Sensori Segnali Rumore - Prof. S. Cova - appello 20/02/ P1 pag.1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sensori Segnali Rumore - Prof. S. Cova - appello 20/02/ P1 pag.1"

Transcript

1 Sesori Segali Rumore - ro. S. Cova - appello //3 - pag. ROBLEMA Quadro dei dai Segale a impulso reagolare Ampiezza: Duraa: µs Rumore c S variabile, da misurare S Hz desià eicace di poeza (uilaera) limiaa da polo a MHz B 6kHz requeza d agolo del rumore / (A) Misura di ampiezza di impulso co ilro oimo π La bada del rumore 57MHz è molo maggiore di quella del segale 5 khz (uilaera) e quidi il rumore si può cosiderare biaco. erao ilro oimo è il ilro adaao (mached iler), che ha uzioe peso eguale al segale (cioè cosae wo i corrispodeza al segale, zero alrove). I queso caso è realizzabile co u Gaed Iegraor (GI). La bada di rumore o del GI è oa S S 3,µ / / / B o B o 5kHz e il rumore ilrao risula Il segale i uscia dal ilro adaao ha ampiezza S e quidi l ampiezza miima misurabile, S S corrispodee a risula N o µ S,mi o 3, er coroo, misurado l impulso seza alcu ilraggio si oiee u risulao peggiore per u aore circa 8 / B S π B 5µ µ S,mi B 5 (B) Misura di ampiezza di impulso co ilro passabasso a polo semplice B) ilro RC co bada di rumore uguale al ilro oimo Il ilro passabasso RC a polo co cosae di empo RC ha risposa alla δ h ( ) e uzioe peso w ( α) h ( α) auocorrelazioe ( τ) ( τ) ( ) ( + τ) k k h h d hh, ww, m

2 Sesori Segali Rumore - ro. S. Cova - appello //3 - pag. S H d (NB: iegrale da a perchè S B è uilera) rumore ilrao ( ) B B ovvero S h ( ) d S k ( ) B B B hh, La bada di rumore del ilro è deiia da hh, k ( ) e d (uilaera) 4 S e quidi risula B B Scegliedo la bada di rumore è eguale a quella del ilro oimo, di cosegueza è eguale ache il rumore i uscia B er valuare il S/N occorre valuare ache il segale i uscia u (), che possiamo ricavare dalla risposa al gradio del ilro yg h d e d ( ) ( α) α α ( ) exp( ) α decompoedo il segale reagolare di igresso i u gradio posiivo a e u gradio egaivo a e ricavado l uscia come composizioe delle corrispodei rispose u( ) S yg( ) S yg( ) S( ) e S( ) e È chiaro che il massimo u,max si ha a e risula ieriore a p u,max exp( ) < erao abbiamo S S ( ) S u exp N / B SB 4,max S Co si oiee S/N peggiore dell oimo circa del 3% ( ) [ ] S S exp S,35 S S [,35],865 N / No No S B l ampiezza miima risula corrispodeemee maggiore dell oimo

3 Sesori Segali Rumore - ro. S. Cova - appello //3 - pag.3 S,mi 3,7,865 µ l obieivo di oeere almeo il 9% dell oimo NON è raggiuo. B) ossibilià di migliorameo co diversa cosae di empo Uilizzado l espressioe di S/N valida per qualsiasi cosae di empo si veriica che il S/N migliora aumeado la cosae di empo olre,5. ossiamo meere i evideza il rapporo / λ e il rapporo S/N oimo (S/N) o scrivedo ( λ) S S exp S N No λ N o ( λ) corrispode a λ e come viso si ha (λ),865. Co calcoli umerici si veriica che aumeado > (cioè dimiuedo λ<,865) si migliora il S/N, perchè sia il deomiaore che il umeraore dimiuiscoo, ma il deomiaore dimiuisce di più (cioè dimiuiscoo segale e rumore, ma il rumore dimiuisce più rapidamee). racciado (λ) co calcoli umerici si veriica che (λ) ha u massimo max[(λ)],9 piuoso largo cerao su λ,5. Uilizzado /,5,8 si oiee u risulao più vicio all oimo, quasi il 9% dell oimo S S N N o,9 S,mi 3,55,9 µ (C) Misura di ampiezza di impulso co ilro passabasso a poli coicidei C) ilro RC-RC co bada di rumore uguale al ilro oimo La risposa alla δ del ilro passabasso a due sadi RC i cascaa eguali co cosae di empo RC si può ricavare sia da covoluzioe delle rispose dei due sadi che dalla uzioe di raserimeo mediae il suo sviluppo i razioi (sviluppo di Heaviside). τ τ ( ) ( )* ( ) τ h h h e e d e Il rumore i uscia è S h d S k uzioe peso w( α) h( m α) ( ) ( ) B B B hh,

4 Sesori Segali Rumore - ro. S. Cova - appello //3 - pag.4 La bada bada di rumore è deiia da da hh,( ) 8 S e quidi risula B B k e d (bada uilaera) Duque scegliedo la bada di rumore e il rumore i uscia soo eguali a quelli del ilro 4 oimo B Ricaviamo il segale di uscia procededo come el caso di RC semplice. La risposa al gradioo dello RC-RC è α α zg( ) h( α) dα e dα ( ) exp( ) exp( ) e il segale i uscia è u( ) S zg ( ) S zg ( ) S( ) e e S( ) e e Co < il massimo si ha co buoa approssimazioe acora i corrispodeza alla ie del reagolo, cioè per e vale u,max exp( ) exp( ) < S quidi co la scela aa 4 si ha [ ] u,max, 83, 73,95 Dao che il rumore ilrao è eguale a quello oeuo co il ilro oimo, si oiee S S N N o,95 S,mi 3,5,95 µ Duque il risulao è pari al 9,5% dell oimo e l obieivo è raggiuo. La coclusioe raggiua (che il risulao del ilro RC-RC è migliore di quello oeuo co il ilro RC semplice co eguale bada di rumore) risula iuiivamee spiegabile coroado le uzioi peso dei due ilri. Risula iai evidee ache dai graici delle uzioi che la uzioe peso dello RC-RC approssima meglio la uzioe peso del ilro oimo rispeo a quella dello RC semplice.

5 Sesori Segali Rumore - ro. S. Cova - appello //3 - pag.5 (D) Misura di ampiezza di impulso i preseza di rumore / Cosiderado di uilizzare il ilro RC-RC viso, esamiiamo ua siuazioe i cui è presee ache ua compoee di rumore / co requeza d agolo c (cioè co spero S S ), che B c aggiuge al rumore biaco 3, µ u coribuo. er limiare queso coribuo di rumore / occorre avere ache u ilraggio passa-alo: idichiamo co i la sua requeza di aglio. Il ilro passabasso poe ua requeza di aglio superiore s ; che el caso cosiderao è s o 5kHz. Se le due requeze di aglio soo molo diverse (rapporo s / i >> ) si può valuare il valore eicace del rumore / co l approssimazioe a aglio eo s SB c s / / s s d SB c l SB c l µ l i i i i eedo coo che el caso cosiderao abbiamo s o 5kHz S,6µ / / B c abbiamo / / s 5 SB c l, 6µ l i i e possiamo coroare i risulai oeibili co i vari ipi di ilraggio proposi, valuadoe per ciascuo la requeza di aglio i oeua. D) ilraggio passa-alo co azzerameo iiziale dello ose di liea di base ra azzerameo e misura vi è u iervallo di almeo I o miui, cioè D s. La requeza di aglio ieriore è i / I mhz e risula u rumore / 5,6µ l 6,6µ i eamee maggiore del rumore biaco B 3,µ. Queso ilraggio è isoddisacee. D) ilraggio passa-alo co ilro diereziaore CR a parameri cosai. Il ilro diereziaore CR a parameri cosai ha cosae di empo caraerisica D e requeza di aglio i eguale a quella del polo i D π D Occorre eer coo dello savorevole eeo del diereziaore sul segale, cioè della dimiuzioe di ampiezza dell impulso i uscia. er limiarla è evidee che occorre scegliere D >>. Ragioado i requeza (co uzioe di raserimeo o uzioe peso) o i empo (co risposa

6 Sesori Segali Rumore - ro. S. Cova - appello //3 - pag.6 alla δ o uzioe peso) si valua che il aore di dimiuzioe prodoo da D >> è co buoa approssimazioe cioè si ha ua perdia relaiva di ampiezza daa da / D. D Scegliamo perao / D /, cioè D ms e quidi abbiamo i D 8Hz π D 5, 6µ l 3,9µ i Il rumore / è dimiuio, ma è acora maggiore del rumore biaco Queso ilraggio risula uile, ma o be soddisacee: il rumore oale risula quasi il doppio del rumore biaco µ B+ 5 D3) ilraggio passa-alo co diereziaore CR a parameri commuai o BaseLie Resorer (BLR) Nel BLR la diereziazioe viee sospesa all iizio dell impulso dall aperura dello swich i serie alla resiseza, che commua la cosae di empo di diereziazioe dal valore D scelo a D. erao il ilraggio passa-alo o agisce sull impulso e o vi è riduzioe di ampiezza dell impulso, emmeo co D paragoabile alla duraa dell impulso. i è ivece u oevole eeo sul rumore: esamiado la uzioe peso del BLR e il suo eeo, si coclude che il miglior risulao si oiee scegliedo D p µs che produce ua requeza di aglio passalo i /π( D + ) 7 Hz Il coribuo di rumore / 5, 6µ l 3µ i è ora poco ieriore al rumore biaco B 3,µ e l obieivo è raggiuo. Il rumore oale è B+ 4, 4µ

TEST #1 Corso di Telecomunicazioni C. Prati. Operazioni elementari sui segnali, impulsi, esponenziali complessi e serie di Fourier

TEST #1 Corso di Telecomunicazioni C. Prati. Operazioni elementari sui segnali, impulsi, esponenziali complessi e serie di Fourier ES # Corso di elecomuicazioi C. Prai Operazioi elemeari sui segali, impulsi, espoeziali complessi e serie di Fourier Esercizi di veriica degli argomei svoli el primo capiolo del eso Segali e Sisemi per

Dettagli

Convertitoriditipospot (convertono, idealmente, il valore istantaneo del segnale); V ts

Convertitoriditipospot (convertono, idealmente, il valore istantaneo del segnale); V ts Pare II (Coversioe D/A e A/D) La coversioe A/D I coveriori A/D si dividoo i: Coverioridiipospo (coveroo, idealmee, il valore isaaeo del segale); s s Si raa di disposiivi veloci ma sesibili al rumore di

Dettagli

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Adolfo Scimoe FORMULE INTEGRAZIONE Pag INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Iegrazioe delle fuzioi razioali frae Se la frazioe è impropria, cioè il grado del umeraore è maggiore o uguale

Dettagli

Introduzione... 2 Esempio: modulazione FM e PM della rampa... 5 Esempio: modulazione FM e PM del gradino... 6 Semplice circuito per la modulazione di

Introduzione... 2 Esempio: modulazione FM e PM della rampa... 5 Esempio: modulazione FM e PM del gradino... 6 Semplice circuito per la modulazione di Appui di omuicazioi Eleriche apiolo Modulazioe agolare Iroduzioe... Esempio: modulazioe M e M della rampa... 5 Esempio: modulazioe M e M del gradio... 6 emplice circuio per la modulazioe di ase... 7 MODULAZIONE

Dettagli

TEORIA DEI SEGNALI FACOLTÀ DI INGEGNERIA. Corso di. Materiale a cura dei Proff. Patrizio Campisi e Alessandro Neri

TEORIA DEI SEGNALI FACOLTÀ DI INGEGNERIA. Corso di. Materiale a cura dei Proff. Patrizio Campisi e Alessandro Neri FACOLTÀ DI INGEGNERIA CORSI DI STUDIO IN INGEGNERIA ELETTRONICA Corso di TEORIA DEI SEGNALI Maeriale a cura dei Pro. Parizio Campisi e Alessadro Neri WEB: hp://biomedia46.uiroma3.i/eachig/eoria_dei_segali.hml

Dettagli

ESERCITAZIONE: FEM. Consideriamo un elemento triangolare. y 3

ESERCITAZIONE: FEM. Consideriamo un elemento triangolare. y 3 ESERCITAZIONE: FEM L aalisi agli elemei fiii è u ipo di aalisi che si rifà alla meccaica dei solidi e rasforma il coiuo i u discreo composo da umerosi elemei dei quali se e cooscoo le proprieà. Le relazioi

Dettagli

v u (t) = s u (t) + n u (t) { }

v u (t) = s u (t) + n u (t) { } Capiolo III LA RIELAZIONE DEI SEGNALI MODULATI III.1 Preessa. Uo degli aspei odaeali della Teoria della odulazioe cosise ella valuazioe delle presazioi dei rivelaori quado il segale odulao è corroo da

Dettagli

Di fatto potremo rappresentare analiticamente le correnti magnetizzanti che operano in ciascuna delle colonne del TRS con espressioni del tipo:

Di fatto potremo rappresentare analiticamente le correnti magnetizzanti che operano in ciascuna delle colonne del TRS con espressioni del tipo: Correi a vuoo el rasformaore rifase Il problema delle correi a vuoo el rasformaore rifase è imporae i quao, a secoda dei collegamei delle fasi, si avrà o meo la deformazioe dei flussi o della corree mageizzae.

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO Simulazioe 14/15 ANNO SCOLASTICO 14/15 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Risoluzioe Problema 1 - Trekkig i moaga a) Disegiamo il grafico b) Calcoliamo la

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

Lezione 3: Segnali periodici

Lezione 3: Segnali periodici eoria dei segali Segali a poteza media fiita e coversioe A/D Lezioe 3: Aalisi i frequeza Esempio di calcolo 005 Politecico di orio eoria dei segali aalisi i frequeza Poteza media Sia dato u segale (t)

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase 3. Effeo della variazioni di parameri del PLL - A Un PLL uilizza come demodulaore di fase un moliplicaore analogico, e il livello dei segnali sinusoidale di ingresso (Vi) e locale (Vo) è ale da manenere

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Ammortamento di un debito

Ammortamento di un debito Ammorameo di u debio /35 Ammorameo di u debio Che cosa si iede per ammorameo? Ammorameo coabile La quoa di ammorameo cosiuisce la pare del coso di u bee maeriale o immaeriale di ivesimeo da aribuire all

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 20/07/2012 P2-1 R C

Sensori Segnali Rumore - Prof. S. Cova - appello 20/07/2012 P2-1 R C ensori egnali Rumore - Pro.. Cova - appello 0/07/01 P - 1 PROBLEMA Quadro dei dati train gauges: Resistenza R = 00 Ω Gauge actor G = 4 massima potenza dissipata P dmax = 10 µw Coeiciente di temperatura

Dettagli

Fisica Generale L-A. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II) 2. Esercizi di Cinematica

Fisica Generale L-A. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II) 2. Esercizi di Cinematica Esercizio 1 U puo maeriale è icolao a muoersi lugo ua guida reiliea. Fisica Geerale -A. Esercizi di Ciemaica hp://ishar.df.uibo.i/ui/bo/igegeria/all/galli/suff/ raspareze/ae-ciemaica.pdf Al empo il puo

Dettagli

2. Duration. Stefano Di Colli

2. Duration. Stefano Di Colli 2. Duraio Meodi Saisici per il Credio e la Fiaza Sefao Di Colli Tassi di ieresse e redimei La reddiivià di u obbligazioe è misuraa dal asso di redimeo o dal asso di ieresse U idicaore del redimeo deve

Dettagli

Impianti Industriali. La previsione della domanda. Metodi di estrapolazione. Ing. Lorenzo Tiacci

Impianti Industriali. La previsione della domanda. Metodi di estrapolazione. Ing. Lorenzo Tiacci Impiai Idusriali a previsioe della domada Meodi di esrapolazioe Ig. orezo Tiacci e compoei della domada Tred Cogiuurale Sagioale Casuale Tedeziali (red) a caraere geeralmee crescee e decrescee Sisemaiche

Dettagli

Oscillatore controllato in tensione (VCO)

Oscillatore controllato in tensione (VCO) //6 Oscillatore cotrollato i tesioe (O) Frequeza di oscillazioe jl Z jl[ L() L()] [L L ()] L () T L //6 3 Guadago del O / f () L () L 4 () L 4 / Logf f f 3 Lf f () () L 4 Log Logf 4 Guadago del O / j /

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

GESTIONE DELLA PRODUZIONE

GESTIONE DELLA PRODUZIONE GESTIONE EA PROUZIONE 5.2.3 Teciche di Previsioe della domada Meodi esrapolaivi Gesioe della Produzioe iparimeo di Igegeria omada e compoei della domada Tedeziali (red) a caraere geeralmee crescee e decrescee

Dettagli

AFFIDABILITA DEI SISTEMI STOCASTICI (complessi)

AFFIDABILITA DEI SISTEMI STOCASTICI (complessi) AFFIDABILITA DEI SISTEMI STOCASTICI (complessi) 1 No ecessariamee il verificarsi di u guaso provoca la more del sisema. A vole soo ecessari più guasi el empo, affiché il sisema collassi. Fissao u empo

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

LA TRASMISSIONE NUMERICA IN BANDA BASE

LA TRASMISSIONE NUMERICA IN BANDA BASE Capiolo I LA RASMISSIONE NUMERICA IN BANDA BASE I. - Geeralià. Nella rasmissioe umerica biaria il messaggio iviao alla sorgee è cosiuio a ua sequeza oriaa i cifre:,,,.,, appareei all alfabeo biario i cui

Dettagli

BILANCI DI MASSA NEI COMPARTIMENTI AMBIENTALI

BILANCI DI MASSA NEI COMPARTIMENTI AMBIENTALI BILNI DI MSS NEI OMPTIMENTI MBIENTLI alisi di sigolo comparimeo ad esempio u piccolo lago m x m x 0 m 0 7 m pprossimazioe ST (oiously Sirred-Ta eacor) cocerazioe omogeea dei solui (iquiai) el comparimeo.

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

c. i 2. (t) I 2

c. i 2. (t) I 2 Capiolo 5 I coaori e i divisori di impulsi 4 5. I CONTATOI E I DIVISOI DI IMPULSI 5. IL CICUITO OSCILLANTE Prima di affroare lo sudio degli oscillaori è opporuo richiamare alcui cocei fodameali sui circuii

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

CAPITOLO V MODELLO MATEMATICO E FUNZIONAMENTO IN REGIME PERMANENTE DEGLI IMPIANTI DI DISTRIBUZIONE SU LINEA L C

CAPITOLO V MODELLO MATEMATICO E FUNZIONAMENTO IN REGIME PERMANENTE DEGLI IMPIANTI DI DISTRIBUZIONE SU LINEA L C CTOLO V MODELLO MTEMTCO E FUNZONMENTO N REGME ERMNENTE DEGL MNT D DSTRBUZONE SU LNE Sebbee, come descrio precedeemee, a disribuzioe de eergia eerica ae ueze fiai avvega, praicamee sempre, su rei di disribuzioe

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

Trasformata di Fourier (1/7)

Trasformata di Fourier (1/7) 1 rasormaa di Fourier (1/7 + De: Un segnale x( è impulsivo se x ( d < + F : + j X( x( e π d F{ x( }, < < + F -1 + jπ 1 : x( X( e d F { X( }, < < + X( è una rappresenazione di x( nel dominio della requenza

Dettagli

REGIME DELLA CAPITALIZZAZIONE COMPOSTA E SCONTO COMPOSTO

REGIME DELLA CAPITALIZZAZIONE COMPOSTA E SCONTO COMPOSTO Regie della capializzazioe coposa e scoo coposo REGME DELLA CAPTALZZAZONE COMPOSTA E SCONTO COMPOSTO Cosideriao l ipiego del capiale C per ua duraa di (uero iero) ai e suppoiao che gli ieressi siao capializzai

Dettagli

PREMESSA: RELAZIONI TRA SEGNALE DI CORRENTE MISURATO, POTENZA OTTICA, ATTENUAZIONE DELLA FIBRA, LUNGHEZZA DI FIBRA INTERESSATA

PREMESSA: RELAZIONI TRA SEGNALE DI CORRENTE MISURATO, POTENZA OTTICA, ATTENUAZIONE DELLA FIBRA, LUNGHEZZA DI FIBRA INTERESSATA ensori egnali umore - rof.. Cova - appello 07/07/014-1 pag.1 OBEM 1 Quadro dei dati FIB OTTIC a =,5 /km attenuazione del segnale trasmesso ( di potenza) =1% frazione di luce riflessa dai giunti della fibra

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Carte di controllo per attributi

Carte di controllo per attributi Carte di cotrollo per attributi Il cotrollo per variabili o sempre è effettuabile misurazioi troppo difficili o costose troppe variabili che defiiscoo qualità di u prodotto le caratteristiche dei prodotti

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

Svolgimento degli esercizi del Capitolo 4

Svolgimento degli esercizi del Capitolo 4 4. Michiel Bertsch, Roberta Dal Passo, Lorezo Giacomelli Aalisi Matematica 2 a edizioe Svolgimeto degli esercizi del Capitolo 4 Il limite segue dal teorema del cofroto: e / 0 per. 4.2 0

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. / Sessioe ordiaria 03 Secoda prova scria Miisero dell Isruzioe, dell Uiversià e della Ricerca M86 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE CORSO DI ORDINAMENTO Idirizzo: ELETTRONICA E TELECOMUNICAZIONI

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

TRASFORMATA DI FOURIER. A.1 Segnali analogici, deterministici ed aleatori. A p p e n d i c e A

TRASFORMATA DI FOURIER. A.1 Segnali analogici, deterministici ed aleatori. A p p e n d i c e A A p p e d i c e A RASFORMAA DI FOURIER Uo degli aspei più imporai di uo il seore dell igegeria è sicuramee l aalisi di segali el domiio del empo e della frequeza. I segali aalogici si disiguoo i segali

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fodmei di elecomuiczioi - SEGNALI E SPERI Prof. Mrio Brber [pre ] 1 Fodmei di LC - Prof. M. Brber - Segli e speri [pre ] Covoluzioe Defiizioe: w 3( = ( w1 * w ( w1 ( w ( d L covoluzioe è oeu:

Dettagli

mq t cq t kq t f t SISTEMI A UN GRADO DI LIBERTA EQUAZIONE DEL MOTO Pulsazione propria Frequenza propria Fattore di smorzamento Periodo proprio

mq t cq t kq t f t SISTEMI A UN GRADO DI LIBERTA EQUAZIONE DEL MOTO Pulsazione propria Frequenza propria Fattore di smorzamento Periodo proprio SISEMI A UN GRADO DI LIBERA EQUAZIONE DEL MOO f,c c f f Pulsazioe propria Freueza propria Periodo proprio c Faore di sorzaeo SISEMI A N GRADI DI LIBERA EQUAZIONE DEL MOO, RASCINAMENO SISMICO Sisea shear

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Il logaritmo e l esponenziale

Il logaritmo e l esponenziale Il logarimo e l espoeziale 6 marzo 2009 La defiizioe di logarimo che si impara ella scuola secodaria è la seguee: Defiizioe Il logarimo i base b di x è l espoee cui si deve elevare b per oeere x. I formule:

Dettagli

Soluzione. La curva di equazione y = 6 x è una parabola con vertice in V = (0,6)

Soluzione. La curva di equazione y = 6 x è una parabola con vertice in V = (0,6) Sessioe ordiaria LS_ORD 5 Soluzioe ) La curva di equazioe y è ua parabola co verice i (,) e cocavià rivola verso il basso, ed ierseca l asse delle ascisse ei pui (,), B (,) come soo rappreseao: La figura

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

Equazioni differenziali: formule

Equazioni differenziali: formule Equazioi differeziali: formule Equazioi a variabili separabili y ' A B y Vale eorema esiseza e uicià locale y ' dy Ad B y y y ' A B y y Si applicao le codizioi alla fie dei due iegrali idefiii, oppure

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Programma lezione XIII

Programma lezione XIII Programma lezioe X /6 erfereza Diffrazioe Polarizzazioe Birifrageza Polarizzazioe circolare erfereza /6 si r r liea ei veri i e s i à Lo sfasameo ra le ue oe, ipee alla iffereza i cammio oico si e è pari

Dettagli

Trasmissione sul canale radio Segnali a banda larga

Trasmissione sul canale radio Segnali a banda larga Trasmissioe sul caale radio Segali a bada larga Fulvio Babich (babich@uis.i) DIA Uiversià di Triese Rei wireless Igegeria Eleroica e Iormaica Moivazioi Bassa desià sperale di poeza (diicile ierceazioe).

Dettagli

Il Value at Risk secondo l approccio parametrico: un esempio semplificato

Il Value at Risk secondo l approccio parametrico: un esempio semplificato Universià degli Sudi di Napoli Federico II Caedra di Economia delle Aziende di Assicurazione Il Value a Risk secondo l approccio paramerico: un esempio semplificao Domenico Curcio, Ph. D. Value a Risk

Dettagli

SisElnD3ddc 01/12/ /12/ SisElnD3ddc DDC. 01/12/ SisElnD3ddc DDC. 01/12/ SisElnD3ddc DDC.

SisElnD3ddc 01/12/ /12/ SisElnD3ddc DDC. 01/12/ SisElnD3ddc DDC. 01/12/ SisElnD3ddc DDC. Ingegneria dell Informazione Obieivi del gruppo di lezioni D Modulo SISTEMI ELETTRONICI D CIRCUITI DIGITALI D3 Comparaori di soglia Comparaori Comparaori con iseresi Uso dell A.O. Generaore di segnale

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova).

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizi di Probabilità e Statistica della 2 a settimaa (Corso di Laurea i Matematica, Uiversità degli Studi di Padova). Esercizio. Sia (Ω, A, P) uo spazio probabilizzato e B A o trascurabile. Dimostrare

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3 10 SRCITAZION sercizi svoli: Capiolo 15 Curva di Phillips sercizio 2 Capiolo 16 Disinflazione, disoccupazione e crescia sercizio 3 1 CAPITOLO 15 CURVA DI PHILLIPS Curva di Phillips Relazione che lega inflazione

Dettagli

f u (variabile da 0,1MHz a 50 MHz)

f u (variabile da 0,1MHz a 50 MHz) Unità B Generatori di segnale. Si vuole progettare un generatore di segnale a battimenti, con requenza d'uscita variabile con continuità da 00 khz a 50 MHz, disponendo di un oscillatore a requenza issa

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

CAPITOLO IX FONDAMENTI DI MECCANICA DELLE VIBRAZIONI

CAPITOLO IX FONDAMENTI DI MECCANICA DELLE VIBRAZIONI CAPITOLO IX FONDAMENTI DI MECCANICA DELLE VIBRAZIONI R. BARBONI COSTRUZIONI AEROSPAZIALI 3. Geeralià Lo sudio del comporameo saico o esaurisce l aalisi di ua sruura elasica ed i paricolare di ua sruura

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Controlli automatici per la meccatronica

Controlli automatici per la meccatronica Corolli aomaici per la meccaroica Sisemi di corollo Prof. Paolo Rocco (paolo.rocco@polimi.i) variabili di igresso Che cos è sisema diamico? S variabili di scia U sisema diamico si ierfaccia co il reso

Dettagli

Ricerca di un elemento in una matrice

Ricerca di un elemento in una matrice Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice

Dettagli

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità)

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità) 4 Quai eravamo, quai siamo, quai saremo Che cosa si impara el capiolo 4 er cooscere le caraerisiche e l evoluzioe della popolazioe ialiaa araverso u lugo arco di empo uilizziamo il asso di icremeo medio

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione C a p i t o l o s e t t i m o Trasmissioe del calore per radiazioe Problema. Si cosideri u corpo ero i uo spazio o assorbete le radiazioi elettromagetiche; se il corpo viee mateuto alla temperatura di

Dettagli

Lezione 6. Risposta in frequenza

Lezione 6. Risposta in frequenza Lezioe 6 Risposta i frequeza Risposta siusoidale Cosideriamo u eerico sistema diamico lieare, di fuzioe di trasferimeto G(s): U G(s) Y Fi. : U sistema diamico lieare ed impoiamo il seuete adameto siusoidale

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

GENERATORE D'ONDA TRIANGOLARE E D'ONDA QUADRA

GENERATORE D'ONDA TRIANGOLARE E D'ONDA QUADRA GENEAOE D'ONDA IANGOLAE E D'ONDA QUADA Un generaore di onda riangolare può essere realizzao enendo cono che un inegraore, solleciao in ingresso con un onda quadra, fornisce in uscia un onda riangolare

Dettagli

FUNZIONAMENTO CON MANCANZA DI FASE DI UN MOTORE ASINCRONO TRIFASE. Idoneità del relè termico a proteggere il motore

FUNZIONAMENTO CON MANCANZA DI FASE DI UN MOTORE ASINCRONO TRIFASE. Idoneità del relè termico a proteggere il motore FUNZONAMENTO CON MANCANZA D FASE D UN MOTORE ASNCRONO TRFASE doeità del relè termico a proteggere il motore 1) - Poteza el uzioameto co macaza di ase Nel uzioameto ormale (triase) la poteza del motore

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235 9.4. FILRAGGIO DI SEGNALI E PROCESSI 35 Rispose ) Calcoliamo la media emporale: P x = ; / / x () d = /4 /4 () d = 4 = ) Sappiamo che P y = Py (f) df, in cui Py (f) = Y (f), ed a sua vola Y (f) = X (f)

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta Poliecnico di Torino etem Esercizi Scheda N. 0 45 Fisica II Esercizi con soluzione svola Esercizio 0. Si consideri il circuio V R T R T V I V 0 Vols R 5 Ω R 0 Ω µf sapendo che per 0 T on T off 5 µs T off

Dettagli

23 luglio 2008 Prova scritta di Chimica Analitica 1 con Laboratorio

23 luglio 2008 Prova scritta di Chimica Analitica 1 con Laboratorio 23 luglio 2008 Prova scritta di Chimica Aalitica co Laboratorio. Ua soluzioe di glicole etileico di cocetrazioe C 6.067 mol/l ha ua desita ρ.046 kg/l. Calcolate la molalita della soluzioe. (Massa molare

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

Esercitazione di Laboratorio

Esercitazione di Laboratorio UNIVERSITA' DEGLI STUDI DI BERGAMO Scuola Ineruniversiaria Lombarda di Specializzazione per l Insegnameno Secondario Sezione di Bergamo e Brescia Eserciazione di Laboraorio Laboraorio di Srumenazione Digiale

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

Riflessione, trasmissione o assorbimento

Riflessione, trasmissione o assorbimento Riflessioe, trasmissioe o assorbimeto L idice di rifrazioe complesso i fuzioe della frequeza è u parametro estremamete utile perché rappreseta tutte le caratteristiche ottiche del materiale. Quado la radiazioe

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia Milano, 0/0/00 Corso di Laurea in Ingegneria Inormaica (Laurea on Line) Corso di Fondameni di elecomunicazioni Prima prova Inermedia Carissimi sudeni, scopo di quesa prima prova inermedia è quello di veriicare

Dettagli