Calcolo delle Probabilità

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo delle Probabilità"

Transcript

1 Calcolo delle Probabltà Che collegamento c è tra gl strument statstc vst fno ad ora per lo studo de fenomen real e l calcolo delle probabltà? Non sempre la conoscenza delle caratterstche d un fenomeno può essere conseguta osservando tutta la popolazone ma deve essere estratto un campone (rlevazone parzale) La STATISTICA INDUTTIVA o INFERENZIALE ntende descrvere non tanto cò che traspare dalle manfestazon osservate (rlevazon parzal), ma quello che emergerebbe qualora la rlevazone fosse estesa all nseme d tutte le manfestazone del fenomeno. L ncertezza che derva dalla parzaltà della rlevazone è domnata dalla TEORIA DELLE PROBABILITÀ

2 TERMINOLOGIA EVENTI: enttà caratterzzate da aleatoretà, qualcosa che può verfcars oppure no La Juventus vncerà l camponato anche quest anno? Gl event s ndcano con le lettere mauscole dell alfabeto latno E 1 = La Juventus vncerà l camponato anche quest anno S chama evento complementare ad E l verfcars d tutto cò che non è E e s ndca con E E 1 = La Juventus non vncerà l camponato quest anno S ndca con la lettera dell alfabeto greco Ω l nseme d tutt possbl rsultat d un espermento, per espermento s ntende una prova l cu esto è ncerto. Vene anche chamato evento certo o spazo camponaro E 1 =Vnce la Juve, E 2 =Vnce la Lazo, E 3 =Vnce la Roma, E 4 =Vnce l Parma, E 5 =Vnce l Mlan. Ω è l nseme d tutt gl event E, per =1,.,20 NOTA: quando sono state fatte queste sldes, ovvamente la Juve era n sere A TERMINOLOGIA Al verfcars d un evento vene assocata una PROBABILITA P(E 1 )=Probabltà che la Juventus vnca l camponato Se chedessmo d assegnare questa probabltà a un tfoso della Juve, a un tfoso dell Inter (che pensa sempre che quest anno sa quello buono), a un tfoso del Torno, o a una persona oggettva, tecncamente preparata a lvello calcstco otterremmo 4 valor dvers d probabltà Come è possble assegnare correttamente la probabltà agl event?

3 PROPRIETA FORMALI La probabltà non è ma un numero negatvo, verrà assegnata probabltà 0 agl event che c s aspetta che non s verfchno (evento quas mpossble) e probabltà 1 all event che c s aspetta che s verfchno (evento quas certo) Sccome ogn evento è contenuto n Ω 0 < P(E ) < P(Ω) =1 ( E Ω ) P(Ω)=P( tutto quello che può accadere )=P( evento certo )=1 PROPRIETA FORMALI Se due event E 1 e E 2 non possono verfcars contemporaneamente (la loro ntersezone concde con l nseme vuoto) dremo che sono ncompartbl, E E = P( E E ) = Probabltà che vnca l camponato la Juve e anche l Inter? Sccome non possono vncere entrambe, gl event sono ncompatbl, la probabltà della loro ntersezone è uguale a 0

4 PROPRIETA FORMALI Se s vuole calcolare la probabltà che s verfch l evento E 1 oppure l evento E 2 (E 1 unto E 2 ) e due event sono ncompatbl allora la probabltà dell unone è uguale alla somma delle probabltà P ( E E ) = P( E ) + P( E ) Probabltà che vnca l camponato una squadra romana? Sccome non possono vncere entrambe, gl event sono ncompatbl, la probabltà della loro unone è uguale alla probabltà che vnca la Roma, pù la probabltà che vnca la Lazo. ASSIOMI E possble rassumere quanto vsto fno ad ora negl assom d Kolmogorov 1. E Ω, P( E) 0 2. P( Ω) = 1 3. Se E E = allora P( E E ) = P( E ) + P( E )

5 ALCUNE REGOLE E E= Ω qund PE ( ) + PE ( ) = 1 e dunque PE ( ) = 1 PE ( ) Se E E 1 2 allora ( ) PE ( E) = PE ( ) + PE ( ) P E E EVENTI ELEMENTARI Insem contenent un solo elemento In generale lo spazo camponaro vene descrtto n termn d event elementar { } Ω = ω1, ω2,..., ωn Se gl event elementar sono tutt equprobabl, coè ({ }) { } ( ) ({ }) P ω 1 = P ω 2 =... = P ωn Allora la probabltà d un evento qualsas E composto da pù event elementar ( ) P E = # cas favorevol (all'evento) # cas possbl (dell'espermento)

6 PROBABILITA CONDIZIONATA Se abbamo due event E 1 e E 2 e ne conoscono le probabltà P(E 1 ) e P(E 2 ) ch chedamo se la probabltà del verfcars dell uno vara sapendo che s è verfcato l altro P( E E ) P( E1 E2) = 1 2 P( E2 ) con P( E2) > 0 ESEMPIO: Lanco d un dado E 1 = estrarre un numero par ; E 2 = estrarre un numero >=4 P(E 1 ) =3/6 ; P(E 2 )=3/6 La probabltà d estrarre un numero par camba se s sa che l numero estratto è >=4? 2 ({ 4,6 }) { } P( E1 E2) P 2 /6 2 1 P( E1 E2) = = = = P( E ) P( 4,5,6 ) EVENTI INDIPENDENTI Due event E 1 e E 2 s dranno ndpendent se la probabltà del verfcars dell uno rmane nvarata sapendo che s è verfcato l altro, coè P( E E ) = P( E ) e P( E E ) = P( E ) Se due event sono ndpendent P( E1 E2) = P( E1) P( E2) P( E E ) P( E E ) P( E E ) = P( E ) e P( E E ) = P( E ) Infatt = = P( E2) P( E1) Event compatbl ma Event ndpendent! compatbl ma ndpendent! ESEMPIO: Mazzo d 40 carte E 1 = estrarre una carta d denar P(E 1 ) = 10/40 ; E 2 = estrarre un asso P(E 2 )=4/40 La probabltà d estrarre una carta d denar camba se s sa che la carta estratta è un asso? P( E1 E2) P (asso d denar) P( E1 E2) = = = = = P( E ) P(asso) P( E1 E2) = P( E1) P( E2) = =

7 EVENTI INDIPENDENTI Event compatbl ma ndpendent! Event compatbl ma ndpendent! ESEMPIO 2: Mazzo d 40 carte E 1 = estrarre una carta d denar P(E 1 ) = 10/40 ; E 2 = estrarre una fgura P(E 2 )=12/40 La probabltà d estrarre una carta d denar camba se s sa che la carta estratta è una fgura? P( E1 E2) P (fgura d denar) P( E1 E2) = = = = = P( E ) P(fgura) P( E1 E2) = P( E1) P( E2) = = LEGGI DI DE MORGAN E E = E E E E = E E L operazone d complementazone scamba l operazone d unone con l operazone d ntersezone e vceversa

8 SCHEMI DI CAMPIONAMENTO S supponga d estrarre una pallna da un urna a) Estrazone con rmessa, la probabltà d estrazone d una sngola pallna rmane costante n ogn estrazone b) Estrazone senza rmessa, la probabltà d estrazone d una sngola pallna camba S supponga d estrarre una untà da una popolazone a) Camponamento con rpetzone (event ndpendent) b) Camponamento senza rpetzone (event condzonat) COEFFICIENTE BINOMIALE In quant modo posso estrarre n blocco (senza rmessa) element da un nseme d n element? Combnazon d n element pres alla volta dove n n! = ( n )!! ( ) ( ) n! = n n 1 n Propretà: n n n n 0! = 1, = 1, = n, = 0 1 n

9 ESEMPIO: COEFFICIENTE BINOMIALE Nell aula ogg c sono 20 student: 10 d SPO, 7 d SAM e 3 d SIE. Decdo d chamare alla lavagna 3 student. 1. Quante sono le possbl combnazon? 2. Qual è la probabltà che sano tutt d SPO? 3. Se ne chamo 1 per corso d laurea, quante sono le possbl combnazon? 4. Qual è la probabltà che sano uno per ognuno de tre cors d laurea? 20 1) = ) = = che è uguale a ) = ) = = che è uguale a 3! SAM,SPO,SIE; SAM, SIE,SPO; SPO,SAM,SIE; SPO,SIE,SAM; SIE,SPO,SAM; SIE,SAM,SPO ESERCIZIO: ESTRAZIONE SENZA RIMESSA Da un urna contenente 15 pallne (5 rosse, 5 verd e 5 blu), se ne estraggono 2 senza remmssone; calcolare la probabltà che queste sano dello stesso colore. Soluzone: N=15 5 rosse; 5 verd; 5 blu n=2 (senza remmssone) Trattandos d estrazon senza remmssone non v è l ndpendenza delle prove, nfatt la composzone dell urna s modfca ad ogn estrazone. Inoltre vene chesta la probabltà che s estraggano due pallne dello stesso colore e non d un colore partcolare. S fa osservare che nell urna v sono pallne d tre color dfferent present n par numero (5 rosse; 5 verd; 5 blu), pertanto la probabltà cercata sarà data dalla seguente espressone: 5 4 Pr{ 2 dello stesso colore } = 3 =

10 PRINCIPIO DELLE PROBABILITA TOTALI Se A, A,..., A sono una partzone d Ω ed E è un qualsas altro evento 1 2 = = 1 ( ) ( ) PE ( ) P E A P A Se s conoscono le probabltà degl event d una partzone (a pror) e s conoscono le Se probabltà s conoscono condzonate le probabltà del verfcars degl event d un d qualsas una partzone altro evento (a pror) agl e event s conoscono della le probabltà partzone, condzonate s è sempre n del grado verfcars d calcolare d un qualsas la probabltà altro evento dell evento agl event stesso della partzone, s è sempre n grado d calcolare la probabltà dell evento stesso event A, A,..., A sono una partzone se e solo se 1 2 Partzone d W U A = Ω e scelt a caso due event A e A allora A A = j j FORMULA DI BAYES Se A, A,..., A sono una partzone d Ω ed E è un qualsas altro evento 1 2 P( A E) = = 1 ( ) ( ) P E A P A ( ) ( ) P E A P A Se s sa che s è verfcato l evento E s è n grado d calcolare la probabltà Se s sa che s è verfcato l evento E s è n grado d calcolare la probabltà che s sa verfcato l evento A che s sa verfcato l evento. Dato l effetto è possble calcolare la A. Dato l effetto è possble calcolare la probabltà della causa che lo ha generato (probabltà a posteror). E come probabltà della causa che lo ha generato (probabltà a posteror). E come se le conoscenze a pror su A se le conoscenze a pror su a seguto del verfcars dell evento E A a seguto del verfcars dell evento E venssero aggornate venssero aggornate La probabltà a pror P(A La probabltà a pror P(A ) dventa una probabltà a posteror P(A ) dventa una probabltà a posteror P(A E) E)

11 ESEMPIO ESEMPIO N cubett esamnat N cubett dfettos P(A) P(E A) IMPIANTO A A IMPIANTO B A IMPIANTO C A a) Probabltà total P(E) = P(E A1)P(A1) + P(E A2)P(A2) + P(E A3)P(A3) = 0.04 b) Formula d Bayes P(A1 E) = [P(E A1)P(A1)]/P(E) = 0.18

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabltà pr - 1 Che collegamento c è tra gl strument statstc per lo studo de fenomen real e l calcolo delle probabltà? Vedremo che non sempre la conoscenza delle caratterstche d un fenomeno

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità pr - 1 Che collegamento c è tra gli strumenti statistici per lo studio dei fenomeni reali e il calcolo delle probabilità? Vedremo che non sempre la conoscenza delle caratteristiche

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Esercizi di econometria: serie 1

Esercizi di econometria: serie 1 Esercz d econometra: sere Eserczo E data la popolazone dell Abruzzo classcata n se categore d reddto ed n tre class d età come segue: Reddto: () L... 4.. () L. 4.. 8.. () L. 8.... (4) L..... () L.....

Dettagli

RISOLUZIONE ESERCIZI SULLA PROBABILITA. E, pertanto

RISOLUZIONE ESERCIZI SULLA PROBABILITA. E, pertanto RISOLUZIO SRIZI SULLA PROBABILITA PROBABILITA LASSIA ) a) I cas possbl sono 0, mentre quell faoreol sono ; ; 0 b) cas faoreol sono 0, 0 ; 0 cas faoreol sono, ; 0 0 0 0 0 P. 0 0 ) 0 pallne, 0B, V, R, 0G

Dettagli

ESERCIZI SULLE VARIABILI CASUALI DISCRETE

ESERCIZI SULLE VARIABILI CASUALI DISCRETE ESERCIZI SULLE VARIABILI CASUALI DISCRETE 1) S lanca un dado. Rappresentare la varable casuale: X = " facca mnore d tre ". 2) S lancano due dad. Rappresentare la varable casuale: X = "somma delle facce

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

Esercitazione 1 del corso di Statistica 2

Esercitazione 1 del corso di Statistica 2 Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Dott.ssa Paola Costantini Esercizio n. 1 Estraendo due carte da un mazzo di carte napoletane con la reimmissione della carta nel mazzo

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

INDAGINE ESAUSTIVA O CAMPIONARIA?

INDAGINE ESAUSTIVA O CAMPIONARIA? INDAGINE ESAUSTIVA O CAMPIONARIA? S rcorre certamente all ndagne per campone quando la rlevazone completa è mpossble e quando la determnazone delle modaltà possedute dalle untà n esame ne comporta la dstruzone

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Statistica per le ricerche di mercato

Statistica per le ricerche di mercato Statstca per le rcerche d mercato a.a. 00/ Prof.ssa Tzana Lauret Prof. Luca Second Introduzone al concetto d probabltà nelle stratege azendal L azenda che vende artcol d abbglamento per govan può essere

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica. Probabilità e Statistica Esercitazioni a.a. 2009/200 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Estrazioni I Ines Campa Probabilità e Statistica - Esercitazioni -

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

La probabilità composta

La probabilità composta La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo. A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di

Dettagli

STATISTICA 1 ESERCITAZIONE 8

STATISTICA 1 ESERCITAZIONE 8 STATISTICA 1 ESERCITAZIONE 8 Dott. Giuseppe Pandolfo 18 Novembre 2013 CALCOLO DELLE PROBABILITA Elementi del calcolo delle probabilità: 1) Esperimento: fenomeno caratterizzato da incertezza 2) Evento:

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi. La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Probabilità esempi. Aiutiamoci con una rappresentazione grafica:

Probabilità esempi. Aiutiamoci con una rappresentazione grafica: Probabilità esempi Paolo e Francesca giocano a dadi. Paolo scommette che, lanciando due dadi, si otterrà come somma 8 oppure 9. Francesca scommette che si otterrà come somma un numero minore o uguale a

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

LAVORO ESTIVO 4CO1 / 4 CO2

LAVORO ESTIVO 4CO1 / 4 CO2 LVORO ESTIVO CO / CO LE EQUZIONI ESPONENZILI 7 7 7 LE DISEQUZIONI ESPONENZILI 7 LE EQUZIONI LOGRITMICHE [ ] [ ] log log log log log log log log log ln ln ln ln ln ln log log log LE DISEQUZIONI LOGRITMICHE

Dettagli

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti: Lezione 1 La Probabilità Scopo del Corso: Introduzione alla probabilità e alle procedure di inferenza statistica Introduzione ad alcune importanti tecniche di analisi multivariata dei dati Organizzazione

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

MODELLI PER GESTIONE E LA RICERCA DELL'INFORMAZIONE

MODELLI PER GESTIONE E LA RICERCA DELL'INFORMAZIONE MODLLI R GSTION LA RICRCA DLL'INFORMAZION Algortm d Apprendmento avanzato per l Informaton Retreval Alessandro Moschtt Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: moschtt@nfo.unroma2.t

Dettagli

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA

Dettagli

La probabilità matematica

La probabilità matematica 1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso d Fondament d Telecomuncazon Prof. Govann Schembra Struttura della lezone Defnzon d process aleator e caratterzzazone statstca ( Stma delle statstche d prmo e secondo ordne Process aleator stazonar

Dettagli

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

METODI DI MISURA LEZIONI DEL CORSO DI FISICA I E METODI DI MISURA. Enrico Ferrero

METODI DI MISURA LEZIONI DEL CORSO DI FISICA I E METODI DI MISURA. Enrico Ferrero METODI DI MISURA LEZIOI DEL CORSO DI FISICA I E METODI DI MISURA Enrco Ferrero ITRODUZIOE Error come ncertezze: non sono sbagl, sono nevtabl e devono essere rdott l pù possble. Inevtabltà degl error nella

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità

Dettagli

Capitolo Parte III

Capitolo Parte III Capitolo. Parte III Exercise.. Si mostri, con degli esempi, che entrambe le disuguaglianze P(A B) > P(A) e P(A B) < P(A) sono possibili. Solution.. Si consideri un qualsiasi spazio di probabilità (Ω,P)

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Università Roma Tre - Dipartimento di Matematica e Fisica 3 novembre 2016 Introduzione La probabilità nel linguaggio comune I E probabile

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

Probabilità delle cause:

Probabilità delle cause: Probabilità delle cause: Probabilità condizionata 2 Teorema delle probabilità composte A B) A) B/A) 3 Teorema delle probabilità totali B )! 4 Teorema delle probabilità delle cause n i A! B ) A / B ) B

Dettagli

CALCOLO DELLE PROBABILITA

CALCOLO DELLE PROBABILITA CALCOLO DELLE PROBABILITA Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma Nella ricerca scientifica, così come nella vita, trionfa l incertezza Chi guiderà il prossimo governo? Quanto

Dettagli

1 Ingredienti base del CDP. 2 Denizioni classica e frequentista. 3 Denizione assiomatica. 4 La σ-algebra F. 5 Esiti equiprobabili

1 Ingredienti base del CDP. 2 Denizioni classica e frequentista. 3 Denizione assiomatica. 4 La σ-algebra F. 5 Esiti equiprobabili 1 Ingredienti base del CDP 2 Denizioni classica e frequentista 3 Denizione assiomatica 4 La σ-algebra F 5 Esiti equiprobabili 6 Esperimento casuale 7 Probabilità condizionata Ingredienti base del CDP eventi

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

Statistica. Capitolo 4. Probabilità. Cap. 4-1

Statistica. Capitolo 4. Probabilità. Cap. 4-1 Statistica Capitolo 4 Probabilità Cap. 4-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare concetti e definizioni fondamentali della probabilità Usare il diagramma

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

L efficacia delle politiche nel modello IS-LM

L efficacia delle politiche nel modello IS-LM Corso d Poltca Economca Eserctazone n. 4 6 aprle 2017 L effcaca delle poltche nel modello IS-LM Dott. Walter Paternes Melon walter.paternes@unroma3.t POLITICA FISCALE ESPANSIVA - nel modello IS/LM una

Dettagli

( ) ( ) Ω={1,2,3,4,5,6} B B A Siano A e B due eventi di Ω: si definisce evento condizionato B A. Consideriamo il lancio di un dado:

( ) ( ) Ω={1,2,3,4,5,6} B B A Siano A e B due eventi di Ω: si definisce evento condizionato B A. Consideriamo il lancio di un dado: Eventi condizionati Quando si ha motivo di credere che il verificarsi di uno o più eventi sia subordinato al verificarsi di altri eventi, si è soliti distinguere tra eventi dipendenti(o condizionati )

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Tutorato 1 (20/12/2012) - Soluzioni

Tutorato 1 (20/12/2012) - Soluzioni Tutorato 1 (20/12/2012) - Soluzioni Esercizio 1 (v.c. fantasia) Si trovi il valore del parametro θ per cui la tabella seguente definisce la funzione di probabilità di una v.c. unidimensionale X. X 0 1

Dettagli

CALCOLO DELLE PROBABILITA' risultato non può essere previsto con certezza ogni risultato possibile di un esperimento

CALCOLO DELLE PROBABILITA' risultato non può essere previsto con certezza ogni risultato possibile di un esperimento CALCOLO DELLE PROBABILITA' Esperimento o prova Evento Spazio Campionario (Ω) una qualsiasi operazione il cui risultato non può essere previsto con certezza ogni risultato possibile di un esperimento insieme

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 03/12/2007 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 03/12/2007 Dott. Alfonso Piscitelli. Esercizio 1 Università di Cassino Corso di Statistica Esercitazione del 0/2/2007 Dott. Alfonso iscitelli Esercizio L urna A contiene palline rosse e nere, l urna B contiene 4 palline rosse e 6 nere. Calcolare: a)

Dettagli

Matematica con elementi di statistica ESERCIZI: probabilità

Matematica con elementi di statistica ESERCIZI: probabilità Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria ALGEBRA IL CALCOLO DELLE PROBABILITAÁ richiami della teoria n un evento E si dice casuale o aleatorio, quando il suo verificarsi dipende unicamente dal caso; n un evento si dice certo quando eá possibile

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

ANALISI DI TABELLE DI CONTINGENZA

ANALISI DI TABELLE DI CONTINGENZA ANALISI DI TABELLE DI CONTINGENZA 91 TABELLE DI CONTINGENZA Una tabella d contngenza è una tabella d frequenza a doppa entrata n cu vengono ncrocate due varabl qualtatve. Esempo SESSO INTERESSE PER STATISTICA

Dettagli

ESERCIZI SULLA PROBABILITA

ESERCIZI SULLA PROBABILITA PROBABILITA CLASSICA ESERCIZI SULLA PROBABILITA 1) Si estrae una carta da un mazzo di 40 carte ; calcolare la probabilità che la carta sia: a. una figura; b. una carta di danari; c. un asso. 2) Un urna

Dettagli

Probabilità Condizionale - 1

Probabilità Condizionale - 1 Probabilità Condizionale - 1 Come varia la probabilità al variare della conoscenza, ovvero delle informazioni in possesso di chi la calcola? ESEMPIO - Calcolare la probabilità che in una estrazione della

Dettagli

Segmentazione di immagini

Segmentazione di immagini Segmentazone d mmagn Introduzone Segmentazone: processo d partzonamento d un mmagne n regon dsgunte e omogenee. Esempo d segmentazone. Tratta da [] Introduzone (def. formale ( Sa R l ntera regone spazale

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

I simboli degli elementi di un circuito

I simboli degli elementi di un circuito I crcut elettrc Per mantenere attvo l flusso d carche all nterno d un conduttore, è necessaro che due estrem d un conduttore sano collegat tra loro n un crcuto elettrco. Le part prncpal d un crcuto elettrco

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 51 Introduzione Il Calcolo delle

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

CHE COS E LA COMPLESSITA

CHE COS E LA COMPLESSITA CHE COS E LA COMPLESSITA E un termne d moda, ambguo perché rcco d sgnfcat nterdscplnar, a volte mpropramente usato sa n campo scentfco, che nel lnguaggo colloquale, gornalstco e d costume Inter centr d

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4. CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli