RIALREST RICT ION che tradotto in schemi a blocchi si traduce nel seguente schema TRIAL RESTRICTION Dalla seconda e terza equazione si ottiene: TRIAL RESTRICTION Infine dall equazione meccanica si deduce la seguente relazione: T RIALREST RICT ION che da luogo allo schema a blocchi finale TRIAL RESTRICTION Si possono notare le due costanti tempo del motore, la costante tempo meccanica T RIALREST RICT ION e la costante tempo elettrica TRIALRESTRICTION. Normalmente accade che TRIALRESTRICTION.

16 16 Sistemi nel dominio del tempo - v Domande 1. A cosa serve la trasformata di Laplace? (max.3 righe). 2. Dare una definizione di funzione di trasferimento (max.3 righe). 1.9 Esercizi 1. Rete RL Sia data la rete elettrica riportata in figura 15con R = 2.2 kω e L = 220 mh. Figura 15: Rete RL Ad essa viene applicata in ingresso una sollecitazione in tensione a gradino di ampiezza 5V. Nell ipotesi che l induttore sia inizialmente scarico, determinare: (a) La funzione di trasferimento G(s) = V0(s) V I(s) (b) L espressione analitica dell andamento temporale della risposta. (c) I comandi MATLAB che permettono di tracciare su un solo diagramma i grafici della sollecitazione e della risposta. (d) Ripetere i tre punti precedenti nell ipotesi che l induttore sia inizialmente carico con una corrente I 0 = 2mA. Svolgimento: Punto a. Dalla regola del partitore di tensione si ottiene la seguente relazione: V O (s) = Z L V I (s) = L s Z L + Z R L s + R V I (s) Da cui si ha: G(s) = V O (s) V I (s) = L s L s + R Punto b. La trasformata V I (s) di un segnale a gradino di ampiezza E è pari a E s. Sostituendo nell espressione precedente, e semplificando, si ottiene la trasformata della risposta. V O (s) = Da cui antitrasformando si ottiene: L s L s + R E s = v o (t) = E e R L t E s + R L La risposta è una funzione esponenziale decrescente che tende a zero a regime con una costante tempo τ = L R.

17 ITIS J.F. Kennedy prof. Maurilio Bortolussi Rete RCL Si aggiunga in serie alla resistenza della rete RL dell esercizio precedente un condensatore da 10 µf. Nell ipotesi che sia il condensatore che l induttore siano inizialmente scarichi, determinare: (a) La funzione di trasferimento G(s) = V0(s) V I(s) (b) L espressione analitica dell andamento temporale della risposta. (c) I comandi MATLAB che permettono di tracciare su un solo diagramma i grafici della sollecitazione e della risposta.

18 18 Sistemi nel dominio del tempo - v Laboratorio Lab. 5: Analisi sperimentale nel dominio del tempo della risposta al gradino di una rete RC e di una rete CR Schema elettrico Obiettivi didattici TRIAL RESTRICTION Saper misurare i parametri fondamentali di due forme d onda mediante l oscilloscopio Conoscere le risposte nel dominio del tempo di una rete RC e di una rete CR Strumentazione ed attrezzatura Generatore di funzioni, oscilloscopio, un multimetro, tre sonde BNC-coccodrillo 1:1, una breadboard Componenti Una rete RC come da schema Procedimento 1. Dopo aver ricevuto i componenti, gli strumenti e l attrezzatura necessaria redarre personalmente la lista componenti e l elenco della strumentazione ed attrezzatura seguendo le indicazioni generali per la stesura di una relazione di laboratorio. 2. Calcolare la costante tempo nominale τ n della rete RC, in base ai valori nominali di R e di C. 3. Calcolare le costanti tempo minima τ min e massima τ max in base alle tolleranze dei componenti utilizzati. 4. Applicare in ingresso al circuito un segnale TTL compatibile di periodo T = τ n. 5. Visualizzare con l oscilloscopio in DC le forme d onda di ingresso e di uscita applicando lo stesso riferimento di tensione. 6. Si misurino i parametri T, f, V p, V pp e V m per la tensione di ingresso v I e la tensione di uscita v O, analizzando le forme d onda, e si misuri il valore efficace Vrms di v I e di v O mediante il multimetro. 7. Misurare la costante tempo sperimentale τ sp. 8. Si riportino su un apposito diagramma le tensioni di ingresso e di uscita evidenziando la costante tempo sperimentale. 9. Ripetere i punti da 2 a 9 invertendo il condensatore con il resistore. Domande Cosa succede se invece di applicare in ingresso una onda quadra di periodo 10 τ n si applica un segnale di frequenza minore (più lento) od un segnale di frequenza maggiore (più veloce)?.

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Circuiti Elettrici. Un introduzione per studenti di Fisica. Giulio D Agostini. Dipartimento di Fisica, Università La Sapienza, Roma

Circuiti Elettrici. Un introduzione per studenti di Fisica. Giulio D Agostini. Dipartimento di Fisica, Università La Sapienza, Roma Circuiti Elettrici Un introduzione per studenti di Fisica Giulio D Agostini Dipartimento di Fisica, Università La Sapienza, Roma 6 marzo 2015 ii Indice 1 Forze gravitazionali e forze elettriche 1 1.1 Forze

Dettagli

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto

Istituto d Istruzione Secondaria Superiore M.BARTOLO. A cura del Prof S. Giannitto Istituto d Istruzione Secondaria Superiore M.BATOLO PACHINO (S) APPUNTI DI SISTEMI AUTOMATICI 3 ANNO MODELLIZZAZIONE A cura del Prof S. Giannitto MODELLI MATEMATICI di SISTEMI ELEMENTAI LINEAI, L, C ivediamo

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Istituto Tecnico Industriale Statale Enrico Mattei

Istituto Tecnico Industriale Statale Enrico Mattei Istituto Tecnico Industriale Statale Enrico Mattei Specializzazione di Elettronica ed Elettrotecnica URBINO Corso di Sistemi Automatici Elettronici ESERCITAZIONE TRASFORMATA DI LAPLACE Circuiti del primo

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 5 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: ALGEBRA DEGLI SCHEMI A BLOCCHI

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

Ambiente di apprendimento

Ambiente di apprendimento ELETTROTECNICA ED ELETTRONICA MAIO LINO, PALUMBO GAETANO 3EET Settembre novembre Saper risolvere un circuito elettrico in corrente continua, e saperne valutare i risultati. Saper applicare i teoremi dell

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte.

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte. Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte. Obiettivi generali. L insegnamento di Elettrotecnica, formativo del profilo professionale e propedeutico, deve fornire agli allievi

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Esercizio T T V V on riferimento al circuito di figura, si assumano i seguenti valori: = = kω, =. µf, = 5 V. Determinare

Dettagli

Programmazione modulare

Programmazione modulare Programmazione modulare Indirizzo: ELETTROTECNICA ED ELETTRONICA Disciplina: ELETTROTECNICA ED ELETTRONICA Docenti: Erbaggio Maria Pia e Iannì Gaetano Classe: IV A e settimanali previste: 6 Prerequisiti

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale, consente di determinare

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83 I convertitori c.c.-c.c. monodirezionali sono impiegati per produrre in uscita un livello di tensione diverso da quello previsto per la sorgente. Verranno presi in considerazione due tipi di convertitori

Dettagli

SISTEMA DI GESTIONE PER LA QUALITÀ

SISTEMA DI GESTIONE PER LA QUALITÀ Modulo SISTEMA DI GESTIONE PER LA QUALITÀ Programmazione Moduli Didattici Indirizzo Trasporti e Logistica Ist. Tec. Aeronautico Statale Arturo Ferrarin Via Galermo, 172 95123 Catania (CT) Codice M PMD

Dettagli

Servomeccanismi 1. Cassa. Albero. 1. Il motore elettrico in corrente continua

Servomeccanismi 1. Cassa. Albero. 1. Il motore elettrico in corrente continua Servomeccanismi 1 1. Il motore elettrico in corrente continua Descrizione fisica Il motore è contenuto in una cassa che in genere è cilindrica. Da una base del cilindro fuoriesce l albero motore; sulla

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Retroazione In lavorazione

Retroazione In lavorazione Retroazione 1 In lavorazione. Retroazione - introduzione La reazione negativa (o retroazione), consiste sostanzialmente nel confrontare il segnale di uscita e quello di ingresso di un dispositivo / circuito,

Dettagli

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDICE DELLE UFC

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDICE DELLE UFC INDICE DELLE UFC 1 Transitori Transitori di circuiti R,L,C Ordine di un sistema Modello matematico 2 Trasformata di Laplace Teoremi sulla trasformata Trasformata dei principali segnali di ingresso Antitrasformata

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana I numeri complessi I numeri complessi in rappresentazione cartesiana Un numero complesso a è una coppia ordinata di numeri reali che possono essere pensati come coordinate di un punto nel piano P(a,a,

Dettagli

Fr = 1 / [ ( 2 * π ) * ( L * C ) ]

Fr = 1 / [ ( 2 * π ) * ( L * C ) ] 1.6 I circuiti risonanti I circuiti risonanti, detti anche circuiti accordati o selettivi, sono strutture fondamentali per la progettazione dell elettronica analogica; con essi si realizzano oscillatori,

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

CORSO DI SCIENZE E TECNOLOGIE APPLICATE PROGRAMMAZIONE DIDATTICA DI ELETTRONICA A.S. 2014-2015 CLASSE III ELN

CORSO DI SCIENZE E TECNOLOGIE APPLICATE PROGRAMMAZIONE DIDATTICA DI ELETTRONICA A.S. 2014-2015 CLASSE III ELN 1. ATOMO MODULI Modelli atomici; Bohr-Sommerfield; Teoria delle bande e classificazione dei materiali; 2. CORRENTE, TENSIONE, RESISTENZA Corrente elettrica; Tensione elettrica; Resistenza elettrica, resistori,

Dettagli

Appendice Circuiti con amplificatori operazionali

Appendice Circuiti con amplificatori operazionali Appendice Circuiti con amplificatori operazionali - Appendice Circuiti con amplificatori operazionali - L amplificatore operazionale Il componente ideale L amplificatore operazionale è un dispositivo che

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Principi di ingegneria elettrica. Lezione 15 a. Sistemi trifase

Principi di ingegneria elettrica. Lezione 15 a. Sistemi trifase rincipi di ingegneria elettrica Lezione 15 a Sistemi trifase Teorema di Boucherot La potenza attiva assorbita da un bipolo è uguale alla somma aritmetica delle potenze attive assorbite dagli elementi che

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Analisi di risposte di sistemi dinamici in MATLAB

Analisi di risposte di sistemi dinamici in MATLAB Laboratorio di Fondamenti di Automatica Seconda esercitazione Analisi di risposte di sistemi dinamici in MATLAB 2005 Alberto Leva, Marco Lovera, Maria Prandini Premessa Scopo di quest'esercitazione di

Dettagli

Esercizi in MATLAB-SIMULINK

Esercizi in MATLAB-SIMULINK Appendice A Esercizi in MATLAB-SIMULINK A.1 Implementazione del modello e del controllo di un motore elettrico a corrente continua A.1.1 Equazioni del modello Equazioni nel dominio del tempo descrittive

Dettagli

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione Lez. 7/2/3 unzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione consideriamo il risultato del filtro passa alto che si può rappresentare schematicamente nel

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

Circuiti elettrici lineari

Circuiti elettrici lineari Circuiti elettrici lineari Misure con l oscilloscopio e con il multimetro Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 009 Elenco delle misurazioni. Circuito resistivo in corrente

Dettagli

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte;

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte; Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte; Obiettivi generali. Macchine Elettriche, HOEPLI di Gaetano Conte; Laboratorio di Macchine Elettriche, HOEPLI di Gaetano Conte;

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte b Bipoli elettrici - potenza entrante Tensione e corrente su di un bipolo si possono misurare secondo la convenzione

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Lezione 5. Schemi a blocchi

Lezione 5. Schemi a blocchi Lezione 5 Schemi a blocchi Elementi costitutivi di uno schema a blocchi Gli schemi a blocchi costituiscono un formalismo per rappresentare graficamente le interazioni tra sistemi dinamici. Vediamone gli

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Modellistica e controllo dei motori in corrente continua

Modellistica e controllo dei motori in corrente continua Modellistica e controllo dei motori in corrente continua Note per le lezioni del corso di Controlli Automatici A.A. 2008/09 Prof.ssa Maria Elena Valcher 1 Modellistica Un motore in corrente continua si

Dettagli

CAPITOLO 6 ANALISI IN REGIME PERMANENTE. ( ) = Aexp( t /τ) ( ) 6.1 Circuiti dinamici in regime permanente

CAPITOLO 6 ANALISI IN REGIME PERMANENTE. ( ) = Aexp( t /τ) ( ) 6.1 Circuiti dinamici in regime permanente CAPITOLO 6 ANALISI IN REGIME PERMANENTE 6.1 Circuiti dinamici in regime permanente I Capitoli 3 e 4 sono stati dedicati, ad eccezione del paragrafo sugli induttori accoppiati, esclusivamente all analisi

Dettagli

Generatore di forza elettromotrice f.e.m.

Generatore di forza elettromotrice f.e.m. Generatore di forza elettromotrice f.e.m. Un dispositivo che mantiene una differenza di potenziale tra una coppia di terminali batterie generatori elettrici celle solari termopile celle a combustibile

Dettagli

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti BARI Via Re David 186 - Tel : 080/5425512 080/5560840 Anno Scolastico : 2009/2010

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Analisi della risposta dinamica

Analisi della risposta dinamica Analisi della risposta dinamica Risposta dinamica del trasduttore: descrive, in termini di un modello matematico basato su equazioni differenziali alle derivate parziali, le relazioni, basate su opportune

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

Potenza elettrica nei circuiti in regime sinusoidale

Potenza elettrica nei circuiti in regime sinusoidale Per gli Istituti Tecnici Industriali e Professionali Potenza elettrica nei circuiti in regime sinusoidale A cura del Prof. Chirizzi Marco www.elettrone.altervista.org 2010/2011 POTENZA ELETTRICA NEI CIRCUITI

Dettagli

Electrical motor Test-bed

Electrical motor Test-bed EM_Test_bed Page 1 of 10 Electrical motor Test-bed 1. INTERFACCIA SIMULINK... 2 1.1. GUI CRUSCOTTO BANCO MOTORE... 2 1.2. GUIDE... 3 1.3. GUI PARAMETRI MOTORE... 3 1.4. GUI VISUALIZZAZIONE MODELLO 3D MOTORE...

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.014-15 Prof. Silvia Strada Prima prova intermedia 8 Novembre 014 SOLUZIONE ESERCIZIO 1 punti: 8 su 3 Si consideri il sistema dinamico

Dettagli

ITI M. FARADAY Programmazione modulare

ITI M. FARADAY Programmazione modulare ITI M. FARADAY Programmazione modulare A.S. 2015/16 Indirizzo: ELETTROTECNICA ed ELETTRONICA Disciplina: ELETTROTECNICA ed ELETTRONICA Classe: V A elettrotecnica settimanali previste: 6 INSEGNANTI: ERBAGGIO

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Programmazione modulare a. s. 2014-2015

Programmazione modulare a. s. 2014-2015 Programmazione modulare a. s. 201-2015 Indirizzo:Informatica Disciplina : Telecomunicazioni Classe: A B Informatica Ore settimanali previste:3 (di cui 2 di laboratorio) Libro di testo: TELECOMUNICAZIONI-Ambrosini,

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli