Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Espressione Dominio Identità Eq. determinata Eq. indeterminata Eq.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Espressione Dominio Identità Eq. determinata Eq. indeterminata Eq."

Transcript

1 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Equazioni e problemi di I grado Alunno: Classe: B prof. Mimmo Corrado. Completa la seguente tabella: Espressione Dominio Identità Eq. determinata Eq. indeterminata Eq. impossibile 2+2=4+2 R 2=2+ R 3 5=0 Z +=00 R 2+6=0 N 5= 5 R 2. Verifica se l espressione a lato è un identità: + =4 3. Data la formula: a= 2 b c k ricava la formula per determinare. 4. Risolvi le seguenti equazioni : 2 3= [ ] 3+3 [ 2 +5]=2++ [ ] = Risolvi le seguenti equazioni letterali : 9+9= = =0 ; 2 += 6. Una compagnia telefonica fa pagare un canone mensile di 0, e 8 centesimi per ogni minuto di conversazione. Un altra compagnia fa pagare un canone mensile di 5, e 6 centesimi per ogni minuto di conversazione. Quanti minuti si dovrebbe conversare in un mese, per pagare la stessa cifra sia con l una che con l altra compagnia? 7. In un trapezio la base minore è il doppio dell altezza e l altezza è la terza parte della base maggiore. Sapendo che il doppio della differenza delle basi è uguale all altezza aumentata di 2 m, calcola la sua area. 8. Alle ore 0:20, un treno parte da Milano in direzione di Roma, mentre un secondo treno parte da Roma in direzione di Milano. Alle 2:50 i due treni si incontrano a Firenze. Sapendo che il percorso Milano-Roma è di 507,5 km, che il primo treno viaggia ad una velocità media di 20 h superiore a quella del secondo e che prima di incontrarsi si fermano alle stazioni intermedie rispettivamente 30 minuti il primo treno e 5 minuti il secondo, determina le velocità dei due treni. Valutazione Esercizio Totale Punti Punti Voto ½ 4 4 ½ 5 5½ 6 6 ½ 7 7 ½ 8 8 ½ 9 0

2 . Completa la seguente tabella: Espressione Dominio Identità Eq. determinata Eq. indeterminata Eq. impossibile 2+2=4+2 R X X 2=2+ R X 3 5=0 Z X +=00 R X 2+6=0 N X 5= 5 R X 2. Verifica se l espressione a lato è una identità: + = =4 ; +2+2=4 ; 4=4. È un identità. 3. Data la formula: a= 2 b c k ricava la formula per determinare b. = 2 ; 2= 2 ; = 2 2 ; =2+2 ; = 2+2 ; =± Risolvi le seguenti equazioni : 2 3= ; 2 3= ; 3= 3++5 ; 2=8 ; =4. Verifica 2 4 3= ; 32 3= ; 29= [ 2 +5]=2++ ; =2+ + ; 9+2 5=2+ + ; 9 5= ; 2=4 ; 2= 4 ; = 7 Verifica [ 2+7+5]= ; 0 4 [ 9+5]=2 7 6 ; 40 [ 4]=2+42 ; 44= = 5 ; = +5 ; = +5 ; =+5 ; +6 =5+25 ; 5 0=5 ; 0= 5 ; = 2. Matematica 2

3 = ; = ; += ; = ; = ; = ; = ; = + ; + += ; = ;..: 0 + = ; Risolvi le seguenti equazioni letterali : += ; 9= 9 ; 9= 9 ; 9=0 ; è +3 3=0 ; =0 = 3 =3 0= 9. 0=0. 0= = 9 9 = = =0 Equazione = 3 =+3 Equazione indeterminata 0 3 Equazione determinata = Matematica 3

4 + + + = + + ; = ;..: =2+7 ; =2+7 ; 3=6 ; 3=0=0 ; è =0 0=6. 0 = 6 3 =2 = = 2 Equazione priva di significato - =0 Equazione 0 2 Equazione determinata = 2 + = ; 2 =0 ;..: 0..: 2 =0 ; 2+2=0 ; 2= 2 ; 2=0 ; è = 2 0=. 2 = 2 2 = 2 è..:. 2 2 h 2 2 ; 0 ;. 2 =0 Equazione priva di significato - = Equazione Equazione determinata = Una compagnia telefonica fa pagare un canone mensile di 0, e 8 centesimi per ogni minuto di conversazione. Un altra compagnia fa pagare un canone mensile di 5, e 6 centesimi per ogni minuto di conversazione. Quanti minuti si dovrebbe conversare in un mese, per pagare la stessa cifra sia con l una che con l altra compagnia? Indichiamo con il numero dei minuti di conversazione in un mese, con la limitazione >0. La prima compagnia fa pagare una somma data dalla seguente espressione: La seconda compagnia fa pagare una somma data dalla seguente espressione: Affinché si paghi la stessa somma deve essere: 8+000= Da cui: 8 6= ; 2=500 ; =250 Pertanto per pagare la stessa cifra sia con l una che con l altra compagnia, in un mese si dovrebbe conversare 250 minuti. [ 0 = 000 centesimi - 5 = 500 centesimi] Matematica 4

5 7. In un trapezio la base minore è il doppio dell altezza e l altezza è la terza parte della base maggiore. Sapendo che il doppio della differenza delle basi è uguale all altezza aumentata di 2 m, calcola la sua area. Indichiamo la base maggiore = h= e =2 = con la limitazione >0. Pertanto si ha: 2 =h+2 ; = 3 +2 ; = +2 ; 6 4=+36 ; =36 ; 3 Quindi: =36 = =24 h= 36 =2 3 è: = + 2 h= = Alle ore 0:20, un treno parte da Milano in direzione di Roma, mentre un secondo treno parte da Roma in direzione di Milano. Alle 2:50 i due treni si incontrano a Firenze. Sapendo che il percorso Milano-Roma è di 507,5 km, che il primo treno viaggia ad una velocità media di 20 h superiore a quella del secondo e che prima di incontrarsi si fermano alle stazioni intermedie rispettivamente 30 minuti il primo treno e 5 minuti il secondo, determina le velocità dei due treni. Indichiamo la velocità del secondo treno: = =+20 con la limitazione >0. Essendosi fermato 30 minuti, al momento dell incrocio, il primo treno ha viaggiato per 2 ore effettive. Il secondo treno invece, essendosi fermato 5 minuti, al momento dell incrocio, ha viaggiato per 2 ore e 5 minuti effettivi, che trasformato in forma decimale diventa: 2 5 =2 =2 0,25 =2,25. Nell istante in cui i due treni si incontrano, hanno percorso complessivamente l intero tragitto di 507,5. Cioè: + =507,5 ; + =507,5 ; ,25=507,5 ; ,25=507,5 ; 4,25=467,5 ; = 467,5 4,25 =0. Pertanto la velocità media del secondo treno è =0 h, mentre la velocità media del primo treno è =30 h. Matematica 5

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico ; 1; 1 1; 1; 2 1; 2; 2 3; 1; = = +1 +1

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico ; 1; 1 1; 1; 2 1; 2; 2 3; 1; = = +1 +1 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 01-013 Prova di Matematica : Sistemi lineari Alunno: Classe: C 4.11.01 prof. Mimmo Corrado 1. Fai un esempio di un sistema lineare di due equazioni

Dettagli

Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Numeri Interi e Razionali 3,45 : 1 2

Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Numeri Interi e Razionali 3,45 : 1 2 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 20-20 Prova di Matematica : Numeri Interi e Razionali Alunno: Classe: 1C 18..20 prof. Mimmo Corrado 1. Compila la tabella a lato 3 4 2 3 3 4 2. Rappresenta

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: C 8.0.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 7, 1, 65

Dettagli

2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0

2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2010-2011 Prova di Matematica : T. Pitagora T. Euclide Disequazioni Alunno: Classe: 2 C 14.04.2011 prof. Mimmo Corrado 1. Risolvi le seguenti disequazioni:

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 B

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 B Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: B 9.03.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 3, 1 4,

Dettagli

> ; >0 ; 2 >0 ; 2 <0 ; <0 , 2 7

> ; >0 ; 2 >0 ; 2 <0 ; <0 , 2 7 Esercizi per la prova scritta Disequazioni + Geometria 1 1. La disequazione > ha per soluzione: > ; >0 ; 2>0 ; 2 4+4 1+31 3

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1C 22.11.2012 prof. Mimmo Corrado 1. Dato l insieme universo U= x N x

Dettagli

Equazioni di 1 grado

Equazioni di 1 grado Equazioni di grado Consideriamo una bilancia e supponiamo che sia in equilibrio, cioè sui due piatti ci sia lo stesso peso come in figura 6 Kg Kg 5 Kg 3 Kg Se aggiungiamo o sottraiamo lo stesso peso su

Dettagli

Per risolvere un equazione letterale fratta occorre: 1. Scomporre in fattori i denominatori e calcolare il m.c.m.

Per risolvere un equazione letterale fratta occorre: 1. Scomporre in fattori i denominatori e calcolare il m.c.m. Equazioni letterali fratte di II grado Un equazione letterale fratta è un equazione fratta che contiene, oltre la lettera che rappresenta l incognita dell equazione, altre lettere, dette parametri, che

Dettagli

Soluzione. Soluzione. Soluzione. Soluzione

Soluzione. Soluzione. Soluzione. Soluzione SUCCESSIONI E PROGRESSIONI Esercizio 78.A, 5, 8,, 4, La differenza tra ogni termine e il suo precedente è sempre uguale a 3. Pertanto si tratta di una progressione aritmetica crescente di ragione 3. La

Dettagli

Matematica www.mimmocorrado.it 1

Matematica www.mimmocorrado.it 1 Equazioni letterali fratte di I grado Un equazione letterale fratta è un equazione fratta che contiene, oltre la lettera che rappresenta l incognita dell equazione, altre lettere, dette parametri, che

Dettagli

IDENTITÀ ED EQUAZIONI

IDENTITÀ ED EQUAZIONI IDENTITÀ ED EQUAZIONI Una identità è una eguaglianza tra due espressioni letterali che è verificata per qualsiasi valore attribuito alle lettere contenute nell espressione. Ad esempio le seguenti eguaglianze

Dettagli

! Fratte riconducibili a secondo grado (risolvi dopo aver individuato le condizioni di esistenza)

! Fratte riconducibili a secondo grado (risolvi dopo aver individuato le condizioni di esistenza) LICEO CLASSICO STATALE Vittorio Emanuele II di Jesi ANNO SCOLASTICO 2011/2012 LAVORO ESTIVO Materia di insegnamento Indirizzo Classe Matematica Liceo socio psico pedagogico Terza, sez. E / F Equazioni

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1B 23.11.2012 prof. Mimmo Corrado 1. Dati gli insiemi: = è = è " = è " = è " = è

Dettagli

Matematica - Sessione 1 / Servizi a.f. 2011/2012 Esame di Qualifica (II Livello Europeo) Terzo Anno

Matematica - Sessione 1 / Servizi a.f. 2011/2012 Esame di Qualifica (II Livello Europeo) Terzo Anno Id orso ata.. Nome e ognome Tipo prova omanda 1 Matematica - Sessione 1 / Servizi a.f. 2011/2012 Esame di Qualifica (II Livello Europeo) Terzo nno M010549 Un lavoratore prende 7,50 lorde all ora per 40

Dettagli

12. Qual è la soluzione dell'equazione 1 1

12. Qual è la soluzione dell'equazione 1 1 www.matematicamente.it Equazioni di grado Equazioni di primo grado Cognome e Nome: Classe: Data:. Qual è la soluzione dell'equazione x=6? x A. 6 6 x B. C. x=-6 D. x=6-. Qual è la soluzione dell'equazione

Dettagli

se d=0 Dimostrazione In una progressione aritmetica la differenza tra ogni termine e quello predente è uguale a d:

se d=0 Dimostrazione In una progressione aritmetica la differenza tra ogni termine e quello predente è uguale a d: Progressioni aritmetiche Progressioni Una progressione aritmetica è una successione numerica tale che la differenza tra ogni termine e il suo precedente è costante. Tale differenza costante è detta ragione,

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno colastico 00-0 PROA DI MATEMATICA cuola secondaria di II grado Classe... tudente... imulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Le equazioni di primo grado Definiamo prima di tutto cosa è una identità. Definizione : un identità è un uguaglianza, dove compaiono espressioni letterali, verificata per qualunque valore attribuito alle

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 ARITMETICA. 1) Risolvi le seguenti espressioni: Voto mate 2 quadr.

Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 ARITMETICA. 1) Risolvi le seguenti espressioni: Voto mate 2 quadr. Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 Nota bene: il numero di esercizi da svolgere dipende dal voto che hai avuto nella pagella del 2 quadrimestre in matematica, ed

Dettagli

DAL PROBLEMA ALL EQUAZIONE

DAL PROBLEMA ALL EQUAZIONE DAL PROBLEMA ALL EQUAZIONE Ecco un problema semplice, ma, per risolverlo, ci si deve pensare: È dato un rettangolo diviso in due rettangoli A e B. Il perimetro del rettangolo A è il triplo del perimetro

Dettagli

Disequazioni di 1 grado

Disequazioni di 1 grado Disequazioni di grado Disuguaglianze numeriche Esempio: < è una disuguaglianza numerica e si legge minore di Nota: posso anche scrivere ( maggiore di ) Esempio: (oppure < ) Proprietà delle disuguaglianze

Dettagli

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Informatica : Codifica delle informazioni Alunno: Classe: 1 C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Informatica : Codifica delle informazioni Alunno: Classe: 1 C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Informatica : Codifica delle informazioni Alunno: Classe: 1 C 12.01.2012 prof. Mimmo Corrado 1. Che cos è il codice ASCII 2. Che

Dettagli

Prepararsi alla Prova di matematica

Prepararsi alla Prova di matematica Scuola Media E. Fermi Prepararsi alla Prova di matematica Prove d esame di matematica Prof. Vincenzo Loseto 2013/ 2014 PROVA NUMERO 1 QUESITO 1 In un triangolo rettangolo la somma di un cateto e dell ipotenusa

Dettagli

LICEO SCIENTIFICO PROBLEMA 1

LICEO SCIENTIFICO PROBLEMA 1 www.matefilia.it LICEO SCIENTIFICO 2015 - PROBLEMA 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi

Dettagli

COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM

COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM COORDINAMENTO DI MATEMATICA COMPITI ESTIVI CLASSE PRIMA 1^ CAM E meglio non concentrare lo svolgimento degli esercizi in un solo periodo (inizio o fine delle vacanze) ma cercare di distribuire il lavoro

Dettagli

ITCS R. LUXEMBURG - BO AS 2010\2011. Compiti estivi classe prima su parti di programma svolto. semplificare le espressioni con i prodotti notevoli.

ITCS R. LUXEMBURG - BO AS 2010\2011. Compiti estivi classe prima su parti di programma svolto. semplificare le espressioni con i prodotti notevoli. ITCS LUXEMBURG - BO AS 00\0 Compiti estivi classe prima su parti di programma svolto ALGEBRA Monomi e polinomi: semplificare le espressioni con i prodotti notevoli. 9 A) a + b b a a + b ( ) a ( a + b)

Dettagli

CLASSE 1 M Costruzioni, ambiente e territorio A.S.2016/17

CLASSE 1 M Costruzioni, ambiente e territorio A.S.2016/17 CLASSE M Costruzioni, ambiente e territorio A.S./7 INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO DEVONO STUDIARE TUTTE LE UNITA DIATTICHE AFFRONTATE NEL CORSO DELL

Dettagli

1. Completa la seguente tabella: Espressione Dominio Identità Eq. determinata Eq. indeterminata Eq. impossibile 2 =1 Z

1. Completa la seguente tabella: Espressione Dominio Identità Eq. determinata Eq. indeterminata Eq. impossibile 2 =1 Z Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Matematica : Equazioni e problemi di I grado Alunno: Classe: 1 C 30.03.2012 prof. Mimmo Corrado 1. Completa la seguente tabella:

Dettagli

PROVA DI VERIFICA DI MATEMATICA TIP. A CLASSE PRIMA 1 QUADRIMESTRE A.S /13

PROVA DI VERIFICA DI MATEMATICA TIP. A CLASSE PRIMA 1 QUADRIMESTRE A.S /13 PROVA DI VERIFICA DI MATEMATICA TIP. A CLASSE PRIMA 1 QUADRIMESTRE A.S. 2012 /13 ARITMETICA 1. Calcola il valore delle seguenti espressioni = + 2. Risolvi il seguente problema: Una gara ciclistica prevede

Dettagli

L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA

L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA Le formule per il calcolo dell area delle principali figure della geometria piana sono indispensabili per poter proseguire con lo studio della geometria.

Dettagli

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo

ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo ESERCIZIARIO di MATEMATICA Per i Neo-Iscritti al primo anno ITAS TRENTIN Lonigo A cura del dipartimento di Matematica e Fisica Dell Istituto Anno 01-01 ESERCIZIARIO di MATEMATICA ITAS TRENTIN Lonigo INDICE

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

Sistema di due equazioni di primo grado in due incognite

Sistema di due equazioni di primo grado in due incognite Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore

Dettagli

DIPARTIMENTO DI MATEMATICA

DIPARTIMENTO DI MATEMATICA LICEO STATALE "DON G. FOGAZZARO" VICENZA DIPARTIMENTO DI MATEMATICA QUADERNO DI RIPASSO PER L ESTATE PER I NUOVI ISCRITTI ALLA CLASSE PRIMA Liceo Linguistico Liceo Scientifico opz. Scienze applicate Liceo

Dettagli

B. Se si prolunga la successione fino alla settima figura. Quanti triangolini sarebbero necessari per la settima figura?

B. Se si prolunga la successione fino alla settima figura. Quanti triangolini sarebbero necessari per la settima figura? BENCHMARK AVANZATO Gli studenti sanno organizzare informazioni, fare generalizzazioni, risolvere situazioni in problemi non do routine e tirare conclusioni giustificandole con i dati. Sanno applicare relazioni

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

SOLUZIONI. questa è l area della parte restante : è più grande o più piccola dell area del cerchio?

SOLUZIONI. questa è l area della parte restante : è più grande o più piccola dell area del cerchio? IV a GARA MATEMATICA CITTÀ DI PADOVA 15 aprile 1989 SOLUZIONI 1.- Indichiamo con l il lato del triangolo rettangolo isoscele : Area del triangolo = Area del cerchio inscritto = che si ottiene dalla doppia

Dettagli

B7. Problemi di primo grado

B7. Problemi di primo grado B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico

I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Anno Scolastico 2012/13 Disciplina: Matematica Classe: I Liceo classico (nuovo ordinamento) Docente: prof. Roberto Capone ALGEBRA I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Specifica dettagliata degli

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 2006

ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 2006 Scuola Specializzata per le Professioni Sanitarie e Sociali 69 Canobbio ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 006 Avvertenza: - in tutti gli esercizi i risultati devono essere corredati da calcoli

Dettagli

E ora qualche proporzione!

E ora qualche proporzione! CLASSE II B COMPITI PER LE VACANZE Come d accordo risolvi le espressioni ed i problemi con le frazioni del libro delle vacanze dello scorso anno; risolvi tante espressioni quante ti servono per un ripasso

Dettagli

1. L espressione. è uguale a A B C [*] D. Argomento: Numeri [potenze]

1. L espressione. è uguale a A B C [*] D. Argomento: Numeri [potenze] onferenza Nazionale dei Presidi delle Facoltà di Scienze Test di ingresso per i corsi di laurea scientifici nno ccademico 2008/09 Esempio pubblico di modulo di MTEMTI I SE. L espressione è uguale a 4 0

Dettagli

Buone Vacanze! Compiti per le vacanze. Classe II A

Buone Vacanze! Compiti per le vacanze. Classe II A Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti.

2. Completa scrivendo il numeratore o il denominatore mancante in modo da avere frazioni tutte equivalenti. Esercizi per le vacanze estive classe 2^C Svolgere nell ordine tutti gli esercizi indicati su fogli a quadretti con buchi. Gli esercizi andranno consegnati all insegnante al rientro dalle vacanze e saranno

Dettagli

Prova d esame 1999/2000. Quesito 1

Prova d esame 1999/2000. Quesito 1 Prova d esame 1999/2000 In un trapezio isoscele la somma delle lunghezze della base minore e dell altezza misura 38 cm e la base minore è i 7/12 dell altezza. Il solido generato dalla rotazione completa

Dettagli

ESAME di STATO Sessione suppletiva. Disegni a cura del prof. Cristiano DOMENICHELLI. Testi della prof. ssa Tiziana LA TORELLA

ESAME di STATO Sessione suppletiva. Disegni a cura del prof. Cristiano DOMENICHELLI. Testi della prof. ssa Tiziana LA TORELLA ESAME di STATO 2004 Sessione suppletiva Disegni a cura del prof. Cristiano DOMENICHELLI Testi della prof. ssa Tiziana LA TORELLA LICEO SCIENTIFICO GALILEO FERRARIS ESAME DI STATO DI LICEO SCIENTIFICO CORSO

Dettagli

Esercitazione di Matematica sui problemi di 1 o grado in una e in due incognite

Esercitazione di Matematica sui problemi di 1 o grado in una e in due incognite Esercitazione di Matematica sui problemi di 1 o grado in una e in due incognite 1. In un triangolo rettangolo isoscele l'ipotenusa e il perimetro misurano rispettivamente 0 cm e 50 cm calcolare l'altezza

Dettagli

ESERCIZI DI MATEMATICA PER LE FUTURE PRIME DEL LICEO SCIENTIFICO E DEL LICEO SCIENTIFICO CON OPZIONE SCIENZE APPLICATE

ESERCIZI DI MATEMATICA PER LE FUTURE PRIME DEL LICEO SCIENTIFICO E DEL LICEO SCIENTIFICO CON OPZIONE SCIENZE APPLICATE ESERCIZI DI MATEMATICA PER LE FUTURE PRIME DEL LICEO SCIENTIFICO E DEL LICEO SCIENTIFICO CON OPZIONE SCIENZE APPLICATE Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente

Dettagli

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi?

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi? Alunno/a Pag. Esercitazione Alunno/a in preparazione alla PROVA d ESAME Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera. Quale tra le seguenti proposizioni è FALSA? A. La somma di due numeri dispari

Dettagli

Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE

Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE Pagina di Matematica anno scolastico 00/0 II A COMPITI DELLE VACANZE - ARITMETICA -.Risolvi le seguenti espressioni sul foglio a protocollo. 0 0.. 0. 0. 0... 0. 0 0.... . 0. 0. Estrai le seguenti radici

Dettagli

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c ) Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =

Dettagli

AVVISO PER GLI STUDENTI CHE SI IMMATRICOLANO AI CORSI DI LAUREA NELL A.A. 2009/10

AVVISO PER GLI STUDENTI CHE SI IMMATRICOLANO AI CORSI DI LAUREA NELL A.A. 2009/10 . VVISO PER GLI STUENTI HE SI IMMTRIOLNO I ORSI I LURE NELL.. 2009/0 Gli studenti che si immatricolano ad un corso di laurea della Facoltà di Scienze Matematiche Fisiche e Naturali, dovranno sostenere

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018 ESECIZI DI MATEMATICA FINANZIAIA DIPATIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018 Esercizi 3 Piani di ammortamento Esercizio 1. Un prestito di 12000e viene rimborsato in 10 anni con rate mensili

Dettagli

1. Risolvi in R le seguenti disequazioni: 1.a) ( x ) ( x ) b) 2x. 1.e) 2x 1. 1.g)

1. Risolvi in R le seguenti disequazioni: 1.a) ( x ) ( x ) b) 2x. 1.e) 2x 1. 1.g) LICEO PEDAGOGICO-ARTISTICO GPascoli di Bolzano PROVA SCRITTA DI MATEMATICA-ALUNNI CON GIUDIZIO SOSPESO CLASSE a B /9/9- Tempo h Ogni risposta ai quesiti va opportunamente motivata (con calcoli, grafici,

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio Quesiti

Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio Quesiti Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio 2012 Quesiti 1. Paola ed Enrico Considerate tutti i numeri interi positivi fino a 2012 incluso: Paola calcola la

Dettagli

Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:

Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli: Successioni numeriche Successioni Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:. = Una successione è un insieme ordinato e infinito di numeri,

Dettagli

I SISTEMI DI EQUAZIONI DI PRIMO GRADO

I SISTEMI DI EQUAZIONI DI PRIMO GRADO I SISTEMI I EQUAZIONI I PRIMO GRAO Sistemi di primo grado con due o più equazioni in due o più incognite Numerici Letterali Interi Frazionari Interi Frazionari OBIETTIVI Le attività proposte in questa

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 004 005

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Matematica - Sessione 1 / Produzione Esame di Qualifica (II Livello Europeo) Terzo Anno

Matematica - Sessione 1 / Produzione Esame di Qualifica (II Livello Europeo) Terzo Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Produzione Esame di Qualifica (II Livello Europeo) Terzo nno a.f. 2011/2012 omanda 1 Osserva il seguente grafico: M010553 Fra le seguenti,

Dettagli

Simulazione della Prova Nazionale. Matematica

Simulazione della Prova Nazionale. Matematica VERSO LA PROVA nazionale scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 1 28 febbraio 2011 Scuola..................................................................................................................................................

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

Prof. Roberto BIANCO Scuola Media Santa Domenica Talao (CS), a.s

Prof. Roberto BIANCO Scuola Media Santa Domenica Talao (CS), a.s Prof. Roberto BIANCO Scuola Media Santa Domenica Talao (CS), a.s. 008-09 In queste pagine si vuole dare un aiuto agli alunni di terza media che intendono approfondire le applicazioni algebriche alla geometria

Dettagli

+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato

+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato Sistemi di equazioni SISTEMI LINEARI Un sistema di equazioni è un insieme di equazioni per le quali si cercano eventuali soluzioni comuni. +=7 =1 Ognuna delle due equazioni ha infinite soluzioni. La coppia

Dettagli

MATEMATICA PER LE VACANZE - Scuola Media Fiori - CLASSI 2^ - Cognome

MATEMATICA PER LE VACANZE - Scuola Media Fiori - CLASSI 2^ - Cognome MATEMATICA PER LE VACANZE - Scuola Media Fiori - CLASSI ^ - Cognome INDICAZIONI: 1 Scarica sul PC il file stampa le pagine e 3 incollale su di un quadernone apposito per i compiti delle vacanze ed eseguili,

Dettagli

3) Risolvi almeno due fra le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici.

3) Risolvi almeno due fra le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici. IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

(Prof.ssa Dessì Annalisa)

(Prof.ssa Dessì Annalisa) LICEO SCIENTIFICO PITAGORA - SELARGIUS CLASSE 1 SEZ. E - ANNO SCOLASTICO 2014 / 2015 PROGRAMMA DI MATEMATICA Libro di testo: Bergamini Barozzi Matematica multimediale.blu con tutor, vol. 1 Zanichelli L

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

=50 1. Lo spazio percorso in 15 è = =50 15 = =45000 =45.

=50 1. Lo spazio percorso in 15 è = =50 15 = =45000 =45. MOTO RETTILINEO UNIFORME Esercizi Problema 1 Un auto viaggia alla velocità di 50. Determinare la velocità in h e lo spazio percorso in 15 minuti. La trasformazione della velocità in h è : 50 1 50 1000

Dettagli

Nome: Classe: Data: Laboratorio Modelli lineari: funzioni, equazioni, sistemi e disequazioni SPAZIO IO PENSO Scheda di attività n.

Nome: Classe: Data: Laboratorio Modelli lineari: funzioni, equazioni, sistemi e disequazioni SPAZIO IO PENSO Scheda di attività n. Scheda di attività n.6: Sistemi lineari Obiettivi: avere il concetto di sistema costruire modelli utilizzando più equazioni/relazioni interpretare graficamente un sistema lineare 1) La festa tra amici

Dettagli

; ; 3+ 2; ; 9 ; 2 2 : 7; 4 ; 7

; ; 3+ 2; ; 9 ; 2 2 : 7; 4 ; 7 COMPITI PER LE VACANZE ESTIVE ARITMETICA-GEOMETRIA Anno scolastico 016/17 Classe D I seguenti esercizi vanno svolti su un apposito quaderno con l indicazione del capitolo e del numero dell esercizio, o

Dettagli

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo FISICA Serie 3: Cinematica del punto materiale II I liceo Le funzioni affini Una funzione f è detta una funzione del tempo se ad ogni istante t associa il valore di una grandezza fisica f a quell istante,

Dettagli

Esercizi sulle progressioni

Esercizi sulle progressioni Esercizi sulle progressioni Esercizio 1 Il perimetro di un trapezio è di 26 m. La somma della lunghezza dei lati minori è uguale a 7 m. Determinare le misure dei lati sapendo che sono progressione aritmetica.

Dettagli

. Ad una festa l'eta media e anni, l'eta media degli uomini e 5 anni e l'eta media delle donne e 5 anni. Qual e il rapporto fra il numero degli uomini

. Ad una festa l'eta media e anni, l'eta media degli uomini e 5 anni e l'eta media delle donne e 5 anni. Qual e il rapporto fra il numero degli uomini UNIONE MATEMATICA ITALIANA SCUOLA NORMALE SUPERIORE DI PISA Progetto Olimpiadi di Matematica 998 GARA di SECONDO LIVELLO 8 febbraio 998 ) Non sfogliare questo fascicoletto nche l'insegnante non ti dice

Dettagli

Problemi di secondo grado con argomento geometrico (aree e perimetri)

Problemi di secondo grado con argomento geometrico (aree e perimetri) Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la

Dettagli

Il presente documento è conforme all'originale contenuto negli archivi della Banca d'italia

Il presente documento è conforme all'originale contenuto negli archivi della Banca d'italia Il presente documento è conforme all'originale contenuto negli archivi della Banca d'italia Firmato digitalmente da Sede legale Via Nazionale, 91 - Casella Postale 2484-00100 Roma - Capitale versato Euro

Dettagli

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro

Dettagli

Acceleriamo o no Guida per l insegnante

Acceleriamo o no Guida per l insegnante Acceleriamo o no Guida per l insegnante Obiettivi educativi generali Compito di cristallizzazione - sa determinare in quale misura le sue capacità e i suoi interessi corrispondono ad alcune attività didattiche

Dettagli

ESERCITAZIONE 8 : FUNZIONI LINEARI

ESERCITAZIONE 8 : FUNZIONI LINEARI ESERCITAZIONE 8 : FUNZIONI LINEARI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 27 Novembre 2012 Le funzioni lineari

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

SIMULAZIONE - 10 DICEMBRE PROBLEMA 2: IL GHIACCIO

SIMULAZIONE - 10 DICEMBRE PROBLEMA 2: IL GHIACCIO www.matefilia.it SIMULAZIONE - 10 DICEMBRE 015 - PROBLEMA : IL GHIACCIO Il tuo liceo, nell'ambito dell'alternanza scuola lavoro, ha organizzato per gli studenti del quinto anno un attività presso lo stabilimento

Dettagli

Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI

Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI Affrontare un problema richiede spesso l'uso di alcuni strumenti algebrici: fra essi vi sono i sistemi di equazioni. Infatti,

Dettagli

Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco

Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco Compiti per le vacanze estive 06 II A-B MATEMATICA Borgofranco Svolgi i compiti sui quaderni di matematica e di geometria che già usi, un po per volta, non subito dopo il termine delle lezioni e neanche

Dettagli

Dall analisi del problema alla definizione dell algoritmo A. Ferrari

Dall analisi del problema alla definizione dell algoritmo A. Ferrari Dall analisi del problema alla definizione dell algoritmo A. Ferrari Problema Problema è un termine largamente utilizzato dai molti significati quasi sempre intuitivi Risolvere un problema Passaggio da

Dettagli

A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca

A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/6 Sessione suppletiva 014 A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato ai corsi sperimentali, il secondo ai corrispondenti corsi di ordinamento e ai

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +

Dettagli

MATEMATICA PER ECONOMIA, FINANZA E MANAGEMENT

MATEMATICA PER ECONOMIA, FINANZA E MANAGEMENT MATEMATICA PER ECONOMIA, FINANZA E MANAGEMENT Esercizi Applicazioni economiche. La domanda di un bene al variare del prezzo sia = 30 p, con 0 p 60 ; a) se la uantità offerta è = p 6, determinare il prezzo

Dettagli

COMPITI PER LE VACANZE ESTIVE

COMPITI PER LE VACANZE ESTIVE ISTITUTO SALESIANO «Beata Vergine di San Luca» via Jacopo della Quercia, 1-40128 BOLOGNA tel. 051/41.51.711 www.salesianibologna.net presideme.bolognabv@salesiani.it Il Preside Futura Classe: 3^C (a.s.

Dettagli

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA

Dettagli

Equazioni di secondo grado parametriche

Equazioni di secondo grado parametriche Equazioni di secondo grado parametriche Data un equazione parametrica di secondo grado, determinare per quali valori di k:. l equazione ha due soluzioni reali; Porre 0. da ora in poi, nei punti seguenti,

Dettagli