Calcolo Vettoriale. 1.1 Vettori. Prodotto scalare. Definizione: a b = a b cosθ. In coordinate cartesiane: a b = a 1 b 1 +a 2 b 2 +a 3 b 3.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo Vettoriale. 1.1 Vettori. Prodotto scalare. Definizione: a b = a b cosθ. In coordinate cartesiane: a b = a 1 b 1 +a 2 b 2 +a 3 b 3."

Transcript

1 Calcolo Vettoriale 1.1 Vettori Prodotto scalare. Definizione: a b = a b cosθ. In coordinate cartesiane: a b = a 1 b 1 +a 2 b 2 +a 3 b 3. Proprietà: a b a b = 0, a b a b = ± a b, a b = b a, a 0 = 0. Proiezione di a nella direzione ê a = (a ê)ê. Prodotto vettoriale. Definizione: c = a b Proprietà: c 1 = a 2 b 3 a 3 b 2, c 2 = a 3 b 1 a 1 b 3, c 3 = a 1 b 2 a 2 b 1. a b c = a b, a b a b = 0, a b = b a, 1

2 2 CHAPTER 1. CALCOLO VETTORIALE a 0 = 0. Distanza tra un punto e una retta. La distanza tra la retta r(λ) = A+λê (con λ R) e il punto B è data da: d = AB ê. Prodotto misto. a (b c) = det a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 Doppio prodotto vettoriale. a (b c) = (a c)b (a b)c, (a b) c = (a c)b (b c)a. Equazione vettoriale. Data l equazione a x = b, dove a e b sono due vettori ortogonali dati. La soluzione è dove λ è un parametro reale. 1.2 Vettori applicati Vettori caratteristici Trasporto R = x = b a a 2 +λa, S = {(P i,v i ) i = 1..n} n n v i, M O = OP i v i i=1 Coppia di vettori. {(A, v),(b,v)} Invariante scalare. i=1 M Q = QO R+M O. M = AB v. I = R M O. Riduzione. Si possono verificare i seguenti casi: Se R = 0 e M O = 0, il sistema è equilibrato;

3 1.3. ESERCIZI 3 Se R = 0 e M O 0, il sistema si riduce ad una coppia; Se R 0 e I = 0, il sistema si riduce ad un vettore applicato in un punto della retta di applicazione del risultante: OA = R M O R 2 +λr Se R 0 e I 0, il sistema si riduce ad una forza applicata e ad una coppia. Il momento della coppia risulta parallelo al risultante ed ha minimo modulo se si sceglie come polo di riduzione un punto dell asse centrale. 1.3 Esercizi Esercizio 1.1. Calcolare le quantità u (v w), u (v w) e (v w) u per le seguenti triple di vettori u = î ˆk, v = î +ĵ 3ˆk, w = 2ĵ. u = 3î +ĵ, v = ĵ +2ˆk, w = 2î +ĵ ˆk. u = î +ĵ + ˆk, v = 2ˆk, w = 2î ĵ + ˆk. u = î +ĵ + ˆk, v = 2î +2ĵ +2ˆk, w = 2î ˆk. u = î +ĵ v = 2ĵ +2ˆk, w = î +3ˆk. Esercizio 1.2. Calcolare la proiezione di v su un piano di giacitura ˆn quando v = î +ĵ 2ˆk, ˆn = 1 2 (î +ĵ). v = î +ĵ 2ˆk, ˆn = 1 2 (î ĵ). v = 2ˆk, ˆn = 1 (î ĵ + ˆk ). 3 v = 2î +2ĵ +2ˆk, ˆn = 1 (2î ˆk ). 5 v = 2ĵ +2ˆk, ˆn = 1 ) (î +3ˆk. 10 Esercizio 1.3. Usando la formula del prodotto vettoriale, determinare la dis-

4 4 CHAPTER 1. CALCOLO VETTORIALE tanza tra il punto B e la retta r(λ) = A+λê A (1,0,0), B (0,1,0), ê = ˆk. A (1,0,0) B (0,0,0), ê = sinαĵ +cosαˆk A ( 1,0,1) B (0, 2,1), ê = 1 2 (î +ĵ). A (2, 1,1) B (3,0,0), ê = 1 (î +ĵ + ˆk ). 3 A (0,1,0) B ( 1,0,1), ê = 1 ( î + ˆk ). 2 Esercizio 1.4. Nel piano cartesiano generato dai versori î e ĵ, determinare la distanzatrailpuntop (1,0)elabisettricedelsecondoedelquartoquadrante. Determinare la distanza tra P e la retta passate per Q ( 1,0) che forma un angolo antiorario di π 3 con l asse î. [d 1 = 2 2,d 2 = 3] Esercizio 1.5. Si consideri il seguente sistema di vettori applicati v 1 = 3î +ĵ 2ˆk P 1 (1,0,0) v 2 = 3î +2ˆk P 2 (1,1,1) v 3 = î +ĵ ˆk P 3 (1,2, 3). Determinare il risultante R, il momento M O rispetto all origine e l invariante scalare I. [R = 3î +2ĵ ˆk,M O = 3î 3ĵ + ˆk,I = 2] Esercizio 1.6. Calcolare il risultante, momento risultante rispetto all origine e invariate scalare del seguente sistema di vettori applicati: v 1 = î +ĵ 2ˆk, P 1 = (1,0,0); v 2 = î ĵ 2ˆk, v 3 = 2ˆk, P 2 = ( 1,2,0); P 3 = ( 2,3,1). Esercizio 1.7. Per i sistemi di vettori dei due esercizi precedenti, calcolare il momento risultante rispetto al punto Q (1,0, 1). Esercizio 1.8. Dato il sistema di vettori piani v 1 = î +ĵ P 1 (5,2,0) v 2 = 3î 4ĵ P 2 (3,0,0) v 3 = 2î +6ĵ P 3 (1, 3,0). Determinare il risultante ed il momento risultante rispetto all origine. Determinare un sistema equivalente composto da un solo vettore applicato. Scrivere l equazione della retta di applicazione del risultante in forma cartesiana. [R = 2î +3ĵ,M O = 9ˆk, { 9 13 ( 3,2,0),2î +3ĵ},3x 2y+9 = 0]

5 1.3. ESERCIZI 5 Esercizio 1.9. Dato il sistema di vettori paralleli v 1 = 3î +2ĵ 5ˆk P 1 (1,0,0) v 2 = 3 2î +ĵ 5 2ˆk P 2 (0,1,1) v 3 = 6î +4ĵ 10ˆk P 3 (0,0,1) Determinare il risultante ed il momento risultante rispetto all origine. Determinare un sistema equivalente composto da un solo vettore applicato. Scrivere l equazione della retta di applicazione del risultante in forma parametrica. Esercizio Dato il sistema di vettori v 1 = αî +ĵ +2ˆk, v 3 = γî +ĵ ˆk, v 2 = î +βĵ ˆk v 4 = 2î +ĵ, tutti applicati nel punto P = (1,0,0). Determinare al variare dei parametri reali α, β e γ, tutti i sistemi di vettori applicati equivalenti a quello nullo. Per valori dei parametri tali che R 0, determinare la retta di applicazione del risultante. Esercizio Calcolare il risultante, momento risultante rispetto all origine e invariate scalare del seguente sistema di vettori applicati: v 1 = 2αî +βĵ +γˆk, P 1 = (1,0,0); v 2 = 2γî ĵ +βˆk, P 2 = ( 1,0,1); v 3 = γĵ +2αˆk, P 3 = (0,1,1). con α, β e γ parametri reali. Dire per quali valori dei parametri il sistema si riduce ad una coppia di vettori. Calcolare una coppia equivalente dove uno dei vettori della coppia è applicato nel punto A (0,0,1). Esercizio Dire per quali valori del parametro reale α, il sistema di due vettori applicati S = {((0,0,0),î +ĵ),((1,0,0),î +(1+α)ˆk)} può essere equilibrato da un terzo vettore applicato (P 3,v 3 ). Determinare (P 3,v 3 ) Esercizio Nel caso dell esercizio precedente trovare le coppie di vettori {(A, v),(b,v)}, con A (0,0,1), B appartenente all asse î e v = 1. Esercizio Sia S il sistema di vettori applicati formato da v 1 = î +γˆk, P 1 (0,0,0) v 2 = γî +2ĵ αˆk, P 2 ( 1,0,0) v 3 = βî αĵ +2ˆk, P 3 (0,1,0) con α, β e γ parametri reali. Dire per quali valori dei parametri α, β e γ il sistema S è riducibile a una coppia di vettori applicati. Determinare i vettori v, aventi modulo pari a 3, della coppia equivalente C = {(A, v),(b,v)}, dove A ( 1,0,0) e B (0,1,0).

6 6 CHAPTER 1. CALCOLO VETTORIALE Esercizio Sia S il sistema di vettori applicati formato da v 1 = î +αĵ γˆk P 1 (1,0,0) v 2 = î +ĵ +3βˆk P 2 (0,1, 1) v 3 = αî +γĵ +2ˆk P 3 (0,0,2) con α, β e γ parametri reali. Dire per quali valori dei parametri α, β e γ il sistema S è riducibile a una coppia di vettori applicati. Determinare il punto B (appartenente al piano generato da ĵ e ˆk) della coppia equivalente C = {(A, v),(b,v)}, dove A (1,0,1) e v = î ĵ. Esercizio Sia S il sistema di vettori applicati formato da v 1 = αî +3ĵ ˆk P 1 (0,1,0) v 2 = î +2βĵ γˆk P 2 (2,0,0) v 3 = γî +αĵ +2ˆk P 3 ( 1,0,1) con α, β e γ parametri reali. Dire per quali valori dei parametri α, β e γ il sistema S è riducibile a una coppia di vettori applicati. Determinare il punto B (appartenente al piano generato da î e ĵ) della coppia equivalente C = {(A, v),(b,v)}, dove A ( 1,0,1) e v = 2î ˆk. Esercizio Dire per quali valori del parametro reale α, il sistema di tre vettori applicati P 1 = (1,0,0) P 2 = ( 2,1,2) P 3 = (0,0,0) v 1 = α( 4î +2ĵ +4ˆk) v 2 = î +ĵ/2+ ˆk v 3 = 2î ĵ 2ˆk si può ridurre al sistema formato da un solo vettore o da una coppia di vettori. Per ogni valore di α, trovare un vettore o una coppia di vettori equivalente al sistema dato. Esercizio Dato il sistema di vettori applicati: v 1 = 2î ĵ P 1 (0,0,0) v 2 = ĵ + ˆk P 2 (1, 1,0) Calcolare i vettori caratteristici R ed M Q, con Q (0,1,1). Aggiungere al sistema dato un terzo vettore applicato nella direzione di k in maniera tale che il sistema ottenuto sia riducibile ad un solo vettore applicato. Per il sistema ottenuto, determinare la retta di applicazione del risultante. Esercizio Sia S il sistema formato dai due vettori applicati: v 1 = î +αĵ, P 1 (1,1,0) v 2 = 3ˆk P 2 (0,2,0)

7 1.3. ESERCIZI 7 dove α è un parametro reale. Calcolare il risultante ed il momento risultante rispetto a P 2. Dire per quali valori del parametro α il sistema formato da S e da un terzo vettore applicato (P 3,v 3 ) possa essere un sistema equilibrato. Per tali valori di α determinare (P 3,v 3 ). Esercizio Dato il sistema di vettori applicati: v 1 = (α+1)î +3ĵ +(γ 2)ˆk P 1 = (1,0,0) v 2 = 2βî +γĵ v 3 = 2αĵ βˆk P 2 = (0,0, 2) P 3 = (0,1, 1) con α, β e γ parametri reali. Calcolare i vettori caratteristici R ed M O. Calcolare il momento risultante rispetto al polo P 1. Determinare α, β e γ tali per cui il sistema dato sia riducibile ad un sistema formato da una sola coppia di vettori. Calcolare una coppia di vettori equivalente al sistema dato. Aggiungere due vettori applicati al sistema dato in maniera tale che il nuovo sistema ottenuto sia equilibrato. Esercizio Dire per quali valori del parametro α il seguente sistema di vettori applicati ammette retta di applicazione del risultante. Determinare, per ogni valore di α, un sistema formato da un solo vettore, oppure da una coppia, equivalente al sistema dato: v 1 = 2Fî P 1 (0,0,0), v 2 = Fĵ v 3 = Fî +Fĵ v 4 = αfî P 2 (l,0,0), P 3 = (0, l,0), P 4 = (0,l,0).

8 8 CHAPTER 1. CALCOLO VETTORIALE

9 Geometria delle masse 2.1 Baricentro Per un sistema materiale discreto o continuo, il centro di massa G è definito rispettivamente da i OG = m iop i D i m, OG = OPρdτ i D dτ, dove ρ rappresenta la densità di massa. L integrale di volume va sostituito da un integrale di superficie o di linea per distribuzioni di massa bi-dimensionali o mono-dimensionali Proprietà Il baricentro di un sistema piano è contenuto nel piano del sistema. Ogni piano o retta di simmetria materiale contiene il baricentro. Pericorpiomogenei,laposizionediGnondipendedalladensitàecoincide con la posizione del centro geometrico del sistema. G è contenuto del minimo involucro convesso che contiene il sistema. Sia S = i S (i) con S (i) S (j) =, i j. Siano M i, G i rispettivamente la massa totale e il baricentro di S (i). Detto G il baricentro di S si ha i OG = M iog i i M. i 2.2 Esercizi Esercizio 2.1. Determinare il baricentro in un semi-disco omogeneo di raggio R e massa m. 9

10 π 3 10 CHAPTER 2. GEOMETRIA DELLE MASSE Esercizio 2.2. Determinare il baricentro in un arco di circonferenza di raggio R, apertura 2α e massa m. Esercizio 2.3. Determinare il baricentro del sistema omogeneo di figura avente massa m. B 2l O l A Esercizio 2.4. Il sistema di figura ha massa M ed è stato ottenuto a partire da unalaminaomogeneaquadratadiverticia ( l,l),b (l,l),c (l, l),d ( l, l), sulla quale è stato praticato un foro di raggio l/2 centrato in E (l/2, 0). Determinare il baricentro del sistema. A B E D C Esercizio 2.5. Il sistema piano di figura è formato da un asta AB, omogenea di massa 3m e lunghezza 2R, inclinata di π/4 sull orizzontale. L asta è tangente nell estremo A ad un anello omogeneo di massa 2m, centro P e raggio R ed in B ad un disco omogeneo di massa m, raggio R e centro Q. I due dischi sono tangenti esternamente in O e i centri sono su una parallela ad AB. Si fissi un sistema di coordinare cartesiane (O,x,y,z) con origine in O e con l asse x orizzontale. Determinare le coordinate del centro di massa del sistema rispetto al punto O. Q P O B π/4 A

11 2.2. ESERCIZI 11 Esercizio 2.6. Un sistema materiale di massa m è stato ottenuto praticando un foro di raggio r ad una distanza a dal centro di un disco omogeneo di raggio R. Sapendo che r+a R, determinare il baricentro del sistema. Esercizio 2.7. La lamina piana di figura, di massa m, è stata ottenuta praticando due fori circolari identici, di raggio R 3 e di centri A e B, su un disco omogeneo di raggio R e di centro O. Con riferimento al sistema di assi cartesiani di figura, entrambi le congiungenti OA ed OB formano angolo di π 3 con l asse y ed inoltre OA = OB = 2 3R. Determinare il baricentro della lamina. y B π 3 π 3 A O x Esercizio 2.8. La lamina piana di figura, di massa m, è stata ottenuta da una lamina rettangolare di base 2l e altezza l dalla quale è stata asportata una sezione a forma di semi-disco di raggio l. Calcolare il baricentro della lamina.

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 22/23 Matrici d inerzia Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale -

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Vettori applicati Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Sansonetto Nicola 15 aprile 2016 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A 2 (R) dotato del riferimento canonico,

Dettagli

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente 1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Appunti sul corso di Complementi di Matematica (modulo Analisi) Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto

Dettagli

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006 Facoltà d Ingegneria Meccanica Razionale A.A. 2005/2006 - Appello del 04/07/2006 In un piano verticale Oxy, un sistema materiale è costituito da un disco omogeneo, di centro Q, raggio R e massa 2m, e da

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

1 Cambiamenti di coordinate nel piano.

1 Cambiamenti di coordinate nel piano. Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

GEOMETRIA B Esercizi

GEOMETRIA B Esercizi GEOMETRIA B 2016-17 BARBARA NELLI A.A. 2016-17 Alcuni degli esercizi sono presi dal libro DC [1]. 1. Esercizi Esercizio 1.1. Sia α : I R 3 una curva parametrizzata e sia v R 3 un vettore fissato. Assumiamo

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 22/23 Baricentri Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a. 22/23

Dettagli

1 Applicazioni lineari

1 Applicazioni lineari 1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di

Dettagli

Esercizio 2 In una terna cartesiana ortogonale destra Oxyz = Oê 1 ê 2 ê 3 si considera il sistema S di vettori applicati:

Esercizio 2 In una terna cartesiana ortogonale destra Oxyz = Oê 1 ê 2 ê 3 si considera il sistema S di vettori applicati: Prova in itinere di Fondamenti di meccanica razionale e Meccanica razionale del 7.4.16 Esercizio 1 In una terna ortogonale Oxyz Oê 1 ê ê un sistema è composto da un anello circolare omogeneo γ, di massa

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni. normale parallelo a quello direzionale della retta sarà quindi

Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni. normale parallelo a quello direzionale della retta sarà quindi Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni Problema1 x = y Dato il punto P(0,1,2), la retta r: y = z 2 ed il piano α: x 3y + z = 0 a) Trova il piano passante per P

Dettagli

04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3).

04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3). 04 LA CIRCONFERENZA ESERCIZI 1. LA CIRCONFERENZA E LA SUA EQUAZIONE 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza dal punto C(1; 3). x + y x 6y + 6 = 0 Indica se le seguenti

Dettagli

che sommato ai vettori v

che sommato ai vettori v CALCOLO VETTORIALE EX 1 Due vettori a e b soddisfano le seguenti condiioni: i) a b 1, ii) ( a + b ) a 1, iii) ( a + b ) b 8. Calcolare i moduli dei vettori e l angolo compreso. EX Un vettore a di modulo

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica II parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

Corso di Algebra lineare - a.a Prova scritta del Compito A

Corso di Algebra lineare - a.a Prova scritta del Compito A Prova scritta del 23.02.2009 Compito A Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano inoltre P 1, P 2 e Q i punti di coordinate rispettivamente

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche.

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Quadriche Esercizi 1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. (a) x + y + z + xy xz yz 6x 4y + z

Dettagli

Esercizi su esponenziali, coni, cilindri, superfici di rotazione

Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizio 1. Risolvere exp (exp (z)) = i. Esercizio. Risolvere i exp(z)z 4 + i exp(z)(1 + i) z 4 i 1 = 0. Esercizio. Risolvere exp(z) =

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

Parte 11. Geometria dello spazio II

Parte 11. Geometria dello spazio II Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2

( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2 1 Il punto in R 3 La geometria analitica nello spazio: punti, vettori, rette e piani sintesi e integrazione prof D Benetti Un punto P nello spazio è associato a una terna ordinata di numeri reali numero

Dettagli

CdL in Ingegneria Informatica (Orp-Z)

CdL in Ingegneria Informatica (Orp-Z) CdL in ngegneria nformatica (Orp-Z) Prova scritta di Algebra Lineare assegnata il 22 Novembre 2004 - A Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. Sia f

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

La circonferenza. Tutti i diritti sono riservati.

La circonferenza. Tutti i diritti sono riservati. La circonferenza Copyright c 008 Pasquale Terrecuso Tutti i diritti sono riservati. L equazione della circonferenza La circonferenza come luogo geometrico....................................... Questioni

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 4: Idrostatica (parte III - equazione globale - legge

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

ESERCIZI MATEMATICA GENERALE - Canale III

ESERCIZI MATEMATICA GENERALE - Canale III ESERCIZI MATEMATICA GENERALE - Canale III Vettori Prof. A. Fabretti 1 A.A. 009/010 1 Dati in R i vettori v = (1,,, u = (,, 1 e w = (,, calcolare: a la combinazione lineare u + v + 4 w b il prodotto scalare

Dettagli

Elementi di geometria analitica nel piano

Elementi di geometria analitica nel piano Capitolo 1 Elementi di geometria analitica nel piano 1.1 Richiami di geometria euclidea piana In questa sezione verranno menzionati alcuni concetti della geometria del piano di Euclide riguardanti l appartenenza

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri,

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri, ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 05/06 docente: Elena Polastri, plslne@unife.it Esercizi 3: SPAZI VETTORIALI e MATRICI Combinazioni lineari di vettori.. Scrivere il vettore

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali?

Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali? Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali? Enrico Schlesinger Laboratorio FDS Milano, 13 novembre, 2013 Decorazioni Alhambra Escher Sky and water

Dettagli