ESERCIZI DI TEORIA DEI SEGNALI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI DI TEORIA DEI SEGNALI"

Transcript

1 ESERCIZI DI EORIA DEI SEGNALI EX. 1 Si determini lo sviluppo in serie di Fourier del segnale cos[ m(t)] dove m(t) = m(t) = m(t k ) [ π 2 2π ] ( ) t t rect. EX. 2 Si siderino due segnali x 1 (t) e x 2 (t) a banda strettamente limitata e spettralmente separati. Gli spettri di ampiezza X 1 (f) e X 2 (f) hanno supporto pari a 2 khz e sono centrati su 3 khz e su f 0 > 8kHz, rispettivamente. rovare i valori di f 0 per i quali i due segnali y 1 (t) = x 1 (t) cos(2πf x t) e y 2 (t) = x 2 (t) cos(2πf x t), f x = 8kHz, non sono spettralmente separati. EX. 3 Calcolare le trasformate di Fourier dei segnali x 1 (t) = e t cos(2πf 0 t) e x 2 (t) = e t u(t) cos(2πf 0 t) e t u( t) cos(2πf 0 t). EX. 4 Si determini lo sviluppo in serie di Fourier del segnale x(t) = 2A x(t k ) t rect ( t ). EX. 5 Determinare la trasformata di Fourier dei segnali x 2 (t) = 1 2 ( ) t rect ( πt x 1 (t) = cos 2 ( t + /2 ) ( ) t rect. ) [ ( ) ] t rect ( ) t x 3 (t) = Λ sgn(t). ( t /2 ) + u(t ).

2 EX. 6 Dato il segnale ( ) ( ) t π/2 t 3π/2 x(t) = rect rect approssimarlo il segnale A sin(t), scegliendo A in modo che l errore quadratico medio sia minimo. ɛ = 1 2π 2π 0 [x(t) A sin(t)] 2 dt EX. 7 Determinare analiticamente il segnale z(t) dato dalla voluzione tra i segnali x(t) = e Kt u(t), K > 0 e y(t) = rect ( ) 2t. EX. 8 Valutare analiticamente la voluzione z(t) tra il segnale x(t) = e Kt u(t) (K > 0) ed il segnale y(t) = rect(t/ ). Determinare, poi, il valor medio, l energia e la potenza del segnale w(t) = z(t) u(t /2). EX. 9 Si determini lo sviluppo in serie di Fourier del segnale Dire in che senso verge la serie. x(t k ) ( ) t /2 x(t) = e αt rect, α > 0. EX. 10 Si siderino i segnali e x(t) = e Kt u(t), K > 0, y(t) = x(t) sin(βt), β > 0, πt dove denota l operazione di voluzione. Determinare la relazione tra K e β affinché l energia di y(t) sia pari alla metà dell energia di x(t).

3 EX. 11 Determinare lo sviluppo in serie di Fourier del segnale dove denota l operazione di voluzione. y(t) = rep [x 1 (t) x 2 (t)] EX. 12 Il segnale periodico y(t) di periodo è ottenuto dalla replicazione del segnale aperiodico x(t): Dimostrare che y(t) = rep [x(t)] = y(t) = x(t) x(t k ). δ(t k ) e ricavare, un procedimento alternativo a quello proposto sul testo, la relazione di campionamento in frequenza tra Y k e X(f). EX. 13 Si sideri il segnale x(t) = a(t) cos(2πf 0 t) dove a(t) è un segnale energia finita il cui spettro A(f) è nullo per f > F 0 /2. Si sideri, poi, il segnale y(t) il cui spettro Y (f) è legato allo spettro X(f) di x(t) dalla relazione Y (f) = X(f)U(f). Valutare y(t) in funzione di x(t). EX. 14 rovare la trasformata di Fourier del segnale y(t) = x(t) δ(t k ) x(t) = e t. EX. 15 Sviluppare in serie di Fourier il segnale y(t) = x(t k 2π) ( ) t π x(t) = t 2 rect. 2π EX. 16 rovare il segnale x(t) la cui trasformata di Fourier vale X(f) = cos(2πf)rect (2f).

4 EX. 17 Il segnale x(t) = Λ ( t τ ) è applicato in ingresso ad un limitatore caratteristica ingresso-uscita y(x) = xrect (2(x 0.25)) + u(x 0.5). Sviluppare in serie di Fourier il segale y(t) che si ottiene all uscita del limitatore. EX. 18 Valutare trasformata di Fourier del segnale ( ) ( ) t /2 t 3/2 x(t) = rect + 2rect + 3rect ( t 5/2 ). EX. 19 Si supponga di filtrare il segnale x(t k ) dove x(t) = rect(t/ 0 ) mediante un filtro LI avente risposta impulsiva h(t) = 2h RC (t) cos(2πf 0 t) dove h RC (t) = 1 τ e t τ u(t) Supponendo 0 = /4 e f 0 = 1/, determinare la costante di tempo del filtro in modo che l ampiezza della componente armonica a frequenza 2/ del segnale di uscita risulti pari a 1/10 dell ampiezza della componente fondamentale. EX. 20 Si sideri il sistema SLS avente risposta armonica H(f) = cos(2πf ) rect(f ) costante positiva. Determinare e rappresentare risposta in ampiezza e fase del sistema e stabilire è distorcente (in ampiezza e/o fase) nella banda ( B, B), B = 1/2. Si progetti, inoltre, un egualizzatore ideale per il sistema nella banda ( B, B). L egualizzatore ottenuto è fisicamente realizzabile? EX. 21 Il segnale x(t 2k )

5 ( ) t x(t) = Λ. ale segnale viene filtrato un filtro LI di risposta armonica H(f) = 1 j4πf 1 + j2πf ottenendo il segnale ỹ(t). Si determini la componente tinua e il rapporto tra l ampiezza della terza armonica e l ampiezza dell armonica fondamentale dei segnali x(t) e ỹ(t). EX. 22 Sia dato il segnale x(t) = x(t 2k ) [ ( ) ] ( ) t t Λ 1 rect 2 e sia ỹ(t) la risposta al segnale x(t) di un filtro ideale passabasso di guadagno unitario e banda monolatera B. Valutare la trasformata di Fourier di x(t) e determinare la banda B in modo che ỹ(t) sia un segnale sinusoidale di frequenza f 0 = 1/(2 ). EX. 23 Si sideri il segnale x(t) = V + cos(2πf 0 t) somma di una tensione tinua V e di un segnale interferente sinusoidale. Si vuole rimuovere l interferenza filtrando il segnale x(t) mediante un filtro SLS risposta impulaiva h(τ) = a 1 δ(τ) + a 2 δ(τ ). Nell ipotesi in cui f 0 = 1/2, determinare i valori di a 1 ed a 2 affinchè y(t) = V, ovvero si abbia la perfetta soppressione dell interferenza in uscita. EX. 24 Il sgenale periodico x(t) = x(t 2k ) [ ( ) ] ( ) 2t t 2Λ 1 rect viene filtrato un filtro passabasso avente risposta armonica ( ) f H(f) = rect e j2π f 4f 0 4f 0 dove f 0 = 1/. Determinare il segnale ỹ(t) in uscita al filtro.

6 EX. 25 Si sideri il segnale modulato y(t) = x(t) cos(2πf 1 t), dove x(t) è un segnale deterministico a banda (monolatera) limitata W = 1kHz e f 1 = 4W. Per traslare y(t) a frequenze più elevate, esso viene moltiplicato per cos(2πf 2 t), f 2 = 5W, ed il segnale risultante z(t) = y(t) cos(2πf 2 t) viene filtrato il filtro H(f) passaalto ideale, avente cioè risposta armonica H(f) = 1 rect( f 2B ) dove B è la frequenza di taglio. Rappresentare graficamente gli spettri dei segnali y(t) e z(t); determinare i valori di B in corrispondenza dei quali il segnale in uscita al filtro passaalto è w(t) = ax(t) cos [2π (f 1 + f 2) t], dove a è un fattore di scala inessenziale. EX. 26 Il segnale x(t) = x(t 2k ) [ ( ) ] t 2Λ 1 rect(t/2 ) è filtrato un filtro RC allo scopo di ottenere un segnale approssimativamente sinusoidale frequenza f 0 = 1/(2 ). Determinare la frequenza f 3 a - 3 db del filtro RC in modo che l ampiezza della prima componente sinusoidale a frequenza superiore ad f 0 del segnale filtrato sia pari ad 1/25 della fondamentale. EX. 27 Classificare, motivando brevemente le risposte, ciascuno dei sistemi sotto riportati sulla base delle loro proprietà (dispersività, invarianza temporale, linearità, causalità, stabilità). y(t) = 2 exp [x(t)] y(t) = x(t 2) x(1 t) y(t) = x(t) cos(2πt) y(t) = [x(t) + x(t )] u(t) y(t) = [x(t) x(t )] u [x(t)] EX. 28 Si sideri la cascata dei due sistemi definiti dai seguenti legami ingresso-uscita: S1: y 1 (t) = x 1 (t) cos(2πf 0 t + θ); S2: Y 2 (f) = X 2 (f)rect(f/2b). Il segnale in ingresso alla cascata sia x(t) = s(t) cos(2πf 0 t), s(t) segnale di energia passabasso banda monolatera B. Supponendo, f 0 B, determinare l energia del segnale y(t) all uscita della cascata S1 S2.

7 EX. 29 Classificare in base alle loro proprietà i sistemi a tempo tinuo individuati dalle seguenti relazioni ingresso/uscita y(t) = + 0 h(τ)x(t τ)dτ y(t) = + 0 h(τ)x 2 (t τ)dτ y(t) = + 0 h(τ)x 2 (t τ)dτ y(t) = dx(t)/dt y(t) = 1 2 x(t τ)dτ EX. 30 Si sideri la cascata di tre sistemi: S1 : y(t) = x(2t) S2 : h(t) = δ(t) δ(t 1) S3 : y(t) = x(t/2) Determinare il legame ingresso/uscita del sistema costituito dalla cascata S1-S2-S3 e stabilire se è lineare, tempo variante, stabile, dispersivo e causale. EX. 31 Sia z(t) = x(t) + cos(2πf 0 t) x(t) segnale passabasso trasformata di Fourier X(f) = rect(f/2b) e sia y(t) = z(t) h(t) dove h(t) è un filtro passabanda avente risposta armonica H(f) = rect [(f f 0 )/2B] + rect [(f + f 0 )/2B]. Determinare lo spettro di z(t) e rappresentarlo graficamente (si assuma per la rappresentazione f 0 B); determinare sotto quali dizioni per f 0 e B l uscita y(t) risulta proporzionale a x(t) cos(2πf 0 t), ovvero il sistema complessivo si comporta da modulatore di ampiezza. EX. 32 Siano x(t) un segnale periodico di periodo, g(x) = x 2 una nonlinearità senza memoria e H(f) un filtro ideale passabasso avente banda monolatera W = 1.5/ e guadagno unitario. Si assuma che tutti i segnali ed i sistemi siderati siano reali. Determinare l espressione del segnale z(t) = h(t) ỹ(t) dove ỹ(t) = g[ x(t)] e il simbolo denota la voluzione. EX. 33 Il segnale ( 1) k x(t 2k ) ( ) t x(t) = Λ

8 è posto in ingresso ad un filtro ideale passabasso di guadagno unitario e banda monolatera 1/. Determinare il segnale in uscita e valutarne la funzione di autocorrelazione. EX. 34 Si sideri il sistema SLS la cui uscita y(t) è legata all ingresso x(t) dalla relazione y(t) = x(t) + y(t ). Calcolare la risposta in frequenza del sistema; mostrare che se il segnale di ingresso x(t) è passabasso banda monolatera W 1/, il sistema si comporta, a meno di un termine costante X(0)/2, come la cascata di un integratore ideale e di un amplificatore ideale di guadagno 1/. EX. 35 Le funzioni che seguono sono candidate come possibili funzioni di autocorrelazione o funzioni di densità spettrale. Dire quali sono ammissibili e quali no. r(τ) = A 2 r(τ) = Λ(τ/ ) r(τ) = (1 + j)λ(τ/ ) r(τ) = Π(τ/ ) S(f) = Π(f/2B)e j2πt 0f S(f) = Π(f/2B) EX. 36 Si sideri il sistema non lineare senza memoria definito dalla relazione ingresso-uscita y(x) = e x. Nell ipotesi di sollecitare il sistema un segnale x(t) = A cos(2πf 0 t) e supponendo A 1 così da ritenere valida una approssimazione di g(x) al sedo ordine nell intorno dell origine, calcolare la distorsione di II armonica dell uscita (in funzione di A) e determinare il valore di A che garantisce una distorsione di seda armonica inferiore al 5%. Nota e x = + n=0 xn /n! EX. 37 Si sideri il sistema non lineare senza memoria definito dalla relazione ingresso-uscita y = g(x) = { x, x < A, 0, altrimenti. Nell ipotesi di sollecitare tale sistema un segnale x(t) = V 0 cos(2πf 0 t), determinare per quali valori di V 0 il segnale di ingresso non subisce. Inoltre, per V 0 = 2A, si calcolino i coefficienti di distorsione di seda, di terza armonica e di distorsione totale del segnale di uscita.

9 EX. 38 Per ciascuno dei seguenti segnali: 1. x 1 (t) = 2 + cos(7πt/ ) 2. x 2 (t) = sin(5πt/ ) + 3 cos(7πt/ ) 3. x 3 (t) = 2 cos(πt/ ) sin(3πt/ ) dire, giustificando brevemente il risultato, se, ed eventualmente in che modo, sono distorti nel passaggio attraverso il sistema SLS risposte in ampiezza e fase date da: A, f < 2/, H(f) = 2A ( 1 4 f ), 2/ f 4/, 0, f > 4/. { ( π H(f) = 8 )f, 2/ f 4/, 0, altrimenti.

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

Modulazioni di ampiezza

Modulazioni di ampiezza Modulazioni di ampiezza 1) Si consideri un segnale z(t) modulato in ampiezza con soppressione di portante dal segnale di informazione x(t): z(t) = Ax(t)cos(2πf 0 t) Il canale di comunicazione aggiunge

Dettagli

Formulario di Teoria dei Segnali 1

Formulario di Teoria dei Segnali 1 Formulario di eoria dei Segnali Parte : Segnali determinati his documentation was prepared with L A EX by Massimo Barbagallo formulario di teoria dei segnali Proprietà dei segnali determinati Energia,

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 13.06.2005. Tempo: 2.5 ore. È consentito l uso di libri ed appunti propri. y 1 (t) + + y(t) H(f) = 1 4

PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 13.06.2005. Tempo: 2.5 ore. È consentito l uso di libri ed appunti propri. y 1 (t) + + y(t) H(f) = 1 4 INFO (DF-M) PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 3.06.005. Tempo:.5 ore. È consentito l uso di libri ed appunti propri. ESERCIZIO (0 punti) x(t) g(x) z(t) H(f) H(f) y (t) + + y (t) y(t) H(f) = 4 ( e

Dettagli

Comunicazioni Elettriche anno accademico Esercitazione 1

Comunicazioni Elettriche anno accademico Esercitazione 1 Comunicazioni Elettriche anno accademico 003-004 Esercitazione Esercizio Un processo aleatorio a tempo discreto X(n) è definito nel seguente modo: Viene lanciata una moneta. Se il risultato è testa X(n)=

Dettagli

Esercizi svolti di Teoria dei Segnali

Esercizi svolti di Teoria dei Segnali Esercizi svolti di eoria dei Segnali Enrico Magli, Letizia Lo Presti, Gabriella Olmo, Gabriella Povero Versione. Prefazione A partire dall anno accademico 5/6 viene fornita agli studenti dei corsi di eoria

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005

Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005 Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005 Gli esercizi devono essere risolti solo sui fogli dei colori indicati Per esiti e soluzioni si veda il sito web del corso:

Dettagli

Comunicazione Elettriche L-A Identità ed equazioni

Comunicazione Elettriche L-A Identità ed equazioni Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla

Dettagli

6. Trasmissione Numerica in Banda Base

6. Trasmissione Numerica in Banda Base 1 INFO-COM Dpt. Dipartimento di Scienza e Tecnica dell Informazione e della Comunicazione Università degli Studi di Roma La Sapienza 6. Trasmissione Numerica in Banda Base TELECOMUNICAZIONI per Ingegneria

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base 1 8. Sistemi di Modulazione Numerica in banda-base Modulazione e Demodulazione numerica 2 sequenza numerica segnale analogico...0010111001... modulatore numerico x(t) sequenza numerica...0010011001...

Dettagli

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t).

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t). Cenni alla Modulazione di Ampiezza (AM) Nella modulazione di ampiezza, si trasmette il segnale v(t) = (V 0 + k I x(t)) cos (πf 0 t), dove x(t) è il segnale di informazione, con banda B, e f 0 è la frequenza

Dettagli

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003 SECONDO COMPIINO DI SEGNALI E SISEMI 3 Dicembre 003 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: vk) con a parametro

Dettagli

Corso di Tecniche di Trasmissione Esercizi sulla teoria dei processi stocastici

Corso di Tecniche di Trasmissione Esercizi sulla teoria dei processi stocastici Corso di Tecniche di Trasmissione Esercizi sulla teoria dei processi stocastici 21 aprile 24 Esercizio 1 Si consideri la variabile aleatoria: s = a x(t)dt, (1) in cui x(t) un processo stocastico stazionario

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 206-207 Banda di un segnale e filtri (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_05.pdf

Dettagli

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne PROCESSI CASUALI Fondamenti di segnali Fondamenti e trasmissione TLC Segnali deterministici Un segnale (t) si dice deterministico se è una funzione nota di t, cioè se ad un qualsiasi istante di tempo t

Dettagli

Concetti di base: segnali - Classificazione dei segnali -

Concetti di base: segnali - Classificazione dei segnali - Corso di Tecnologie per le Telecomunicazioni e sviluppo in serie di Fourier 1 - Classificazione dei segnali - Le forme d onda di interesse per le Telecomunicazioni possono essere sia una tensione v(t)

Dettagli

Paolo Gamba, Pietro Savazzi. Esercizi discussi e risolti di Comunicazioni elettriche

Paolo Gamba, Pietro Savazzi. Esercizi discussi e risolti di Comunicazioni elettriche Paolo Gamba, Pietro Savazzi Esercizi discussi e risolti di Comunicazioni elettriche Indice Prefazione vii 1 Problemi sui segnali deterministici e sui sistemi 1 1.1 Soluzione dei problemi.......................

Dettagli

2. Analisi in frequenza di segnali

2. Analisi in frequenza di segnali 2.1 Serie di Fourier 2. Analisi in frequenza di segnali Secondo il teorema di Fourier, una funzione periodica y(t) è sviluppabile in una serie costituita da un termine costante A 0 e da una somma di infinite

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

Sistemi LTI a Tempo Continuo

Sistemi LTI a Tempo Continuo Capitolo 3 Sistemi LTI a Tempo Continuo 3.1 Proprietà di Linearità e Tempo Invarianza 3.1.1 Linearità Si indichi con T [.] la trasormazione ingresso-uscita, o unzione di traserimento, di un sistema S 1,

Dettagli

9. Sistemi di Modulazione Numerica in banda traslata. Modulo TLC:TRASMISSIONI Modulazione numerica in banda traslata

9. Sistemi di Modulazione Numerica in banda traslata. Modulo TLC:TRASMISSIONI Modulazione numerica in banda traslata 1 9. Sistemi di Modulazione Numerica in banda traslata Modulazione QAM (analogica) 2 Modulazione QAM (Quadrature Amplitude Modulation; modulazione di ampiezza con portanti in quadratura) è un tipo di modulazione

Dettagli

Esercizi sul campionamento

Esercizi sul campionamento Capitolo 5 Esercizi sul campionamento 5.1 Esercizio 1 Dato il segnale x(t) = s(t) cos (2π 0 t) con s(t) a banda limitata s e supponendo di introdurre il segnale x(t) come ingresso di un sistema non lineare

Dettagli

ANALISI DI FOURIER. Segnali tempo continui:

ANALISI DI FOURIER. Segnali tempo continui: ANALISI DI FOURIER Segnali tempo continui: Segnali aperiodici Introduzione alla Trasformata Continua di - Derivazione intuitiva della TCF a partire dallo Sviluppo in Serie di - Spettro di ampiezza e fase

Dettagli

Esercizi di teoria dei segnali. Laura Dossi Arnaldo Spalvieri

Esercizi di teoria dei segnali. Laura Dossi Arnaldo Spalvieri Esercizi di teoria dei segnali Laura Dossi Arnaldo Spalvieri Gli autori desiderano ringraziare gli ingg. Fabio Marchisi e Raffaele Canavesi per il preziosissimo contributo alla stesura della dispensa.

Dettagli

Esercitazione ENS sulle finestre (22 Aprile 2008)

Esercitazione ENS sulle finestre (22 Aprile 2008) Esercitazione ENS sulle finestre ( Aprile 008) D. Donno Esercizio : Separazione di due segnali Si consideri un segnale z(t) somma di due segnali x(t) e y(t) reali e di potenza simile, ciascuno con semi

Dettagli

Obiettivi del corso. Esempi di sistemi di comunicazione. Classificazione dei segnali

Obiettivi del corso. Esempi di sistemi di comunicazione. Classificazione dei segnali Obiettivi del corso Obiettivi Acquisire i principali strumenti metodologici ed informatici per l analisi e l elaborazione dei segnali di comune impiego nelle applicazioni di telecomunicazioni e più in

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondamenti di segnali Fondamenti e trasmissione TLC Proprieta della () LINEARITA : la della combinazione lineare (somma pesata) di due segnali e uguale alla

Dettagli

CANALE STAZIONARIO CANALE TEMPO INVARIANTE

CANALE STAZIONARIO CANALE TEMPO INVARIANTE CANALE STAZIONARIO Si parla di un Canale Stazionario quando i fenomeni che avvengono possono essere modellati da processi casuali e le proprietà statistiche di tali processi sono indipendenti dal tempo.

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici eoria dei Segnali rasmissione binaria casuale; somma di processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it eoria dei Segnali rasmissione

Dettagli

ESERCIZI DI FONDAMENTI DI SEGNALI E TRASMISSIONE. per chi volesse verificare di averne una conoscenza adeguata

ESERCIZI DI FONDAMENTI DI SEGNALI E TRASMISSIONE. per chi volesse verificare di averne una conoscenza adeguata ESERCIZI DI FONDAMENTI DI SEGNALI E TRASMISSIONE Numeri complessi per chi volesse verificare di averne una conoscenza adeguata 1. Siano A = 1 + 2j e B = 3 exp(jπ/4). Si calcoli A B utilizzando per A e

Dettagli

ANALISI DI FOURIER. Segnali a tempo continuo:

ANALISI DI FOURIER. Segnali a tempo continuo: ANALISI DI OURIER Segnali a tempo continuo: Segnali aperiodici Segnali periodici Introduzione alla Trasformata Continua di ourier - Derivazione intuitiva della TC a partire dallo Sviluppo in Serie di ourier

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

Segnali e Sistemi Laboratorio Matlab

Segnali e Sistemi Laboratorio Matlab Segnali e Sistemi Laboratorio Matlab Irene Pappalardo irene.pappalardo@gmail.com Corso di Laurea in Ingegneria dell Informazione May 05-12-14, 2014 Segnali e Sistemi Laboratorio Matlab 05-12-14.05.2014

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI Fondamenti di Segnali e Trasmissione Risposta in requenza e banda passante La risposta in requenza di un sistema LTI e la trasormata di Fourier

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

Dispense del corso di Elettronica L Prof. Guido Masetti

Dispense del corso di Elettronica L Prof. Guido Masetti Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi

Dettagli

Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma:

Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: Serie di Fourier Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma: x( t) = = 0, A cos ( 2πf t + ϕ ) Cioè: ogni segnale periodico di periodo T si può scrivere come somma

Dettagli

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA Paolo Bestagini Ph.D. Student bestagini@elet.polimi.it http://home.deib.polimi.it/bestagini Sommario 2 Segnali deterministici Continui Discreti

Dettagli

+ h(τ) x(t τ)dτ (2.1) Figura 2.1: Sistema lineare

+ h(τ) x(t τ)dτ (2.1) Figura 2.1: Sistema lineare Capitolo Metodo di Volterra.1 Introduzione Per un sistema lineare, come riportato in figura.1, si può sempre definire una risposta impulsiva ht che relaziona, tramite un integrale di convoluzione, il segnale

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

Segnali passa-banda ed equivalenti passa-basso

Segnali passa-banda ed equivalenti passa-basso Appendice C Segnali passa-banda ed equivalenti passa-basso C.1 Segnali deterministici Un segnale deterministico u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0, W, con 0 < W < f 0,

Dettagli

Serie di Fourier di segnali PWM

Serie di Fourier di segnali PWM Serie di Fourier di segnali PWM Ivan Furlan 1 14 settembre 2013 1 I. Furlan riceve il BSc in elettronica nel 2000 presso la SUPSI, ed il MSc in meccatronica nel 2009 presso il Politecnico di orino. Attualmente

Dettagli

Segnali ad energia ed a potenza finita

Segnali ad energia ed a potenza finita Bozza Data 07/03/008 Segnali ad energia ed a potenza finita Energia e potenza di un segnale Definizioni di energia e potenza Dato un segnale (t), in generale complesso, si definisce potenza istantanea

Dettagli

Lezione 2: rappresentazione in frequenza

Lezione 2: rappresentazione in frequenza Segnali a potenza media finita e conversione A/D Lezione : rappresentazione in frequenza Generalità Spettro di potenza e autocorrelazione Proprietà dello spettro di potenza Larghezza di banda Spettri mutui

Dettagli

LA TECNICA DI TRASMISSIONE OFDM. Ing. Riccardo Pighi

LA TECNICA DI TRASMISSIONE OFDM. Ing. Riccardo Pighi LA TECNICA DI TRASMISSIONE OFDM Ing. Riccardo Pighi Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Parma, Venerdì 23 Gennaio 2004 Sommario della presentazione 1. OFDM: introduzione

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

Ripasso segnali e processi casuali. Trasmissione dell Informazione

Ripasso segnali e processi casuali. Trasmissione dell Informazione Ripasso segnali e processi casuali 1 Breve ripasso di segnali e trasformate Dato un segnale s(t), la sua densità spettrale si calcola come dove S(f) è la trasformata di Fourier. L energia di un segnale

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI Fondamenti Segnali e Trasmissione Numerizzazione dei segnali Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono di tipo numerio, normalmente

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono

Dettagli

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC 23. Guadagno di un quadripolo Filtri passivi isposta in frequenza dei circuiti C-L-LC In un quadripolo generico (fig. ) si definisce guadagno G il rapporto tra il valore d uscita e quello d ingresso della

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

CAMPIONAMENTO DI SEGNALI

CAMPIONAMENTO DI SEGNALI CAMPIONAMENTO DI SEGNALI Alla base della discretizzazione di un segnale sorgente continuo sono i due procedimenti distinti di discretizzazione rispetto al tempo, detto campionamento, e rispetto all'ampiezza,

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Analisi armonica su dati campionati

Analisi armonica su dati campionati Sistemi di misura digitali Analisi armonica su dati campionati - 1 Analisi armonica su dati campionati 1 - Troncamento del segnale Distorsione di leakage L analisi di Fourier è un metodo ben noto per ottenere

Dettagli

01. Modelli di Sistemi

01. Modelli di Sistemi Controlli Automatici 01. Modelli di Sistemi Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro La serie di Fourier Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione. Notazione............................. Analisi spettrale

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica

Dettagli

Modulazione PAM Multilivello, BPSK e QPSK

Modulazione PAM Multilivello, BPSK e QPSK Modulazione PAM Multilivello, BPSK e QPSK P. Lombardo DIET, Univ. di Roma La Sapienza Modulazioni PAM Multilivello, BPSK e QPSK - 1 Rappresentazione analitica del segnale Sia {b(n)} una qualsiasi sequenza

Dettagli

Lezione 3: Segnali periodici

Lezione 3: Segnali periodici eoria dei segali Segali a poteza media fiita e coversioe A/D Lezioe 3: Aalisi i frequeza Esempio di calcolo 005 Politecico di orio eoria dei segali aalisi i frequeza Poteza media Sia dato u segale (t)

Dettagli

FILTRI ANALOGICI L6/1

FILTRI ANALOGICI L6/1 FILTRI ANALOGICI Scopo di un filtro analogico è l eliminazione di parte del contenuto armonico di un segnale, lasciandone inalterata la porzione restante. In funzione dell intervallo di frequenze del segnale

Dettagli

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano Note relative a test di bianchezza rimozione delle componenti deterministiche da una serie temporale a supporto del Progetto di Identificazione dei Modelli e Analisi dei Dati Maria Prandini Dipartimento

Dettagli

Esercizi di Controlli Automatici

Esercizi di Controlli Automatici Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e

Dettagli

Filtri. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza Filtri - 1

Filtri. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza Filtri - 1 Filtri P. Lombardo DIET, Univ. di Roma La Sapienza Filtri - 1 L impulso: definizione L impulso (detto anche delta di Dirac) può essere definito (tralasciando il rigore matematico) come un rettangolo di

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Banda passante e sviluppo in serie di Fourier Ing. Luigi Biagiotti e-mail:

Dettagli

Elaborazione numerica. Teoria dei segnali

Elaborazione numerica. Teoria dei segnali Elaborazione numerica e Teoria dei segnali Raccolta di Esercizi Fiandrino Claudio agosto 00 II Indice I Teoria dei segnali 5 Esercizi di base 7. Esercizio............................. 7. Esercizio.............................

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Modulazione A.A. 8-9 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di sistema di comunicazione

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Rette e piani nello spazio

Rette e piani nello spazio Rette e piani nello spazio Equazioni parametriche di una retta in R 3 : x(t) = x 0 + at r(t) : y(t) = y 0 + bt t R, parametro z(t) = z 0 + ct ovvero r(t) : X(t) = P 0 + vt, t R}, dove: P 0 = (x 0, y 0,

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - +

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + µa741 Cos'è l'amplificazione: Amplificare un segnale significa aumentarne il livello e di conseguenza la potenza. Il fattore

Dettagli

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE U N I V E R S I T À D E G L I S T U D I D I P I S A DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Cmunicazini numeriche Esercizi su sistemi di variabili aleatrie-e sui prcessi stcastici Sistemi di variabili

Dettagli

Corso di Metodi di Trattamento del Segnale MODELLI STATICI, DINAMICI E DI RUMORE DEGLI AMPLIFICATORI OPERAZIONALI

Corso di Metodi di Trattamento del Segnale MODELLI STATICI, DINAMICI E DI RUMORE DEGLI AMPLIFICATORI OPERAZIONALI Corso di Metodi di Trattamento del Segnale MODELLI STATICI, DINAMICI E DI RUMORE DEGLI AMPLIFICATORI OPERAZIONALI 1. ANALISI STATICA! sat( x;a,b) = a x b x < a a x b x > b approssimazione spline della

Dettagli

1.1 Classicazione dei Segnali Segnali periodi e non periodici Un segnale x(t) è denito periodico se esiste una costante T > 0 per cui

1.1 Classicazione dei Segnali Segnali periodi e non periodici Un segnale x(t) è denito periodico se esiste una costante T > 0 per cui 1 Sistemi e Segnali Utilizziamo il termine sistema per descrivere un set di elementi o di blocchi funzionali che vengono connessi insieme in modo tale da poter raggiungere un determinato obbiettivo. Nei

Dettagli

Lezioni di acustica. Analisi del segnale sonoro

Lezioni di acustica. Analisi del segnale sonoro Lezioni di acustica Analisi del segnale sonoro ONDA SINUSOIDALE sin 2 sin 2 sin A è l'ampiezza ω è la pulsazione (o velocità angolare, indica quanti periodi ci sono in un intervallo di 2π) è la requenza,

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 3 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1 SIMMETRIE DEI SEGNALI - Simmetria pari (Definizioni analoghe nel caso discreto) Segnale pari

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo 9 Lezione Equazioni differenziali del secondo ordine a coefficienti costanti Def. (C) Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo u + au + bu = f(t), dove a e b sono

Dettagli

Capitolo 6 Strato Fisico- Le Modulazioni Numeriche

Capitolo 6 Strato Fisico- Le Modulazioni Numeriche Capitolo 6 Strato Fisico- Le Modulazioni Numeriche 1 Modulazione e Demodulazione numerica segnale numerico segnale analogico...0010111001... modulatore numerico segnale numerico mezzo trasmissivo...0010011001...

Dettagli

Giacomo Poggi APPUNTI SUL RUMORE ELETTRICO. Versione del 30 maggio 2004

Giacomo Poggi APPUNTI SUL RUMORE ELETTRICO. Versione del 30 maggio 2004 Giacomo Poggi APPUNTI SUL RUMORE ELETTRICO Versione del 30 maggio 2004 Università degli Studi di Firenze, Dipartimento di Fisica Anno Accademico 2002-2003 Università degli Studi di Firenze, Dipartimento

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004 COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

LA TRASFORMATA DI FOURIER, PROPRIETA ED ESEMPI (2) 12 Fondamenti Segnali e Trasmissione

LA TRASFORMATA DI FOURIER, PROPRIETA ED ESEMPI (2) 12 Fondamenti Segnali e Trasmissione LA RASFORMAA DI FOURIER, PROPRIEA ED ESEMPI () Fondamenti Segnali e rasmissione Proprieta della DF (5) Moltiplicazione nelle requenze: la DF inversa del prodotto delle DF di due segnali e uguale all integrale

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

SISTEMI LINEARI. i (t) = C. Figura 1

SISTEMI LINEARI. i (t) = C. Figura 1 SISTEMI LINEARI E detto sistema lineare un sistema descritto da un equazione integro-differenziale lineare, che leghi un segnale di ingresso x(t) (detto anche sollecitazione) al corrispondente segnale

Dettagli

Teoria dei Segnali Concetti generali e definizioni

Teoria dei Segnali Concetti generali e definizioni Teoria dei Segnali Concetti generali e definizioni Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Concetti generali e definizioni

Dettagli

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D = n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.

Dettagli

AIIC EXPOSANITA. La Risposta in Frequenza degli Elettrocardiografi: Aspetti Tecnici e Clinici. Tavola Rotonda. Bologna 21 Maggio 2014

AIIC EXPOSANITA. La Risposta in Frequenza degli Elettrocardiografi: Aspetti Tecnici e Clinici. Tavola Rotonda. Bologna 21 Maggio 2014 La Risposta in Frequenza degli Elettrocardiografi: Aspetti Tecnici e Clinici Tavola Rotonda AIIC EXPOSANITA Ing. Ennio Amori AUOSP-PR Bologna 21 Maggio 2014 Trasferimento Ingresso Funzione di Uscita -Parametro

Dettagli

TEORIA DEI SEGNALI IL RIASSUNTO

TEORIA DEI SEGNALI IL RIASSUNTO TEORIA DEI SEGNALI IL RIASSUNTO WWW.DURICOMEILMETALLO.NET Segnali Un segnale è una qualunque grandezza fisica variabile cui è associata un informazione ed è la base di un sistema di acquisizione. Una prima

Dettagli

Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi

Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi È dato un segnale analogico avente banda 2 khz e dinamica compresa tra -2 V e 2V. Tale segnale deve essere convertito in segnale digitale da un

Dettagli