Successioni di Funzioni e Serie di Potenze

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Successioni di Funzioni e Serie di Potenze"

Transcript

1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni Nel corso di nlisi di bse si sono studite le successioni numeriche. Qui considerimo un successione numeric il cui vlore dipende d un vribile che denotimo con x, che vri in un insieme A R: 1 f 1 (x),f 2 (x),.., f n (x),... più sinteticmente scrivimo: {f n (x)}. Quest è dett un successione di funzioni, e srà denott con {f n }. Si noti che: per n fissto f n (x) è un funzione di x, per x fissto {f n (x)} è un successione numeric. Al pri delle successioni numeriche, nche le successioni di funzioni possono ssumere non solo vlori reli m nche complessi o vettorili. Si A un sottoinsieme di R, {f n } un successione di funzioni A C, ef : A C; definimo llor due tipi di convergenz: f n f puntulmente in A def f n (x) f(x) x A; (1.1) f n f uniformemente in A def sup f n (x) f(x). (1.2) x A Nell (1.1) si noti l differenz tr f n f (convergenz di funzioni) e f n (x) f(x) (convergenz di numeri). Queste convergenze possono essere lette interpretndo n come un vribile temporle. Fissto un qulsisi ε> (che possimo interpretre come mssimo errore mmissibile), l convergenz puntule di f n f signific che f n (x) f(x) ε per ogni x, pur di prendere n bbstnz grnde. Qunto grnde può dipendere d x; se poi per tutti gli x si può prendere lo stesso n, llor l convergenz è uniforme. Con l convergenz puntule, si gurd l comportmento individule dell successione numeric {f n (x)} per ciscun x, mentre con l convergenz uniforme si consider il comportmento globle dell insieme di queste successioni numeriche. Proposizione 1.1 Si {f n } un successione di funzioni A C, ef : A C. Allor f n f uniformemente in A f n f puntulmente in A (1.3) Si noti che i due limiti coincidono se vi è convergenz uniforme. Dimostrzione. Poiché f n (y) f(y) sup x A f n (x) f(x) per ogni y A, sup f n (x) f(x) f n (y) f(y) y A. x A 1 Comunque A potrebbe essere sostituito d un insieme qulsisi (non vuoto).

2 2 Metodi Mtemtici per TLC A. Visintin L impliczione oppost dell (1.3) non sussiste. 2 Controesempi. 3 Si pong n se <x<1/n f n (x) := se 1/n x<1 f(x) := x ], 1[, (1.4) { 1 se n<x<n+1 g n (x) := se <x n oppure x n +1 g(x) := x >, (1.5) è fcile consttre che f n f puntulmente in ], 1[, g n g puntulmente in ], + [. Tuttvi sup <x<1 f n (x) f(x) = n, sup g n (x) g(x) =1 n, x> quindi entrmbe le successioni non convergono uniformemente. Si noti nche che 4 1 f n (y) dy =1 1 f(y) dy =, + g n (y) dy =1 + g(y) dy =. Il prossimo teorem esclude quest ultim eventulità nel cso di convergenz uniforme. Teorem 1.2 (Pssggio l Limite nell Integrle) Si {f n } un successione di funzioni continue [, b] C, che converge uniformemente d un funzione f. Allor f è continu e In prticolre f n (y) dy f n (y) dy sup x [,b] f(y) dy uniformemente in [, b]. (1.6) f(y) dy. Dimostrzione dell (1.6). Trlscimo l verific dell continuità dif, e ci limitimo verificre l (1.6). Grzie ll (1.2), f n (y) dy f(y) dy sup f n (y) f(y) dy x [,b] f n (y) f(y) dy (b ) sup f n (y) f(y). y [,b] Il seguente risultto permette, sotto opportune ipotesi, di scrivere lim ovvero di pssre l limite nell derivt. d dx f n(x) = d dx lim f n(x), (1.7) 2 È importnte cogliere il senso di ffermzioni del tipo A non implic B (in formul: A B) per un coppi di ffermzioni A, B. Questo signific che nche se A è ver B può essere fls. 3 Qui incontrimo un procedimento logico che si us frequentemente in mtemtic. Per giustificre un ffermzione in positivo (ovvero un teorem) si fornisce un dimostrzione; per giustificre un ffermzione in negtivo (ovvero l negzione di un proprietà) si esibisce un controesempio, ovvero un esempio in cui l proprietà non vle. In generle è utile cpire quli proprietà sono vere, m è nche importnte rendersi conto di quli ltre sono flse. Pertnto i controesempi non sono meno importnti dei teoremi. 4 n st per n non coverge.

3 Successioni di Funzioni e Serie di Potenze 3 Teorem 1.3 (Pssggio l Limite nell Derivt) Sino dti un successione {f n } di funzioni di C 1 ([, b]), g :[, b] C, x [, b], ξ C tli che 5 Allor, posto f(x) :=ξ + f n g uniformemente in [, b], f n (x ) ξ. x g(t)dt per ogni x [, b], sih f n f uniformemente in [, b], f C 1 ([, b]), f = g in [, b]. Dimostrzione. Poiché f n (x) =f n (x )+ f n(t)dt per ogni x [, b], f n f uniformemente x in [, b] per il teorem precedente. L funzione g è continu in qunto limite uniforme di funzioni continue. Le restnti proprietà quindi seguono dll definizione di f e dl teorem fondmentle del clcolo integrle. Si noti che, sotto l sol ipotesi che f n f uniformemente in [, b], f elef n sono derivbili in x f n(x ) f (x ). (1.8) Controesempi. Si f(x) :=ef n (x) :=n 1 rctn(nx) per ogni x R ed ogni n N. Allor f n f uniformemente in R, mf n()=1 f ()=. Ecco un ltro controesempio. Si g n (x) :=n 1 sin(nx) per ogni x R ed ogni n N. Allor g n(x) := cos(nx) per ogni x R. Quindi, posto g(x) := per ogni x R, sih g n g uniformemente in R, mg n non converge nemmeno puntulmente g ; d esempio g n() = 1 per ogni n. Inoltre, ncor sotto l sol ipotesi che f n f uniformemente in [, b], le f n sono derivbili in x f è derivbile in x. (1.9) Controesempio. Si f n (x) := x 2 + n 1 per ogni x R ed ogni n N, quindi f n (x) f(x) := x per ogni x R. Lef n sono derivbili in mentre f non lo è. Se f n f puntulmente in un fmigli di insiemi {S : A} (per un qulche insieme di indici A), llor in bse ll definizione si verific immeditmente che f n f puntulmente nell loro unione A S. Un nlog proprietà non vle per l convergenz uniforme. Ad esempio l successione {f n (x) =x n } converge uniformemente in S := [,] per ogni ], 1[, m non in [, 1[= ],1[ S. [Es] 5 Si k N ed A R. Si dice che un funzione f : A C è di clsse C k (e si scrive f C k (A)) se e solo se f mmette derivte fino ll ordine k, e tutte queste funzioni sono continue in A. Sef mmette derivte di ogni ordine, f è dett di clsse C. Considereremo funzioni vlori complessi, piuttosto che reli. Quest mggiore generlità non cost qusi null, e può essere uitle per le ppliczioni. In qusi tutti i csi il lettore può comunque trnquillmente interpretre i risultti pensndo funzioni reli.

4 4 Metodi Mtemtici per TLC A. Visintin 2 Serie di Funzioni Dt un successione di funzioni {f n }, tutte definite in uno stesso insieme ed vlori complessi, si consideri l corrispondente serie di funzioni x f n (x). Come già per il cso delle serie numeriche, per serie di funzioni si intende proprimente l successione di funzioni costituit dlle somme przili: { m x f n (x) }. Tuttvi cpit di usre il termine serie nche m=1,2,... per indicre l somm dell serie che pure è un funzione, qundo esiste. I concetti di convergenz puntule ed uniforme si estendono in modo nturle lle serie di funzioni, dl momento che l convergenz di un serie numeric equivle quell dell successione delle sue somme przili. I due prossimi due teoremi possono essere fcilmente dimostrti medinte i Teoremi 1.2 e 1.3. [Es] Teorem 2.1 (Pssggio l Limite nell Integrle) Si {u n } un successione di funzioni continue [, b] C, tle che l serie di funzioni u n converg uniformemente. Allor nche l k= somm dell serie u n è un funzione continu; inoltre k= u n (y) dy = u n (y) dy x [, b], (2.1) e quest ultim serie converge uniformemente in [, b]. In prticolre u n (y) dy = u n (y) dy. Teorem 2.2 (Pssggio l Limite nell Derivt) Si {u n } un successione di funzioni di C 1 ([, b]) tle che, per un opportuno x [, b], u n converge uniformemente in [, b], u n (x ) converge. (2.2) Allor u n converge uniformemente in [, b], è derivbile in [, b], e k= ( ) u n = u n in [, b]. (2.3) Per le serie numeriche si distinguono convergenz semplice ed ssolut (quest ultim implic l precedente). Lo stesso vle per successioni di funzioni e serie di funzioni. Cvet. Per le serie di funzioni non vi è lcun legme tr convergenz semplice o ssolut d un lto e convergenz puntule o uniforme dll ltro. Si possono comunque ccoppire proprietà di convergenz semplice o ssolut con proprietà di convergenz puntule o uniforme; d esempio, si potrà dire che un cert serie converge ssolutmente e puntulmente.

5 Successioni di Funzioni e Serie di Potenze 5 Se non si specific se l convergenz è semplice o ssolut, si intende che è semplice; d esempio, f n converge puntulmente signific che converge puntulmente e n=1 semplicemente. f n n=1 Registrimo or un importnte condizione sufficiente per l convergenz uniforme delle serie di funzioni, ed un suo ovvio corollrio. Teorem 2.3 * (di Weierstrss) Si dt un successione di funzioni {f n : A C}. Se esiste un successione numeric {M n } tle che f n (x) M n x A, n N, M n < +, llor l serie di funzioni f n converge uniformemente ed ssolutmente in A. Corollrio 2.4 * Dt un successione di funzioni {f n : A C}, sup f n (x) < + x A f n converge uniformemente ed ssolutmente in A. Per verificrlo bst porre M n = sup x A f n (x) per ogni n, ed pplicre il teorem precedente. Esercizi. Si {f n } un successione di funzioni R R, che convergono puntulmente d un funzione f. Se tutte le f n sono non decrescenti, nche f è non decrescente? Se tutte le f n sono strettmente crescenti, nche f è strettmente crescente? Cmbi qulcos se l convergenz è uniforme? Per ciscun delle seguenti successioni di funzioni R R 1 se x 1/n f n (x) := nx se 1/n<x<1/n 1 se x 1/n, (2.4) { se x n g n (x) := e x n se x>n, se x < 1/n oppure x > 1/n h n (x) := n se 1/n x 1/n, (2.5) (2.6) l n (x) :=e nx2 x R, (2.7) si disegni il grfico, e si dic se converge puntulmente e/o uniformemente. In cso ffermtivo si indichi l funzione limite.

6 6 Metodi Mtemtici per TLC A. Visintin 3 Serie di Potenze È nturle sviluppre quest teori in C piuttosto che in R. Si definisce serie di potenze un serie di funzioni dell form n (z z ) n := + 1 (z z )+ 2 (z z ) n (z z ) n +, (3.1) ove z,z C sono rispettivmente pensti come fissto e vribile, e n C per ogni n N. 6 Qui si è posto := 1. 7 Quest serie definisce l funzione m ) f(z) = n (z z ) (:= n lim n (z z ) n m per gli z per cui quest serie converge. L insieme in cui un generic serie di funzioni converge può essere lqunto generle; in bse l seguente teorem, l insieme di convergenz delle serie di potenze h invece un form ben precis. Teorem 3.1 (Teorem di Abel) Per ogni serie di potenze esiste R [, + ] tle che: (i) l serie converge ssolutmente per ogni z C tle che z z <R(se R>), (ii) l serie non converge nemmeno semplicemente per ogni z C tle che z z >R(se R<+ ). Inoltre l serie converge uniformemente in ciscun cerchio B r (z ), con < r < R (se R>). 8 Pertnto se R = l serie converge solo per z = z, mentre se R =+ l serie converge ssolutmente per ogni z C. L convergenz uniforme dell serie in ciscun cerchio B r (z ) con <r<rnon implic l convergenz uniforme dell serie nel cerchio B R (z ). Anlogmente, nche se R =+ non è detto che l serie converg uniformemente in tutto C. Si noti che il teorem non dice null circ il comportmento dell serie nei punti dell circonferenz di convergenz, ovvero per z z = R per <R<+. L convergenz dell serie in quei punti dipende dll serie e dl prticolre z: non esiste un regol generle. Pertnto, denotto con S l insieme dei punti in cui l serie converge, in generle si può solo ffermre che {z C : z <R} S {z C : z R}. Esempi. (i) L serie z n /n 2 h rggio di convergenz R = 1, e converge (ddirittur ssolutmente) in ogni punto dell circonferenz di convergenz. (ii) L serie z n h rggio di convergenz R = 1, e non converge in lcun punto dell circonferenz di convergenz, poiché z n per z =1. (iii) L serie z n /n h rggio di convergenz R = 1; ess converge per z = 1, grzie l criterio di Leibniz; invece diverge per z = 1, poiché ivi coincide con l serie rmonic. 6 Tipicmente si us z per indicre un vribile compless, x per un vribile rele. 7 Quest uguglinz non è d intendersi come un regol di clcolo, m esclusivmente come un notzione che pplichimo solo ll mbito delle serie di potenze. In ltri termini, l scrittur con l sommtori è d intendersi solo come un bbrevizione dell somm di destr. 8 Denotimo B r (z ) il cerchio perto di centro z e rggio r, ovvero B r (z )={z C : z z <r}.

7 Successioni di Funzioni e Serie di Potenze 7 Teorem 3.2 Si dt un successione { n }. Se esiste L := lim n 1/n, llor l serie n (z z ) n h rggio di convergenz R =1/L se <L<+, R =+ se L =, R = se L =+. Lo stesso vle per L := lim n+1 / n,se n prtire d un certo n in vnti e se questo limite esiste. L semplice dimostrzione è bst sul criterio dell rdice nel primo cso, sul criterio del rpporto nel secondo cso. [Es] Osservzioni. (i) Il Teorem implic che se esistono si L che L, llor essi coincidono. Comunque si può dimostrre che se esiste L llor esiste nche L. Quindi l prim prte del Teorem è di ppliczione più generle dell second; tuttvi spesso èpiù gevole clcolre L piuttosto che L. (ii) Non sempre i limiti L ed L esistono. Invece esistono sempre (finiti o infiniti) i mssimi limiti mx lim n 1/n := lim sup n 1/n n+1, mx lim := lim m n m n sup n+1 m n m n (per il secondo occorre comunque che si n prtire d un certo n). Il teorem si può formulre in modo più generle sostituendo i limiti L e L con i corrispondenti mssimi limiti. * Illustrimo brevemente il concetto di mssimo limite di un successione vlori reli. Si consideri l insieme delle sottosuccessioni estrtte dll successione dt; queste sono le successioni ottenute cncellndo un numero qulsisi di termini, lscindone comunque in numero infinito e conservndone l ordine. Tr queste si considerino le sottosuccessioni venti limite finito o infinito; il mssimo limite coincide con l estremo superiore (finito o infinito) dei limiti di queste sottosuccessioni. Ad esempio l successione {( 1) n } non h limite, m h mssimo limite 1. Adifferenz del limite, il mssimo limite esiste per ogni successione. Inoltre, qundo il limite esiste, esso coincide con il mssimo limite; quest ultimo è quindi un concetto più generle. Si definisce nche il minimo limite min lim n in modo nlogo, prlndo di estremo inferiore invece di estremo superiore, oppure ponendo min lim Per ogni successione { n } vlori reli, min lim n := mx lim ( n). n mx lim n +. Esempi. (i) Si fissi α R e si consideri l serie n α z n.sih L = lim (n α ) 1/n = lim e α(log n)/n = e lim α(log n)/n = e =1, pertnto l serie h rggio di convergenz 1 per ogni α R. Tuttvi il comportmento sull circonferenz di convergenz dipende d α, come si è visto negli esempi precedenti. (ii) È fcile verificre che il rggio di convergenz delle serie z n /n! e n!z n vle rispettivmente + e.

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A Prim prov scritt di Anlisi Mtemtic 1 del 10/01/2011 A (1) Fornire l definizione di funzione integrbile secondo Riemnn e di integrle di Riemnn. (2) Enuncire e dimostrre il Teorem di Rolle. (3) Dimostrre

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 7/8 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Formulario di Analisi Matematica 1

Formulario di Analisi Matematica 1 Formulrio di Anlisi Mtemtic Indice degli rgomenti Punti interni, isolti, di ccumulzione e di frontier Alcune costnti Proprietà delle potenze Proprietà degli esponenzili Proprietà dei logritmi Proprietà

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

DISPENSE DI ANALISI MATEMATICA. Indice

DISPENSE DI ANALISI MATEMATICA. Indice DISPENSE DI ANALISI MATEMATICA ANNAMARIA MONTANARI Indice. Integrle di Riemnn.. Proprietà elementri dell integrle di Riemnn 5.2. Teorem fondmentle del clcolo integrle. Primitive 6.3. Integrle generlizzto

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

1. Elementi di analisi funzionale Esercizi

1. Elementi di analisi funzionale Esercizi . Elementi di nlisi funzionle Esercizi http://www.cirm.unibo.it/~brozzi/mi/pdf/mi-cp.-ese.pdf.. Spzi vettorili.. Spzi vettorili normti.-. Dimostrre l diseguglinz tringolre in C n reltivmente ll norm (

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Micol Amr ANALISI MATEMATICA I - 999/2000 Dim. Considerimo il cso in cui l successione si crescente; l dimostrzione procede in modo del tutto nlogo, q

Micol Amr ANALISI MATEMATICA I - 999/2000 Dim. Considerimo il cso in cui l successione si crescente; l dimostrzione procede in modo del tutto nlogo, q TEOREMI DIMOSTRATI NEL CORSO. Successioni e serie numeriche. Teorem. (Unicit del ite) Si ( n ) n2in un successione di numeri reli convergente. Allor il suo ite e unico. Dim. Assumimo per ssurdo che n =

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d =

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d = I seguenti esercizi sono stti proposti, e qusi tutti risolti, ttrverso l miling list del corso di Geometri IV durnte l nno ccdemico 2004/2005. Esercizio 1. Dimostrre che se (X, d) è uno spzio metrico nche

Dettagli

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato Università degli studi di Cgliri CORSO ANALISI MATEMATICA 1 A.A. 2015/2016 Docente: Monic Mrrs 1 Anlisi Mtemtic 1 Testo consiglito con elementi di geometri e lgebr linere. M. Brmnti, C.D. Pgni, S. Sls

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

1 Integrali impropri di funzioni continue

1 Integrali impropri di funzioni continue ntegrli impropri di funzioni continue. ntegrli impropri su intervlli semiperti Definizione Dt un funzione continu f : [, b) R, con b +, si dice che f è integrbile se esiste finito il t b f(x) dx ed in

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA INTEGRAZIONE NUMERICA Frncesc Pelosi Diprtimento di Mtemtic, Università di Rom Tor Vergt CALCOLO NUMERICO.. 008 009 http://www.mt.unirom.it/ pelosi/ INTEGRAZIONE NUMERICA p.1/0 INTEGRAZIONE NUMERICA Dt

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.

Dettagli

Calcolo integrale. Capitolo Primitive ed integrale inde nito

Calcolo integrale. Capitolo Primitive ed integrale inde nito Cpitolo 9 Clcolo integrle 9.1 Primitive ed integrle inde nito De nizione 9.1 Assegnt un funzione f : A! R, si de nisce primitiv di f un qulunque funzione F : A! R derivbile, tle che F 0 (x) = f(x), per

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Prof Emnuele ANDRISANI Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se 0, per ogni R se 0, per tutti e soli gli R se 0, per tutti e soli gli Z Esponenzili e ritmi Sono definite:

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Curve e forme differenziali

Curve e forme differenziali Curve e forme differenzili Bricentro di un curv Si dt un curv :,b] R 3 di clsse C 1 trtti, con (t) = ( 1 (t), 2 (t), 3 (t)). Assumimo che si ssegnt un funzione continu e positiv µ : (,b]) R, che chimimo

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

1 Funzioni continue: definizioni e prime proprietà. 2 Continuità delle funzioni elementari 2

1 Funzioni continue: definizioni e prime proprietà. 2 Continuità delle funzioni elementari 2 FUNZIONI CONTINUE FUNZIONI CONTINUE: DEFINIZIONI E PRIME PROPRIETÀ Funzioni continue Indice Funzioni continue: definizioni e prime proprietà 2 Continuità delle funzioni elementri 2 3 Funzioni continue

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

II-8 Integrale di Riemann

II-8 Integrale di Riemann II-8 INTEGRALE DI RIEMANN DEFINIZIONE DI INTEGRALE DI RIEMANN II-8 Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

1 Definizione di integrale di Riemann 1. 2 Condizioni di esistenza dell integrale di Riemann 3. 3 Proprietà dell integrale di Riemann 4

1 Definizione di integrale di Riemann 1. 2 Condizioni di esistenza dell integrale di Riemann 3. 3 Proprietà dell integrale di Riemann 4 DEFINIZIONE DI INTEGRALE DI RIEMANN Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle di Riemnn 4 4 Clcolo dell integrle

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

FUNZIONI LOGARITMICHE

FUNZIONI LOGARITMICHE FUNZIONI LOGARITMICHE Voglimo vedere come dl grfico δ di un funzione y=f(x) si può pssre l grfico δ dell funzione y = f (x). Dobbimo vere ben presente il grfico dell funzione y = x con x R + e con >0,

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Funzioni a variazione limitata

Funzioni a variazione limitata Cpitolo 1 Funzioni vrizione limitt 1.1 Il problem delle primitive di funzioni L 1 Il problem dell ricerc delle primitive di un ssegnt funzione f : I R con I = [, b] intervllo limitto, cioè le soluzioni

Dettagli

Analisi matematica. Materiale didattico

Analisi matematica. Materiale didattico Anlisi mtemtic. Mterile didttico Lure triennle F.A.I. Rimini 7 ottobre 23 Indice Linguggio, funzioni elementri 2. Il linguggio degli insiemi.................................... 2.2 Numeri reli, vlore ssoluto,

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 9 Sommrio. Crtterizzimo l equivlenz elementre in termini di sistemi di isomorfismi przili e di giochi di Ehrenfeucht-Frïssé. 1. Giochi di Ehrenfeucht-Frïssé

Dettagli

Lezione 16 Derivate ed Integrali

Lezione 16 Derivate ed Integrali Lezione 16 Derivte ed Integrli Frnk Sullivn 1 Dicembre 11 1 Prim Or Compiti di letture ed esercizi per 3 Dicembre Durnte l lezione di oggi pplicheremo le regole per differenzire funzioni l clcolo di integrli.

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli