DISEGNO TECNICO INDUSTRIALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DISEGNO TECNICO INDUSTRIALE"

Transcript

1 DISEGNO TECNICO INDUSTRIALE COSTRUZIONI GEOMETRICHE Anno Accademico

2 Le Costruzioni Geometriche Nello studio del disegno tecnico, inteso come linguaggio grafico comune fra i tecnici per la progettazione e costruzione di organi di macchine, assume una funzione basilare la conoscenza della geometria elementare ed euclidea e della geometria proiettiva e descrittiva. Con la geometria elementare si introducono certi enti primitivi (punti, rette e piani) e si enunciano certe proporzioni riguardanti le varie relazioni interconnesse con la esplicita loro rappresentazione sul piano. A tale scopo, quindi, vanno finalizzate le costruzioni geometriche, intese a formalizzare graficamente, secondo convenzioni date, la rappresentazione sul piano di oggetti spaziali e, viceversa, intese a ricostruire la visione tridimensionale degli oggetti deducendola dalle loro rappresentazioni simboliche piane.

3 Le Costruzioni Geometriche Per esempio la costruzione geometrica sul piano di un poligono esagonale ci consente di rappresentare virtualmente la testa di una vite e/o la configurazione di un dado. Il tracciamento di tangenti e la costruzione di raccordi consente la rappresentazione sul piano di meccanismi fondamentali (eccentrici) costituiti da una coppia cinematica intesa a trasmettere per contatto reciproco un moto alternativo traslatorio o rotatoria da un corpo detto movente, ad un altro detto cedente. L applicazione più comune si trova negli alberi della distribuzione dei motori a combustione interna, in cui il movente prende il nome di camma.

4 Le Costruzioni Geometriche Gli eccentrici trovano impiego assai vasto nelle costruzioni meccaniche. Importanti sono gli impieghi nelle macchine utensili, tessili e simili e vengono con sempre più frequenza applicati nelle macchine utensili automatiche, in cui camme intercambiabili possano comandare tempi e modalità di intere sequenze operative. Altro importante ed interessante esempio di applicazione delle costruzioni geometriche, con particolare riferimento alle curve ad evolvente epicicloide ed ipocicloide si ha nel tracciamento del profilo delle ruote dentate. Per la ruota dentata con dentatura ad evolvente il profilo del dente si ottiene mediante il tracciamento della curva evolvente rispetto ad una circonferenza concentrica della primitiva della ruota. Per le ruote dentate con dentatura epicicloidale, il profilo del dente si ottiene tracciando rispetto alla circonferenza primitiva o di base una curva epicicloidale.

5 Le costruzioni geometriche si possono così suddividere: costruzioni fondamentali (costruzioni 1 11); curve notevoli (costruzioni 12 33); curve nello spazio (costruzioni 34 37); poligoni (costruzioni 38 63); raccordi (costruzioni 64 95).

6 DISEGNO TECNICO INDUSTRIALE COSTRUZIONI FONDAMENTALI Anno Accademico

7

8

9

10

11

12

13

14

15 DISEGNO TECNICO INDUSTRIALE CURVE NOTEVOLI Anno Accademico

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 DISEGNO TECNICO INDUSTRIALE CURVE NELLO SPAZIO Anno Accademico

38

39

40

41 DISEGNO TECNICO INDUSTRIALE COSTRUZIONE GRAFICA DI POLIGONI Anno Accademico

42

43

44

45

46

47

48

49 DISEGNO TECNICO INDUSTRIALE COSTRUZIONE GRAFICA DI RACCORDI E TANGENTI Anno Accademico

50 DEFINIZIONE DI RACCORDO Dati due tratti di linea (curvi e/o rettilinei) si definisce curva di raccordo (o semplicemente raccordo) l arco (o gli archi) di curva, avente, in corrispondenza del punto di contatto con ciascuno dei due tratti di linea assegnati, la tangente comune. Due linee complanari sono tangenti in un punto (punto appartenente ad entrambe le linee) quando da esso passa la retta normale comune alle due linee.

51 Le costruzioni dei raccordi risultano di fondamentale importanza in parecchie applicazioni meccaniche. A tal proposito dalla definizione della curva di raccordo si evince una vasta tipologia di raccordi: una prima classificazione porta a distinguere i raccordi piani dai raccordi nello spazio; è poi possibile differenziare gli stessi in raccordi parabolici, iperbolici, ellittici ecc. a seconda del tipo di arco di curva che li definisce. Nelle tavole che seguono sono presi in considerazione solo i raccordi circolari piani, senz altro i più utilizzati nelle applicazioni tecniche ed industriali. Vengono considerati cioè solo i casi in cui i tratti di curva utilizzati per raccordare le linee complanari date sono archi di circonferenza. In particolare vengono descritti tutti i possibili raccordi costituiti da un solo arco di circonferenza e i casi più significativi di raccordi costituiti da due archi.

52 Nelle varie tavole sono evidenziate con un tratto più spesso la curva di raccordo finale e le linee date. Inoltre si indica con R (R e R nei raccordi costituiti da due archi) il raggio e con C (C e C nei raccordi costituiti da due archi) il centro dell arco di circonferenza che costituisce il raccordo, mentre con T1 e T2 si indicano i punti in cui la curva di raccordo ha la tangente comune con ciascuna delle due linee (curve o rettilinee) assegnate. Nei raccordi costituiti da una doppia curva si indica con T3 il punto di tangenza tra i due archi che costituiscono la curva di raccordo. Le costruzioni delle tangenti possono essere considerate come dei casi limite di raccordo quando il raggio dell arco assume valore infinito.

53 Da un punto di vista analitico la costruzione di un raccordo circolare piano consiste nel determinare in un sistema piano di assi cartesiani ortogonali (0, x, y) l equazione della circonferenza che contiene l arco di raccordo cercato. Tale equazione ha la forma x 2 +y 2 + ax + by + c = 0 (dove a, b, c sono tre numeri reali). Per individuare in maniera univoca la circonferenza occorre, quindi, imporre tre condizioni (passaggi per determinati punti, tangenze, condizioni sul centro e sul raggio della circonferenza). I raccordi determinati da due o più archi di circonferenza costituiscono una generalizzazione del problema dei raccordi tra due tratti di linea e permettono di raccordare gli stessi fissando ulteriori condizioni di vincolo, quali il punto di tangenza T3 tra i due archi e la lunghezza del raggio R2 del secondo arco che costituisce il raccordo.

54 Nei disegni che illustrano le costruzioni si utilizzano vari colori e tipi di linee e precisamente: la linea continua grossa di colore nero, per le curve di raccordo cercate; la linea continua di colore ciano, per le linee di costruzione; la linea mista fine di colore ciano, per gli assi di simmetria; la linea continua di colore rosso, per le linee di riferimento e di misura delle quote. Sempre di colore rosso sono le indicazioni delle quote, delle frecce unitamente alle lettere e ai numeri.

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86 Tracciare il segmento O 1 O 2 e determinare su di esso il punto medio M. Con centri in O 1 e M e con raggi rispettivamente R 4 =R 1 R 2 e R 3 =O 1 M tracciare due archi di circonferenza che si incontrano nei punti A e B. I punti di tangenza T 1 e T 2 con la circonferenza c 1 si determinano tracciando rispettivamente la retta congiungente i punti O 1 e A e la retta congiungente i punti O 1 e B. I punti di tangenza T 3 e T 4 con la circonferenza c 2 si determinano tracciando da O 2 le rette parallele rispettivamente ad O 1 T 1 e ad O 1 T 2. Le rette r e s congiungenti rispettivamente i punti T 1 con T 3 e T 2 con T 4 sono le tangenti cercate.

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli

L Unità didattica in breve

L Unità didattica in breve L Unità didattica in breve Trasmissione del moto mediante ruote dentate Si definisce ingranaggio l accoppiamento di due ruote dentate ingrananti fra loro, montate su assi la cui posizione relativa resta

Dettagli

RUOTE DENTATE. Introduzione

RUOTE DENTATE. Introduzione RUOTE DENTATE 362 Introduzione Le ruote dentate costituiscono un sistema affidabile per la trasmissione del moto tra assi paralleli, incidenti e sghembi. La trasmissione avviene per spinta dei denti della

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Esercizio Decorazioni

Esercizio Decorazioni Nome Cognome Classe Data La riproduzione di questa pagina tramite fotocopie è autorizzata ai soli fini dell utilizzo nell attività didattica degli alunni delle classi che hanno adottato il testo. Esercizio

Dettagli

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile e Ambientale Università di Trieste Piazzale Europa 1, Trieste Sistemi di travi Corsi di Laurea in

Dettagli

Ruote Dentate. Ing. Alessandro Carandina A.A. 2014/2015. Disegno Tecnico Industriale per Ingegneria Meccanica

Ruote Dentate. Ing. Alessandro Carandina A.A. 2014/2015. Disegno Tecnico Industriale per Ingegneria Meccanica Ruote Dentate Ing. Alessandro Carandina A.A. 2014/2015 Disegno Tecnico Industriale per Ingegneria Meccanica Introduzione TRASMISSIONE DEL MOTO DA UN ASSE AD UN ALTRO 2 CINGHIA SINCRONA Assi paralleli Alberi

Dettagli

CLASSE 71/A - TECNOLOGIE E DISEGNO TECNICO. Programma d'esame. Temi d'esame proposti in precedenti concorsi

CLASSE 71/A - TECNOLOGIE E DISEGNO TECNICO. Programma d'esame. Temi d'esame proposti in precedenti concorsi CLASSE 71/A - TECNOLOGIE E DISEGNO TECNICO Programma d'esame CLASSE 71/A - TECNOLOGIE E DISEGNO TECNICO Temi d'esame proposti in precedenti concorsi CLASSE 71/A - TECNOLOGIE E DISEGNO TECNICO Programma

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

Il DISEGNO TECNICO è un linguaggio convenzionale che ha la funzione di trasferire e diffondere informazioni

Il DISEGNO TECNICO è un linguaggio convenzionale che ha la funzione di trasferire e diffondere informazioni Il DISEGNO TECNICO è un linguaggio convenzionale che ha la funzione di trasferire e diffondere informazioni Il DISEGNO TECNICO è un linguaggio convenzionale che ha la funzione di trasferire e diffondere

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

CLASSE 1ª Manutenzione e Assistenza Tecnica

CLASSE 1ª Manutenzione e Assistenza Tecnica CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,

Dettagli

GeoGebra vers.5 - vista Grafici 3D

GeoGebra vers.5 - vista Grafici 3D GeoGebra vers.5 - vista Grafici 3D Marzo 2015 (manuale on-line, con aggiunte a cura di L. Tomasi) Questo articolo si riferisce a un componente della interfaccia utente di GeoGebra. Viste Menu Vista Algebra

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

paralleli diritta cilindriche interno vite senza fine-ruota elicoidale

paralleli diritta cilindriche interno vite senza fine-ruota elicoidale Scheda riassuntiva 3 capitoli 5-6-8 Ingranaggi Generalità L ingranaggio è un meccanismo composto da due ruote dentate, una delle quali trasmette il moto all altra attraverso la dentatura. Caratteristiche:

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2014/2015 docente: Francesco Demontis ultimo aggiornamento: 21 maggio 2015 1. Lunedì 2/03/2015, 11 13. ore: 2(2) Presentazione

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

ELEMENTI DI UNA RUOTA DENTATA A DENTI DIRITTI

ELEMENTI DI UNA RUOTA DENTATA A DENTI DIRITTI 1 Ruote dentate Le ruote dentate servono per la trasmissione del moto rotatorio continuo fra due alberi a distanza ravvicinata, con assi paralleli, concorrenti o sghembi. I denti della ruota motrice spingono,

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015 CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA PROFESSORESSA: REGALBUTO PAOLA LE GRANDEZZE: LE GRANDEZZE FONDAMENTALI E DERIVATE,

Dettagli

PROIEZIONI ORTOGONALI

PROIEZIONI ORTOGONALI PROIEZIONI ORTOGONALI 104 Il metodo della doppia proiezione ortogonale Il metodo attualmente conosciuto come metodo delle proiezioni ortogonali (o proiezioni ortografiche) inizialmente nacque come metodo

Dettagli

/H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL

/H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL /H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL Il confronto della lunghezza tra due segmenti è un problema molto semplice. Infatti tutti

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

Liceo Scientifico G. Galilei Macerata

Liceo Scientifico G. Galilei Macerata Classe 3 Sez D Materia : Matematica Docente: Angelini Antonella Liceo Scientifico G. Galilei Macerata Anno Scolastico 2009-2010 Contratto Formativo Individuale 1.ANALISI DELLA CLASSE: Conoscenze Competenze

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO CLASSE IC Classico ANNO SCOLASTICO 2012-2013 PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO Gli allievi, in generale, si dedicano allo studio della matematica e della fisica con diligenza

Dettagli

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Prima Facoltà di Architettura Ludovico Quaroni Corso di Laurea in DISEGNO INDUSTRIALE A.A. 2007-08 - 1 Semestre Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Calendario del corso con argomenti svolti

Dettagli

CNC. Linguaggio ProGTL3. (Ref. 1308)

CNC. Linguaggio ProGTL3. (Ref. 1308) CNC 8065 Linguaggio ProGTL3 (Ref. 1308) SICUREZZA DELLA MACCHINA È responsabilità del costruttore della macchina che le sicurezze della stessa siano abilitate, allo scopo di evitare infortuni alle persone

Dettagli

PROGRAMMI PER GLI ESAMI I PATENTE DE MAESTRI E DELLE MAESTRE DELLE SCUOLE PRIMARIE

PROGRAMMI PER GLI ESAMI I PATENTE DE MAESTRI E DELLE MAESTRE DELLE SCUOLE PRIMARIE Programmi per le Scuole normali e magistrali, e per gli esami di Patente de Maestri e delle Maestre delle Scuole primarie approvati con regio decreto 9 novembre 1861 n. 315 (Raccolta ufficiale delle leggi

Dettagli

CURRICOLO MATEMATICA

CURRICOLO MATEMATICA 1 CURRICOLO MATEMATICA Competenza 1 al termine della scuola dell Infanzia 2 NUMERI Raggruppare, ordinare, contare, misurare oggetti, grandezze ed eventi direttamente esperibili. Utilizzare calendari settimanali

Dettagli

Processo di rendering

Processo di rendering Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)

Dettagli

Esercitazioni di Meccanica Applicata alle Macchine

Esercitazioni di Meccanica Applicata alle Macchine Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Esercitazioni di Meccanica Applicata alle Macchine

Dettagli

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan Spline Nurbs IUAV Disegno Digitale Camillo Trevisan Spline e Nurbs Negli anni 70 e 80 del secolo scorso nelle aziende si è iniziata a sentire l esigenza di concentrare in un unica rappresentazione gestita

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

LIVELLO STUDENT S1. S2. S3. S4. S5.  S6. LIVELLO STUDENT S1. (5 punti ) La figura mostra due quadrati uguali che hanno in comune esattamente un vertice. È possibile precisare la misura dell'angolo ABC? S2. (7 punti ) Negli usuali fogli (rettangolari)

Dettagli

Disegno di Macchine. Lezione n 7 Componentistica di base: alberi. corso per I anno della laurea in ing. meccanica Docente: ing.

Disegno di Macchine. Lezione n 7 Componentistica di base: alberi. corso per I anno della laurea in ing. meccanica Docente: ing. Disegno di Macchine corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana Lezione n 7 Componentistica di base: alberi Introduzione ai componenti di macchine I componenti meccanici

Dettagli

CINEMATICA DEI MECCANISMI DEFINIZIONI

CINEMATICA DEI MECCANISMI DEFINIZIONI CINEMATICA APPLICATA Indice Cinematica del punto materiale Definizioni Tipologie di moto Strumenti matematici Applicazioni Cinematica del corpo rigido Definizioni Centro di istantanea rotazione Formula

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Proiezioni Ortogonali Scopo del Disegno e del Disegno Tecnico Disegno: Rappresentare su un piano bidimensionale (ad esempio un foglio di carta) un oggetto nella realtà tridimensionale. Non è richiesta

Dettagli

I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI V SEZ. A T.S.R. ANNO SCOLASTICO 2013.2014

I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI V SEZ. A T.S.R. ANNO SCOLASTICO 2013.2014 I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI DOCENTE PROF. CLASSE MATEMATICA SANDRO CADDEO V SEZ. A T.S.R. ANNO SCOLASTICO 2013.2014 OBIETTIVI. Gli obiettivi generali ed

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

Esercizi complementari al corso di DISEGNO TECNICO INDUSTRIALE (MECL, AUTL, MATL), a.a. 2005/06.

Esercizi complementari al corso di DISEGNO TECNICO INDUSTRIALE (MECL, AUTL, MATL), a.a. 2005/06. UNIVERSITÀ DI BRESCIA - FACOLTA DI INGEGNERIA DIPARTIMENTO DI INGEGNERIA MECCANICA Gabriele Baronio, Valerio Villa. Esercizi complementari al corso di (MECL, AUTL, MATL), a.a. 2005/06. La presente raccolta

Dettagli

Programmazione modulare a.s. 2015-2016 Disciplina: Meccanica

Programmazione modulare a.s. 2015-2016 Disciplina: Meccanica Programmazione modulare a.s. 2015-2016 Disciplina: Meccanica Classe: 5 Meccanica Docente prof. Angelo Rinaldi Ore settimanali previste: 4 ore ro totale di ore 4x33=132 ore Libro di testo Corso di Meccanica

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

TECNOLOGIA MECCANICA LA TRASMISSIONE DEL MOTO Fondamenti

TECNOLOGIA MECCANICA LA TRASMISSIONE DEL MOTO Fondamenti LA TRASMISSIONE DEL MOTO Fondamenti Centro per l Automazione e la Meccanica Via Rainusso 138/N 41100 Modena INDICE 1 La trasmissione del moto pag. 2 1.1 I motori 2 1.2 Trasmissione del moto mediante i

Dettagli

Il disegno parametrico

Il disegno parametrico Il disegno parametrico 03 Ah il disegno parametrico! Si tratta di una funzionalità estremamente interessante e utile che avvicina l ambiente di disegno di AutoCAD a quello dei più quotati software di progettazione,

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08 UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza Corso di Disegno Tecnico Industriale per il Corso di Laurea triennale in Ingegneria Meccanica e in Ingegneria Meccatronica Tolleranze

Dettagli

Laboratorio: Costruzione dell ellisse con parallelogrammi articolati

Laboratorio: Costruzione dell ellisse con parallelogrammi articolati Laboratorio: Costruzione dell ellisse con parallelogrammi articolati Il laboratorio di matematica non è un luogo fisico diverso dalla classe, è piuttosto un insieme strutturato di attività volte alla costruzione

Dettagli

PROGRAMMA di MATEMATICA APPLICATA. Prof. ONORATI Mariano

PROGRAMMA di MATEMATICA APPLICATA. Prof. ONORATI Mariano ESAMI DI STATO SESSIONE ORDINARIA 2014/2015 CLASSE V SEZIONE E PROGRAMMA di MATEMATICA APPLICATA Prof. ONORATI Mariano Libro/i di testo in adozione: Matematica.rosso vol.5 Autori: Bergamini Trifone - Barozzi

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

GEOGEBRA I OGGETTI GEOMETRICI

GEOGEBRA I OGGETTI GEOMETRICI GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare

Dettagli

Disegno Tecnico Aerospaziale L (A-L) Disegno Tecnico Industriale L (A-L) Anno Accademico 2007/2008

Disegno Tecnico Aerospaziale L (A-L) Disegno Tecnico Industriale L (A-L) Anno Accademico 2007/2008 Alma Mater Studiorum Università di Bologna Seconda Facoltà di Ingegneria con Sede a Cesena Disegno Tecnico Aerospaziale L (A-L) Disegno Tecnico Industriale L (A-L) Anno Accademico 2007/2008 Docente: Tutor:

Dettagli

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo: Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo

Dettagli

1 Insiemi in R n 1 1.1 Simmetrie degli insiemi... 5

1 Insiemi in R n 1 1.1 Simmetrie degli insiemi... 5 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 5 2 Funzioni da

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Disegno di Macchine. corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana

Disegno di Macchine. corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana Disegno di Macchine corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana Lezione n 4 Componentistica di base: alberi, trasmissione per cinghie e catene, giunti Alberi Appunti

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

Unificazione nel disegno. Enti di unificazione

Unificazione nel disegno. Enti di unificazione Unificazione nel disegno Norme per l esecuzione e la lettura dei disegni finalizzate ad una interpretazione univoca conforme alla volontà del progettista. Enti di unificazione ISO: International standard

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

SCUOLA PRIMARIA: MATEMATICA

SCUOLA PRIMARIA: MATEMATICA SCUOLA PRIMARIA: MATEMATICA Traguardi per lo sviluppo delle competenze al termine della scuola primaria L'alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare

Dettagli

LA GRAFICA E LA GEOMETRIA OPERATIVA

LA GRAFICA E LA GEOMETRIA OPERATIVA LA GRAFICA E LA GEOMETRIA OPERATIVA La geometria operativa, contrariamente a quella descrittiva basata sulle regole per la rappresentazione delle forme geometriche, prende in considerazione lo spazio racchiuso

Dettagli

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 sostituscono le pagg. 50-58 (fino alle eq. 5.28) Come già visto è stato scelto l'ellissoide come riferimento planimetrico sul quale proiettare tutti i punti

Dettagli

ENCICLOPEDIA MATEMATICA. di Corrado Brogi http://spazioweb.libero.it/corradobrogi

ENCICLOPEDIA MATEMATICA. di Corrado Brogi http://spazioweb.libero.it/corradobrogi ENCICLOPEDIA MATEMATICA di Corrado Brogi http://spazioweb.libero.it/corradobrogi Prefazione A mio modesto (anzi modestissimo) parere questa enciclopedia in sette volumi è uno dei lavori più chiari e completi

Dettagli

INTRODUZIONE AI SISTEMI CAD

INTRODUZIONE AI SISTEMI CAD INTRODUZIONE AI SISTEMI CAD 407 Introduzione Il termine CAD sta per Computer-aided Design. L interpretazione corretta del termine è quella di progettazione assistita dal calcolatore (e non di disegno assistito

Dettagli

PROGRAMMA SVOLTO DI DISEGNO E STORIA DELL'ARTE LICEO DELLE SCIENZE APPLICATE I.I.S. VOLTA CLASSE 2 A ANNO SCOLASTICO 2014-2015

PROGRAMMA SVOLTO DI DISEGNO E STORIA DELL'ARTE LICEO DELLE SCIENZE APPLICATE I.I.S. VOLTA CLASSE 2 A ANNO SCOLASTICO 2014-2015 PROGRAMMA SVOLTO DI DISEGNO E STORIA DELL'ARTE LICEO DELLE SCIENZE APPLICATE I.I.S. VOLTA Prof.ssa Ester SANTELLA CLASSE 2 A ANNO SCOLASTICO 2014-2015 MODULO 1 - rappresentazione in scala di un gruppo

Dettagli

Moti e sistemi rigidi

Moti e sistemi rigidi Moti e sistemi rigidi Dispense per il corso di Meccanica Razionale 1 di Stefano Siboni 1. Moto rigido di un sistema di punti Sia dato un sistema S di N 2 punti materiali P i, i = 1,..., N. Per configurazione

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Progetto e costruzione di macchine Joseph E. Shigley, Charles R. Mischke, Richard G. Budynas Copyright 2005 The McGraw-Hill Companies srl

Progetto e costruzione di macchine Joseph E. Shigley, Charles R. Mischke, Richard G. Budynas Copyright 2005 The McGraw-Hill Companies srl Copyright 2005 The Companies srl Esercizi aggiuntivi capitolo 13 Analisi 13-4 Un pignone cilindrico a denti dritti di 21 denti ingrana con una ruota da 28 denti. Il passo diametrale è di 3 denti/in e l

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

Programma precorso di matematica

Programma precorso di matematica Programma precorso di matematica a.a. 015/16 Quello che segue è il programma dettagliato del precorso. Si fa riferimento al testo [MPB] E. Acerbi, G. Buttazzo: Matematica Preuniversitaria di Base, Pitagora

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

PON Competenze per lo sviluppo 2007-2013 PROGRAMMA G1 FSE 2009-301 MECCANICA APPLICATA

PON Competenze per lo sviluppo 2007-2013 PROGRAMMA G1 FSE 2009-301 MECCANICA APPLICATA PON Competenze per lo sviluppo 2007-2013 Alla c.a. del D.S. Prof.Giovanni Semeraro PROGRAMMA G1 FSE 2009-301 MECCANICA APPLICATA SUDDIVISIONE DELLA PROGRAMMAZIONE: PRIMO MODULO di 27 ORE (propedeutico

Dettagli

LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015. Contratto formativo

LICEO SCIENTIFICO STATALE G. GALILEI - MACERATA a.s. 2014-2015. Contratto formativo LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015 Prof.: ANGELO ANGELETTI Disciplina: MATEMATICA Classe: 3M Contratto formativo 1. Analisi della classe Una prova d ingresso svolta all inizio

Dettagli

14.4 Pompe centrifughe

14.4 Pompe centrifughe 14.4 Pompe centrifughe Le pompe centrifughe sono molto diffuse in quanto offrono una notevole resistenza all usura, elevato numero di giri e quindi facile accoppiamento diretto con i motori elettrici,

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

MODULO N. 1 - GLI STRUMENTI PROPRI DEL DISEGNO TECNICO E LA GEOMETRIA EUCLIDEA ELEMENTARE

MODULO N. 1 - GLI STRUMENTI PROPRI DEL DISEGNO TECNICO E LA GEOMETRIA EUCLIDEA ELEMENTARE Il programma di Disegno Geometrico è stato strutturato partendo da un attenta analisi della situazione di partenza relativa al grado di manualità dei singoli alunni, per passare poi all analisi delle principali

Dettagli

VALLAURI L ASSE MATEMATICO

VALLAURI L ASSE MATEMATICO Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Via B. Peruzzi, 13 41012 CARPI (MO) VALLAURI www.vallauricarpi.it Tel. 059 691573 Fax 059 642074 vallauri@vallauricarpi.it

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

Università degli Studi della Calabria. Ruote dentate

Università degli Studi della Calabria. Ruote dentate Trasmissione di moto rotatorio mediante ruote di frizione (ad assi paralleli od anche sghembi) Accoppiamento ruota/dentiera Coppia di ruote dentate fra loro ingrananti: la distanza fra i denti lungo la

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

DISPENSA DI GEOMETRIA

DISPENSA DI GEOMETRIA Il software di geometria dinamica Geogebra GeoGebra è un programma matematico che comprende geometria, algebra e analisi. È sviluppato da Markus Hohenwarter presso la Florida Atlantic University per la

Dettagli

Gli oggetti 3D di base

Gli oggetti 3D di base Gli oggetti 3D di base 04 Attraverso gli oggetti 3D di base, AutoCAD dispiega la sua capacità di modellazione per volumi e per superfici per quei modelli che si possono pensare come composizioni di oggetti

Dettagli