Meccanica applicata alle macchine

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Meccanica applicata alle macchine"

Transcript

1 Meccanica alicata alle acchine Il sistea eccanico iotato in figa é costitito a n otoe elettico, a n tilizzatoe con l'inteosizione i na tasissione Il otoe eoga na coia costante al vaiae ella velocità ente l'tilizzatoe esenta na coia che vaia lineaente col vaiae ella velocità i otazione secono l'esessione: Note le caatteistiche ella tasissione e i oenti 'inezia el otoe e tilizzatoe eteinae: 1 l'acceleazione angolae ell'albeo otoe allo snto; la velocità angolae ell'albeo otoe in conizione i egie; Soneno i scollegae istantaneaente il otoe alla ete elettica eteinae: 3 la eceleazione el sistea all'istante iniziale; 4 la legge i oto ante il tansitoio i feata; 5 il teo i aesto el sistea M U Dati: 4 N [ N a / s] g 1 g Deteinazione ell'acceleazione el sistea allo snto Lo stio el cootaento inaico el sistea, ante il tansitoio i avviaento, ò essee eteinato alicano l'eqazione i bilancio enegetico all inteo sistea In aticolae viene tilizzata l eqazione i bilancio enegetico nella foa: i ove in logo ella eivata teoale ell enegia cinetica si consiea la otenza elle azioni inezia: E i t Nello schea iotato in figa e evienziae coettaente la coia otice agente sll'albeo otoe è stata asotata la ate statoica el otoe In tal oo la coia (eqivesa alla velocità angolae alicata all'albeo otoe aesenta l'azione esecitata allo statoe el otoe sl coisonente albeo Pe il inciio i azione e eazione sllo statoe agisce na coia i ai entità a con veso oosto così coe iotato in figa Analogaente sll albeo tilizzatoe viene evienziata la coia (con veso oosto a che la sttta fissa ell tilizzatoe esecita sl isettivo albeo asissioni - 1 ag 1 gennaio 17, 6

2 Meccanica alicata alle acchine Esseno in fase i avviaento la velocità e l acceleazione angolae sono eqivese e etanto vengono intootte le coie 'inezia el otoe i e ell'tilizzatoe i i i Qeste coie 'inezia i e i sono alicate agli albei otoe e tilizzatoe a non esseno elle effettive coie non è valiio e loo il inciio i azione e eazione alcolo ella otenza elle azioni 'inezia i i i sostiteno le esessioni elle azioni 'inezia e eslicitano i ootti scalai si ottiene: i oe si ò ossevae la otenza elle coie inezia, ante la fase i avviaento è negativa: i oenti 'inezia, ante la fase i acceleazione assobono otenza, acclano enegia sotto foa i enegia cinetica alcolo ella otenza otice alcolo ella otenza esistente alcolo ella otenza esa nella tasissione oe noto l esessione ella otenza esa nel ittoe ha la foa: (1 oe (1 ELM ELU a secono che il flsso i otenza enti nel ittoe al lato otoe (oto ietto o al lato tilizzatoe (oto etogao oe si ò ossevae, nel sottosistea a valle ella tasissione, abbiao e coie che assobono entabi otenza: la coia ell'tilizzatoe e la sa coia 'inezia i Si ò etanto affeae che necessaiaente il flsso i otenza eve tansitae nel ittoe al lato otoe al lato tilizzatoe in conizioni i oto ietto La otenza issiata nella tasissione è fonita alla elazione: (1 asissioni - 1 ag gennaio 17, 6

3 Meccanica alicata alle acchine ove la soatoia elle otenze é estesa a ttte le coie agenti sll'albeo otoe ia ell'ingesso nella tasissione (1 ( (1 ( Soano i vai teini si ottiene: consieano la elazione: i Allo snto la coia esistente é nlla e etanto: Un etoo altenativo e scivee qesta eqazione i bilancio enegetico consiste nel tacciae lo schea el flsso i otenza ei vai coonenti el sistea così coe illstato nella segente figa M U - ( - oe si ò notae il otoe ette a isosizione la otenza i qesta na ate, ante il tansitoio i avviaento viene assobita al oento inezia el otoe La otenza entante nel ittoe è la soa algebica elle e qantità Di tale qantità solo la fazione esce al ittoe, na ate viene assobita all tilizzatoe e la estante ate al oento inezia ell tilizzatoe La otenza entante nella tasissione asse l'esessione: E ente la otenza scente alla tasissione: ( U E Infine soano algebicaente alla otenza scente alla tasissione le otenze assobite all'tilizzatoe e al oento 'inezia ell'tilizzatoe si ottiene: ( La scitta el bilancio enegetico el sistea è ieiata: ( Qesto oo i iostae l eqazione i bilancio enegetico consente i coenee fisicaente il olo enegetico svolto ai coonenti el sistea eccanico asissioni - 1 ag 3 gennaio 17, 6

4 Meccanica alicata alle acchine L eqazione i bilancio enegetico consenteno i scivee iettaente na sola eqazione e il calcolo ell acceleazione el sistea aesenta la stategia iù efficace A scoi iattici viene eò esentata na solzione che tilizza le eqazioni i eqilibio inaico e il calcolo ell acceleazione In qesto caso eò é necessaio siviee il sistea in te sottosistei così coe iotato in figa: 1 sottosistea albeo otoe; tasissione; 3 sottosistea albeo tilizzatoe LM LM LU LU Gli albei el otoe e ell tilizzatoe sono stati isolati etteno in evienza le coie LM e LU che aesentano isettivaente le coie tocenti esecitate alla tasissione sgli albei otoe e tilizzatoe In tali schei sono state evienziate soltanto le coie tocenti agenti sgli albei e non le foze a essi alicate (e es azioni ei cscinetti Pe i e albei isolati é oa ossibile ioe le eqazioni i eqilibio inaico alla otazione: M LM AlbMot M LU AlbUti Pe la tasissione é necessaio alicae n bilancio enegetico e coelae le coie LM e LU : (1 E U E U E E U LM LU LM in qanto non conosceno il isositivo i collegaento fa l'albeo otoe l'albeo tilizzatoe non è ossibile alicae le eqazioni i eqilibio inaico Ricavano alla ia eqazione l'esessione i LM, alla secona LU e sostiteno nella teza eqazione si ottiene: LM LU ( ( Si ottiene in tal oo la stessa esessione icavata eceenteente oe è ossibile ossevae al isegno la tasissione esecita n'azione fenante sll'albeo otoe ente esecita n'azione otice sll'albeo tilizzatoe LU Deteinazione ella velocità angolae in conizioni i egie asissioni - 1 ag 4 gennaio 17, 6

5 Meccanica alicata alle acchine Nelle conizioni i egie le azioni i inezia sono nlle, abbiao etanto na sola coia agente sll'albeo otoe e na sll'albeo tilizzatoe isettivaente: la coia otice e la coia ell'tilizzatoe La otenza eccanica etanto tansita nella tasissione al lato otoe al lato tilizzatoe (oto ietto Alichiao l'eqazione i eqilibio inaico al sistea: E c i t Svilano i vai teini otteniao: (1 e (1 ( (1 Eslicitano la ienenza ella coia ell'tilizzatoe alla velocità i otazione abbiao: he aesentano la velocità angolae a egie ell'albeo otoe e tilizzatoe Sciveno l eqazione i bilancio enegetico eiante il flsso i otenza ossiao fae ifeiento al segente schea: M U etanto l eqazione iviene: 3 alcolo ella eceleazione all'istante iniziale ante la feata Dante il tansitoio i feata l acceleazione el sistea ha veso oosto a qello ella velocità i otazione ne sege che le coie 'inezia: asissioni - 1 ag 5 gennaio 17, 6

6 Meccanica alicata alle acchine i v e i v iventano otici, ilasciano l enegia eccanica assobita ante il tansitoio i avviaento e acclata sotto foa i enegia cinetica: 1 E e 1 E Sll'albeo otoe agisce la coia 'inezia i (otice, ente sll'albeo tilizzatoe agiscono e coie: la coia e la coia i isettivaente esistenti e otice Ne sege etanto che il flsso i otenza tansita nella tasissione al lato otoe al lato tilizzatoe (oto ietto Alichiao l'eqazione i eqilibio inaico al sistea: i Svilano i vai teini otteniao: i e (1 ( (1 (1 i i i Oinano i vai teini si ottiene: ( La assia eceleazione si veifica nell'istante in ci viene tolta la coia otice, ateno alle conizioni i egie, istante in ci è assio il valoe ella coia esistente Dante il tansitoio i feata ecesce la velocità e coisonenteente iinisce l entità ella coia esistente ax ( Utilizzano il iagaa el flsso i otenza e scivee l eqazione i bilancio enegetico abbiao: asissioni - 1 ag 6 gennaio 17, 6

7 Meccanica alicata alle acchine M U La otenza entante nella tasissione asse l'esessione: E ente la otenza scente alla tasissione: U E Infine soano algebicaente alla otenza scente alla tasissione le otenze all'tilizzatoe e el oento 'inezia ell'tilizzatoe si ottiene: 4 alcolo ella legge i oto ante il tansitoio i feata Dante il tansitoio i feata i oenti inezia ilasciano l'enegia acclata che viene assobita in ate alla coia ell'tilizzatoe e in ate issiata nel ittoe oe si ò ossevae all esessione: ( ( la eceleazione ante il tansitoio i feata iinisce, in olo, oozionalente alla velocità i otazione Pe eteinae analiticaente la legge i oto el sistea ante il tansitoio i feata, è assoltaente necessaio assee la sessa convenzione i segno e consieae il veso ell'acceleazione e ella velocità onsegenteente l acceleazione asseà segno negativo e cioè eceleazione onsieano il segente schea: Ovviaente ci toviao in conizioni i oto ietto e qini l eqazione i oto, con qeste convenzioni i segno, asse la foa: ( svolgeno i ootti scalai in base alle convenzioni aottate: ( Seaano le vaiabili otteniao: asissioni - 1 ag 7 gennaio 17, 6

8 Meccanica alicata alle acchine t t Integano: t lg t ex t ( on le conizioni iniziali ( : t ex t ( asissioni - 1 ag 8 gennaio 17, 6

M A C C H I N E A F L U I D O

M A C C H I N E A F L U I D O 1 M A C C I N E A F L U I D O MACCINA: è n sistea di organi fissi e obili vincolati gli ni agli altri da legai definiti cineaticaente e disposti in odo tale da copiere, ovendosi sotto l azione di forze

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

Determinazione della quota sul livello del mare del monte Etna

Determinazione della quota sul livello del mare del monte Etna Deterinazione ella quota sul livello el are el onte Etna a.s. 998/999 classe 5 oorinatore: Prof.. Epainona Preessa Per ottenere una isura i tutto rispetto, ci siao avvalsi ella consulenza e ella collaborazione

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

TRASMISSIONE DELLA POTENZA

TRASMISSIONE DELLA POTENZA TRASMISSIOE DELLA POTEZA (Distillazione verticale) Conoscenza del principio di fnzionaento dei principali sistei di trasissione e trasforazione del oto. Sapere effettare calcoli si principali sistei di

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte Gestione ell Inventaio. Politiche i gestione elle scote.. Moelli singolo punto, singolo pootto, omana eteministica costante Gli appovvigionamenti sono peioici e l obiettivo è minimizzae il costo meio nel

Dettagli

). Per i tre casi indicati sarà allora: 1: L L 2

). Per i tre casi indicati sarà allora: 1: L L 2 apitolo 0 Enegia potenziale elettica Domane. Il lavoo pe spostae una caica ta ue punti è: L 0(! ). Pe i te casi inicati saà alloa: L (50! 00 ) (50 ) : 0 0 : L 0! 0 3: L 0! 0 [5 ( 5 )] (50 ) [ 0 ( 60 )]

Dettagli

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

Proporzionamento del pistone oleodinamico

Proporzionamento del pistone oleodinamico 0 Schede di Imianti Navali Poozionamento del istone oleodinamico ve 1. cua di Tommaso Coola e anco Quaanta 1 Poozionamento del istone oleodinamico vesione: 1. file oiginale: Poozionamento del istone oleodinamico

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2006/2007 Prova scritta del 17 gennaio 2007

FISICA per SCIENZE BIOLOGICHE, A.A. 2006/2007 Prova scritta del 17 gennaio 2007 FISI pe SINZ IOLOGIH,.. 6/7 Pova scitta el 7 gennaio 7 ) Una olla i costante elastica k 3 N/ è posta su un piano oizzontale scabo, con coefficiente i attito inaico µ.. lla olla, inizialente copessa i un

Dettagli

5. CAMBIO. 5.1. descrizione

5. CAMBIO. 5.1. descrizione ambio powe - shift 5. AMBIO 5.. descizione Tattasi di cambio meccanico a te velocità avanti e te velocità indieto, ealizzate mediante cinque iduttoi epicicloidali vaiamente collegati ta loo. Tutte le cinque

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

La sezione della struttura interna di un attuatore (motore) a passo a riluttanza variabile (VR), a tre. avvolgimento. fase a.

La sezione della struttura interna di un attuatore (motore) a passo a riluttanza variabile (VR), a tre. avvolgimento. fase a. Azionaenti Elettici I 005 MZigliotto I6 Azionaenti con otoe a ao In queto caitolo i affontano i incii di funzionaento e i dettagli cotuttivi dei inciali attuatoi a ao Veà anche fonito un elice eeio di

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

4. FLUIDI AERIFORMI NEI CONDOTTI

4. FLUIDI AERIFORMI NEI CONDOTTI Politenio di oino Lauea a Distanza in Ingegneia Meania Coso di Mahine 4 FLUIDI AERIFORMI NEI CONDOI Nello studio delle ahine si one il oblea di deteinae la onfoazione dei ondotti in odo he il fluido subisa

Dettagli

SENSORI E TRASDUTTORI

SENSORI E TRASDUTTORI SENSOI E ASDUOI Ogni sistea di controllo atoatico dispone di sensori che rilevano le grandezze da controllare. Grandezza di inpt SENSOE Grandezza di otpt In olte applicazioni la grandezza fisica di inpt

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E.

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E. Univesità La Sapienza - Ingegneia Infomatica e Automatica Coso i Fisica Geneale: MOTI RELATIVI A. Bosco, F. Pettazzi e E. Fazio Consieiamo un punto mateiale P che si muove i moto abitaio all inteno i un

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO CINEMATICA DEL CORPO RIGIDO 5 Premettiamo una Definizione: si chiama atto i moto i un sistema materiale in un ato istante t, l insieme elle velocità i tutti i punti el sistema all istante t. E errato parlare

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia.

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia. Poblema fondamentale: deteminae il moto note le cause (foze) pe oa copi «puntifomi» Dinamica Se un copo non inteagisce con alti copi la sua velocità non cambia. Se inizialmente femo imane in quiete, se

Dettagli

ALBERI, PERNI E CUSCINETTI RADENTI

ALBERI, PERNI E CUSCINETTI RADENTI PAG. 1 ASSI E ALBERI ALBERI, PERNI E CUSCINETTI RAENTI ALBERO: ogano utiizzato e a tamiione ietta e moto otatoio e i un momento tocente. ASSE: ogano che otiene, enza tamiione i momento tocente, coi otanti

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli

PERCORSO SUI PRINCIPALI CONCETTI ECONOMICI IL COMPORTAMENTO DELL IMPRESA

PERCORSO SUI PRINCIPALI CONCETTI ECONOMICI IL COMPORTAMENTO DELL IMPRESA Coso i Micoeconomia - Daniele Checchi PERCORSO SUI PRINCIPAI CONCETTI ECONOMICI I COMPORTAMENTO DE IMPRESA Cos è un imesa? Nella teoia neoclassica è una aggegaione temoanea i soggetti ientici (anche se

Dettagli

I. Generalità, definizioni, classificazioni. MACCHINA A FLUIDO

I. Generalità, definizioni, classificazioni. MACCHINA A FLUIDO I. eneralità, definizioni, classificazioni. I.1 Definizioni rigardanti: macchine motrici ed operatrici e loro classificazione. Una macchina è n insieme di organi fissi e mobili, vincolati tra loro cinematicamente,

Dettagli

Studio di una funzione razionale fratta (autore Carlo Elce)

Studio di una funzione razionale fratta (autore Carlo Elce) Stuio i funzioni Carlo Elce 1 Stuio i una funzione razionale fratta (autore Carlo Elce) Per rappresentare graficamente una funzione reale i una variabile reale bisogna seguire i seguenti passi: Passo 1)

Dettagli

Criteri di dimensionamento per cilindri e servocilindri

Criteri di dimensionamento per cilindri e servocilindri www.atos.com Tabella -2/I Criteri i imensionamento per cilinri e servocilinri SWC Cyliners esigner SWC è un ottimo software per la progettazione veloce e efficace ei Cilinri e Servocilinri Atos, isponibile

Dettagli

Le reti di distribuzione degli impianti di riscaldamento

Le reti di distribuzione degli impianti di riscaldamento Corso di IMPIANTI TECNICI er l EDILIZIA Le reti di distribuione degli iianti di riscaldaento Prof. Paolo ZAZZINI Diartiento INGEO Università G. D Annunio Pescara.lft.unich.it Prof. Paolo ZAZZINI Diartiento

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2 Enegia cinetica di un copo igido in otazione z Copo igido con asse di otazione fisso (Z) 1 1 ogni eleento del copo ha la stessa velocità angolae K un eleento a distanza K dall asse di otazione ha velocità

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

Fluidodinamica Applicata. 3.3 Esercizio 2 (Bernoulli Il Tubo a U)

Fluidodinamica Applicata. 3.3 Esercizio 2 (Bernoulli Il Tubo a U) Poliecnico i Torino Flioinamica pplicaa 3.3 Esercizio (Bernolli Il Tbo a U) ESERCIZIO (Bernolli il bo a U ) Fig.5 Si consieri il sisema in figra, in ci n bo a U, i sezione, viene riempio con n volme i

Dettagli

Cariche in campo magnetico: Forza magnetica

Cariche in campo magnetico: Forza magnetica Lezione 18 Campo magnetico I Stoicamente, i geci sapevano che avvicinando un pezzo di magnetite a della limatua di feo questa lo attaeva. La magnetite ea il pimo esempio noto di magnete pemanente. Come

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

pdv + p ponendo v T v p

pdv + p ponendo v T v p Nel aso artiolare in i δl sia esresso in fnzione delle oordinate e, è er trasformazione internamente reersibile ari a : δl d laoro di ariazione di olme, essendo d d d esso si ò osì esrimere δl d d onendo

Dettagli

Investimento. 1 Scelte individuali. Micoreconomia classica

Investimento. 1 Scelte individuali. Micoreconomia classica Investimento L investimento è l aumento della dotazione di capitale fisico dell impesa. Viene effettuato pe aumentae la capacità poduttiva. ECONOMIA MONETARIA E FINANZIARIA (5) L investimento In queste

Dettagli

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione:

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione: oze di attito f N P Le foze di attito adente si geneano sulla supeficie di contatto di due copi e hanno la caatteistica di opposi sepe al oto elativo dei due copi. Le foze di attito adente non dipendono,

Dettagli

MECCANICA APPLICATA ALLE MACCHINE

MECCANICA APPLICATA ALLE MACCHINE ANNO AADEIO / Esecitzioni di EANIA ALIATA ALLE AHINE di olo ilnesi Esecitzioni di eccnic lict lle cchine Indice delle esecitzioni INDIE DELLE ESERITAZIONI INTRODUZIONE ALLE ESERITAZIONI 5. SISTEI DI RIFERIENTO

Dettagli

Rendite vitalizie. Matematica finanziaria seconda parte Prof. Massimo Angrisani a.a. 2012/2013

Rendite vitalizie. Matematica finanziaria seconda parte Prof. Massimo Angrisani a.a. 2012/2013 Rendite italizie Mateatica finanziaria seconda parte Prof. Massio Angrisani a.a. 2012/2013 1 Cos è na rendita italizia 2 Un indiido di età x si assicra, a partire da tale età, il pagaento di n iporto (rata)

Dettagli

Lezione 3 Controllo delle scorte. Simulazione della dinamica di un magazzino

Lezione 3 Controllo delle scorte. Simulazione della dinamica di un magazzino Lezione 3 Conollo delle scoe Simulazione della dinamica di un magazzino Conollo delle scoe ovveo gesione magazzini significa conollo degli aovvigionameni (aivi), a fone di acquisi; conollo della oduzione

Dettagli

Il progetto allo SLU per la flessione semplice e composta

Il progetto allo SLU per la flessione semplice e composta Il progetto allo SLU per la leione emplie e ompota Nomenlatura σ R h y.n. σ 0,8y b σ T /0 Ipotei i bae onervazione elle ezioni piane La eormazione in ogni punto ella ezione è proporzionale alla itanza

Dettagli

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili:

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Eserzo GAS IDEALI Dell osseo, sosto as deale o.4 ost, eole seodo lo osttto dalle seet trasorazo reersl: Coressoe sotera dallo stato ( 0.9 ar; 0.88 /) allo stato 2; trasorazoe soora da 2 a ( 2.5 ar); esasoe

Dettagli

I NUMERI DECIMALI A. Osserva il bruco: è formato da 10 parti. Colora l intero bruco, 1 bruco.

I NUMERI DECIMALI A. Osserva il bruco: è formato da 10 parti. Colora l intero bruco, 1 bruco. I NUMERI DECIMALI A.Osserva il brco: è formato a parti. Colora l intero brco, 1 brco. Hai colorato s parti el brco, ieci ecimi el brco, cioè 1 brco. Ne poi colorare meno i no? Prova! B.Colora 2/ el brco.

Dettagli

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione Appofondimento 7.5 - Alti tipi di coefficienti di coelazione Il coefficiente di coelazione tetacoico e policoico Nel 900 Peason si pose anche il poblema di come misuae la coelazione fa caatteistiche non

Dettagli

Urti tra due punti materiali

Urti tra due punti materiali Uti ta due punti ateiali URTO: eento isolato nel quale una foza elatiaente intensa agisce pe un tepo elatiaente bee su due o più copi in contatto ta loo isultato di un contatto fisico F F isultato di una

Dettagli

Problemi sul parallelogramma con le incognite

Problemi sul parallelogramma con le incognite Problemi sl parallelogramma con le incognite Qante altezze ha n parallelogramma Il concetto di altezza rimanda direttamente a qello della distanza di in pnto da na retta La distanza di n pnto da na retta

Dettagli

Il criterio media varianza. Ordinamenti totali e parziali

Il criterio media varianza. Ordinamenti totali e parziali Il citeio media vaianza Il citeio media vaianza è un alto esemio di odinamento aziale ta lotteie definito da a M b se la lotteia b domina la lotteia a se ha media sueioe e vaianza infeioe a b eσ a σ b

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap.9. Principi di funzionamento delle macchine a fluido

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap.9. Principi di funzionamento delle macchine a fluido Appnti ed Esercizi di Fisica Tecnica e Macchine Termiche Cap.9. Principi di fnzionamento delle macchine a flido Paolo Di Marco Versione 006.0 8.05.07. La presente dispensa è redatta ad esclsivo so didattico

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Stdi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli XI-XIII del testo Cladio Pacati a.a. 998 99 c Cladio Pacati ttti i diritti riservati. Il presente

Dettagli

NUMERO in SECONDA, addizioni e sottrazioni

NUMERO in SECONDA, addizioni e sottrazioni NUMERO in SECONDA, addizioni e sottrazioni Anna Dallai, Monica Falleri, Antonio Moro, 2013 Decina e abaco a scatole Se nel precedente anno non è stato introdotta la decina lavoriamo si raggrppamenti, diamo

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo;

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo; 1 Esercizio (tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa = 1.5 Kg è agganciato ad una olla di costante elastica k = 2 N/, di lunghezza a riposo = 50 c, fissata ad una parete verticale in x

Dettagli

5 PROPRIETÀ MAGNETICHE DEI MATERIALI

5 PROPRIETÀ MAGNETICHE DEI MATERIALI 5 PROPRETÀ AGNETCE DE ATERAL A seguito della scopeta di Østed dell azione agnetica podotta da un filo conduttoe pecoso da coente l ipotesi più natuale che olti fisici avanzaono pe spiegae questo effetto

Dettagli

CORSO DI PREPARAZIONE ALL ESAME DI STATO ANNO 2016

CORSO DI PREPARAZIONE ALL ESAME DI STATO ANNO 2016 CORSO DI PREPARAZIONE ALL ESAME DI STATO ANNO 2016 A tutti i tirocinanti dottori commercialisti ed esperti contabili Macerata, giovedì 21 gennaio 2016. Lunedì 15 febbraio 2015 inizierà a u a dell A.Fo.P

Dettagli

Struttura elettronica delle molecole. Teoria quantistica del legame chimico

Struttura elettronica delle molecole. Teoria quantistica del legame chimico Strttra elettronica delle molecole. Teoria qantistica del legame chimico Lo ione idrogeno molecolare H 2 + Eq. Schroedinger singolo elettrone La fnzione d onda φ b soddisfa na eqazione analoga. Gli atovalori

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

L'equazione di continuità

L'equazione di continuità L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t

Dettagli

I.T.I. Modesto PANETTI B A R I

I.T.I. Modesto PANETTI B A R I I.T.I. Modesto PAETTI B A R I Via Re David, 86-705 BARI 080-54.54. - Fa 080-54.64.3 Intranet http://0.0.0. - Internet http://www.itispanetti.it eail : BATF05000C@istruzione.it Introduzione Analisi statistica

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

ELETTROMAGNETI IBK Elettromagneti per l automazione flessibile

ELETTROMAGNETI IBK Elettromagneti per l automazione flessibile INDUCTIVE COMPONENTS I 0 I 0 IBK ELETTROMAGNETI IBK Elettomneti e l utomzione flessibile Ctloo eli elettomneti IBK e l zionmento ei sistemi oscillnti Eizione Mio 2004 www.eoitli.it/ootti/feee.tml Elettomneti

Dettagli

Grandezze cinematiche angolari (1)

Grandezze cinematiche angolari (1) Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza

Dettagli

GIUNTO SALDATO: ESEMPIO [EC3 Appendice J]

GIUNTO SALDATO: ESEMPIO [EC3 Appendice J] GIUNTO SALDATO: ESEPIO [EC3 Appenice J] (revisione..3) HE A h (mm) b (mm) tw (mm) 7 tf (mm) r (mm) 8 A (cm) 64,34 Iy (cm4) 54 Wy (cm3) 55, Wpl,y (cm3) 568,5 IPE 3 h (mm) 3 b (mm) 5 tw (mm) 7, tf (mm),7

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

Teoria normativa della politica economica

Teoria normativa della politica economica Teoria normativa della politica economica La teoria normativa si occpa di indicare il metodo e, di consegenza, le scelte che n atorità pbblica (policy maker) razionale dovrebbe assmere per persegire il

Dettagli

Collegamenti Albero-mozzo

Collegamenti Albero-mozzo Collegameni Albero-mozzo /11/01 Obieivo: Collegare assialmene ue organi (in moo fisso o mobile) al fine i rasmeere coia orcene e quini eviare che vi sia un moo roaorio relaivo Accoiameno i forma Faore

Dettagli

Particelle e Interazioni Fondamentali

Particelle e Interazioni Fondamentali Sylvie Braibant Giorgio Giacomelli Marizio Sprio Particelle e Interazioni Fonamentali Problemi e solzioni i problemi scelti Ottobre 2009 Springer 2 Avvertenza In qesto ocmento troverete proposti na serie

Dettagli

SIMULAZIONE - 22 APRILE 2015 - QUESITI

SIMULAZIONE - 22 APRILE 2015 - QUESITI www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,

Dettagli

INTRODUZIONE: IL CONTESTO DEI SISTEMI

INTRODUZIONE: IL CONTESTO DEI SISTEMI INTRODUZIONE: IL CONTESTO DEI SISTEMI Il mondo reale è per sa natra complesso e le organizzazioni mane lo sono in modo particolare. Per potere comprendere e gestire la realtà è indispensabile svilppare

Dettagli

Optima CG / Optivent CG. Soluzioni innovative a flusso laminare per sale operatorie

Optima CG / Optivent CG. Soluzioni innovative a flusso laminare per sale operatorie Optima CG / Optivent CG Solzioni innovative a flsso laminare per sale operatorie Optima CG / Optivent CG Solzioni innovative a flsso laminare per sale operatorie Applicazioni Clean Air Power Generation

Dettagli

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it Soenoide GRANDEZZE MAGNETICHE Pof. Chiizzi Maco www.eettone.atevista.og maco.chiizzi@ibeo.it PREMESSA La pesente dispensa ha come obiettivo queo di gaantie agi aievi de coso di Fisica de biennio, ad indiizzo

Dettagli

FORMULE 2 p 4 l formula diretta per calcolare il perimetro conoscendo il lato

FORMULE 2 p 4 l formula diretta per calcolare il perimetro conoscendo il lato Caratteristice ˆ Bˆ Cˆ Dˆ 90 ˆ Bˆ Cˆ Dˆ 60 B BC CD D C BD iagonale () IL QUDRTO lato (l) Ciascuna iagonale ivie il quarato in ue triangoli rettangoli uguali i cui cateti corrisponono ai lati el quarato

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2005/2006 Prova scritta del 20 Luglio 2006

FISICA per SCIENZE BIOLOGICHE, A.A. 2005/2006 Prova scritta del 20 Luglio 2006 FISI e SIENZE BIOLOGIHE,.. 005/006 Pova scitta del 0 Lulio 006 ) Un coo di assa M0 k scende luno un iano inclinato con un'inclinazione θ 45 0 ed un coeiciente di attito dinaico µ 0.5. L'altezza a cui si

Dettagli

Oggetto: TEMA D ESAME DÌ STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA LIBERA PROFESSIONE DÌ GEOMETRA SESSIONE 2008

Oggetto: TEMA D ESAME DÌ STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA LIBERA PROFESSIONE DÌ GEOMETRA SESSIONE 2008 Toino, novembe 2008 Gentile ofessionista Oggetto: TEMA D ESAME DÌ STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA LIBERA PROFESSIONE DÌ GEOMETRA SESSIONE 2008 E con molto iacee che aendiamo il testo del Tema

Dettagli

La magnetostatica. Le conoscenze sul magnetismo fino al 1820.

La magnetostatica. Le conoscenze sul magnetismo fino al 1820. Le conoscenze sul magnetismo fino al 1820. La magnetostatica Le nozioni appese acquisite nel coso dei secoli sui fenomeni magnetici fuono schematizzate elativamente tadi ispetto alle pime ossevazioni,

Dettagli

Generalità sulle macchine rotanti

Generalità sulle macchine rotanti Macchie elettiche ate Geealità ulle macchie otati Foza di Loetz U filo coduttoe immeo i u camo magetico B (i figua B ha diezioe ucete dal foglio) e ecoo da ua coete i iega i ua o ell alta diezioe a ecodo

Dettagli

Indice prodotti alta ed altissima resistenza

Indice prodotti alta ed altissima resistenza Inice prootti alta e altissia resistenza figura escrizione uni in iso pag. 30 120 ai esagonali alti con filetto etrico558744 30 120 ai esagonali ei con filetto etrico5588934 (4032)45 30 120 ai esagonali

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

Esercizi di dinamica 2

Esercizi di dinamica 2 Esercizi di dinaica ) Un corpo di assa.0 kg si trova su un piano orizzontae scabro. I coefficiente di attrito statico tra corpo e piano è s 0.8. I corpo è sottoposto a azione di una forza orizzontae 7.0

Dettagli

Quanti centesimi mancano per avere 1 unità se ho 30 centesimi?... E se ne ho 35?... E se ne ho 73?... 0,5 1,4 3,2 7,4 0,7 0,78 1,12 1,06

Quanti centesimi mancano per avere 1 unità se ho 30 centesimi?... E se ne ho 35?... E se ne ho 73?... 0,5 1,4 3,2 7,4 0,7 0,78 1,12 1,06 I NUMERI DECIMALI Calcolo rapido Rispondi alle segenti domande. Qanti decimi occorrono per fare 1 nità?... E mezza nità?... Qanti decimi mancano per avere 1 nità intera se ho 7 decimi?... E se ne ho 6?...

Dettagli

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A Esecizio 1 Esecizi di Statica Esecitazioni di Fisica LA pe ingegnei - A.A. 2004-2005 Un punto ateiale di assa = 0.1 kg (vedi FIG.1) é situato all esteitá di una sbaetta indefoabile di peso tascuabile e

Dettagli

Barriere paramassi rigide ed elastiche

Barriere paramassi rigide ed elastiche GeoStru Sotware www.geostru.com Barriere paramassi rigie e elastiche Le barriere paramassi a rete sono generalmente composte a una struttura intercettazione, a una struttura i sostegno, a una struttura

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 10 Settembre 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 10 Settembre 2010 ORSO DI LUR IN SINZ IOLOGIH ppello i FISI, Settebe Un copo i aa M 5 g poggia u un piano cabo inclinato i un angolo θ. a Deteinae il valoe el coefficiente μ i attito tatico che peette al copo i tae in euilibio;

Dettagli

Un modello di ricerca operativa per le scommesse sportive

Un modello di ricerca operativa per le scommesse sportive Un modello di iceca opeativa pe le commee potive Di Citiano Amellini citianoamellini@aliceit Supponiamo di dove giocae una ceta omma di denao (eempio euo ulla patita MILAN- JUVE Le quote SNAI ono quelle

Dettagli

Lezione 6. Livello e finanziamento del capitale produttivo

Lezione 6. Livello e finanziamento del capitale produttivo Lezione 6. Livello e finanziamento del caitale oduttivo Il fabbisogno di fondi delle imese coisonde all eccesso della sesa e investimenti isetto all autofinanziamento, integato dall accumulo di nuove attività

Dettagli

PARTE 6: GRAVITAZIONE

PARTE 6: GRAVITAZIONE vitzione - PRE 6: RVIZIONE 6. INRODUZIONE Newton conoscev divese cose cic il oto dei ineti: ln coie n obit ttono ll te di ggio R 60 R ; ttti i ineti coiono n oto di ivolzione ttono l sole s obite qsi cicoli;

Dettagli

k F A.A prova m A m B v o M A

k F A.A prova m A m B v o M A ISIC PPLICT.. 04-05 4 prova. Due corpi i assa =4g e =3g collegati solialente a una olla i costante elastica =0 3 N/ e i assa trascurabile, poggiano su i un piano orizzontale privo i attrito. Essi vengono

Dettagli

Esercizi di Fisica Generale Foglio 3. Forze

Esercizi di Fisica Generale Foglio 3. Forze 31.01.11 Esercizi di Fisica Generale Foglio 3. Forze 1. Un corpo di assa viene sospeso da una olla con costante elastica k, coe in figura (i). La olla si allunga di 0.1. Se ora due corpi identici di assa

Dettagli

Prima di affrontare lo studio degli impianti a gas è utile richiamare alcune nozioni della termodinamica dei

Prima di affrontare lo studio degli impianti a gas è utile richiamare alcune nozioni della termodinamica dei RIHIAMI DI ERMODINAMIA DEI GAS gas. Pia di affontae lo studio degli iianti a gas è utile iiaae alune nozioni della teodinaia dei i ouiao di gas assiilabili a gas efetti, in alte aole gas e soddisfano l

Dettagli

Ece srl. Accreditata alla formazione presso la Regione Marche con D.G.R. n 341/FOP. Novembre 2013. Società di Ingegneria

Ece srl. Accreditata alla formazione presso la Regione Marche con D.G.R. n 341/FOP. Novembre 2013. Società di Ingegneria Novembe 2013 Ece sl Società di Ingegneia SICUREZZA QUALITA AMBIENTE PROGETTAZIONI MISURAZIONI AGENTI FISICI CONSULENZA TECNICO-LEGALE Acceditata alla fomazione pesso la Regione Mache con D.G.R. n 341/FOP

Dettagli

[ ] ] = [ MLT 2. [ 3αx 2ˆ i 3αz 2 ˆ j 6αyz k ˆ ] = MLT 2. [ ] -[ 3αz 2 ˆ j ] = [ MLT 2 [ ] [ ] [ F] = [ N] = kg m s 2 [ ] = ML 1 T 2. [ ][ x 2.

[ ] ] = [ MLT 2. [ 3αx 2ˆ i 3αz 2 ˆ j 6αyz k ˆ ] = MLT 2. [ ] -[ 3αz 2 ˆ j ] = [ MLT 2 [ ] [ ] [ F] = [ N] = kg m s 2 [ ] = ML 1 T 2. [ ][ x 2. LVORO E ENERGI EX 1 Dato il campo di forze F α(3x ˆ i + 3z ˆ j + 6yz ˆ ): a) determinare le dimensioni di α; b) verificare se il campo è conservativo e calcolarne eventualmente l energia potenziale; c)

Dettagli