ISOMETRIE PIANE. Traslazione di un vettore v

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ISOMETRIE PIANE. Traslazione di un vettore v"

Transcript

1 ISOMETRIE INE Un ismeia piana è un applicazine del pian in sé che cnsea la disanza. Sia f : f() essa è un ismeia se Q d( Q) d(f() f(q)) d( Q ). Se ( ) e ( ) sn due cppie di puni cispndeni esse indiiduan due segmeni e che sn eguali. pieà. In una ismeia: - a puni allineai cispndn puni allineai; - due iangli cispndeni sn eguali; - due angli cispndeni sn eguali.. L insieme delle ismeie del pian cn l peazine di cmpsizine (pd di due applicazini) è un gupp giacchè: - la cmpsizine di due ismeie è un ismeia; - la cmpsizine è assciaia; - l idenià è un ismeia ; - pe gni ismeia esise la sua inesa. Tale gupp si sule indicae cn (Is(R ) ). Sn esempi di ismeie piane: - la aslazine di un ee ; - la azine di cen in pun e angl ; - la iflese ispe a una ea ; - la glissiflese. Taslazine di un ee È quell applicazine che ad gni pun del pian asscia il pun () ale che il segmen iena appeseni il ee. I segmeni cispndeni e le ad essee uguali sn pue paalleli (sn equiplleni). naliicamene : R R ()( ) : ssia Chiaamene se // alla e quindi. nalgamene se // alla e quindi

2 Esempi : Sia una ea. e il cispndene del geneic pun ( ) di isula 7 pean la aslaa del ee della ea di equazine è la ea s di equazine 7. Esempi : Sia pe il cispndene del geneic pun secnd la aslazine isula ssia Se è la ea cngiungene i puni ( ) e ( ) di equazine aendsi 7 9 ) ( ) ( ne iene che la aslaa del ee della ea : è la ea s di equazine 7. ll sess isula si saebbe peenui deeminand i cispndeni di due puni qualsiasi di (ad esempi i puni e ) e sciend l equazine della ea cngiungene ali cispndeni. I cispndeni di e sn ispeiamene: la ea cngiungene ali puni ha equazine: 7 ; essa è la aslaa secnd il ee della ea.

3 Razine La azine di cen O (igine) e angl è quell applicazine che ad gni pun del pian asscia il pun ( ) d d ale che (O) (O ) e Ô. naliicamene cs cs cs cs ciè: cs cs cs cs ( ) e si iene la azine di mezzgi an a O e isula Vgliam ae l equazine della ea s enua facend uae la ea an all igine di un angl. Esaminiam i due casi : a. la ea passa pe O; b. la ea nn passa pe O. a. Rea passane pe O: Esempi: : Dal mmen che la ea passa pe il cen di azine O la ea s è la cngiungene ale cen cn il pun enu facend uae di an ad O il pun essend cs cs la ea s ha equazine essend la cngiungene O cn ( ).

4 b. Rea nn passane pe O: Esempi: : e ae l equazine della ea s basa ae i cispndeni di e e pi sciee l equazine della ea pe e. ; (*) endsi la ea ha equazine ll sess isula si saebbe peenui icaand dalle (*) e in funzine di e : e ssiuend ali ali ai nell equazine della ea daa. Si ha infai Nel cas in cui il cen di azine nn è più l igine ma il pun ( ) indicaa cn la azine di un angl an a pe i puni ( ) e ( ) cispndeni in ale azine si ha: ( ) cs cs

5 e si iene la simmeia an a. Infai e deeminae la ea s enua facend uae di un angl an a la ea isula più semplice sciee la ea cngiungene i cispndeni di due puni di. Esempi: : -- ( ) Cnside i due puni di ( ) e ( -) e mi deemin i cispndeni e ; la ea è quella cecaa. Risula: ( ) ( ) ( ) 8 Quindi: ( )

6 La ea ciè la ea s ha dunque equazine: ( ) ( ) Chiaamene se il cen di azine sa su pe ae la ea s basa aee il cispndene di un al pun di dies di dal mmen che ( ). Esempi: : ( ) aendsi ( ) ( ) ( ) ean la ea s essend la cngiungene cn ha equazine:

7 7 Riflese ispe a una ea (nella ea ) È quell applicazine che ad gni pun del pian asscia il pun () che sa sulla pependiclae ad pe e ale che il pun medi di sia su. È chia che se () ciè gni pun di ha pe cispndene se sess. Se e ( ) segue che Sia una ea passane pe ( ) e cefficiene anglae an se e sn due puni cispndeni nella iflese ispe a ciè ) ( si ha: cs cs () Glissiflese e glissiflese ( aniaslazine) di asse e ee di aslazine il ee (paallel a ) si inende la cmpsizine della iflese ispe alla ea cn la aslazine del ee. Il fa che il ee sia paallel a gaanisce che ale cmpsizine gde della ppieà cmmuaia. Se e di cnseguenza // si ha: ( )( ) ( ) ( ) ( )( ) ( ) ( ) Se nn cincide cn l asse ( cmunque nn è paallel ad un degli assi) bisgneà ifeisi alle fmule geneali della iflese e della aslazine.

8 SIMILITUDINI INE Una similiudine piana è un applicazine del pian in sé che cnsea i appi fa le disanze: ciè esise una csane k > (dea app di similiudine) ale che Q si ha: d( Q ) k d( Q). Se k si hann le ismeie ciè gni ismeia è una similiudine. pieà:. In una similiudine: - a puni allineai cispndn puni allineai ciè a ee cispndn ee; - angli cispndeni sn uguali; - ad una cicnfeenza γ (di cen C e aggi R) cispnde una cicnfeenza γ (di cen il cispndene di C e aggi kr essend k il app di similiiudine); - iangli cispndeni sn simili.. L insieme delle similiudini del pian cn la legge di cmpsizine nauale (cmpsizine di applicazini) è un gupp. È da sseae peò che nella cmpsizine di due similiudine il app di similiudine è uguale al pd dei due appi di similiudine. Omeia Una meia di cen C e app ( R ) è quell applicazine del pian in sé che ad gni pun fa cispndee il pun che sa sulla ea C dalla sessa pae di se > dalla pae ppsa di se < e ale che d(c ) d(c ). - d d ( C ) ( C ) d d ( C ) ( C ) pieà dell meia. Un meia di cen C e app è una similiudine cn app di similiudine ;. Un meia in cui è l idenià: se - si iene la azine an a C di mezzgi ( anche la simmeia ispe al cen).. In un meia di cen C gni ea pe C è unià (ciè ha pe cispndene se sessa); 8. In un meia di cen C se è una ea nn cnenene C la sua cispndene s è una ea paallela a (si dice anche che le meie cnsean la diezine).

9 9 naliicamene e l meia di cen l igine e app è f e l meia di cen ( ) e app è ( ) - f ( ) ( ) -

MATEMATICA PER L ELABORAZIONE DEI SEGNALI a.a

MATEMATICA PER L ELABORAZIONE DEI SEGNALI a.a MATEMATICA PER L ELABORAZIONE DEI SEGNALI a.a. 2008.09 Crs inegra cn Teria dei Segnali Maredì 8,30-11,30 Mercledì 8,30-10,30 Givedì 8,30-10,30 Esame del crs inegra: è cmplea quand si è supera sia sia Maemaica

Dettagli

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1 Esecizi svoli di geomeia delle aee Alibandi U., Fuschi P., Pisano A., Sofi A. ESERCZO n.3 Daa la sezione a doppio T ipoaa in Figua, deeminae: a) gli assi pincipali cenali di inezia; b) l ellisse pincipale

Dettagli

B raggio. Centro. circonferenza

B raggio. Centro. circonferenza La cicnfeenza è una linea chiusa fmata da tutti i punti del pian che hann la stessa distanza da un punt inten. Quest punt si chiama cent della cicnfeenza e la distanza fa i punti della cicnfeenza e il

Dettagli

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti Rea di minima disana sfee e ciconfeena nello spaio Alcuni esecii svoli. Sabilie se le ee ed s sono complanai o sghembe. Nel pimo caso pecisae se esse sono paallele oppue incideni e ovae l equaione di un

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Origami: Geometria con la carta (II)

Origami: Geometria con la carta (II) igami: Geomeia con a caa (II) E' possibie mosae (cf. Geeschage, 1995) che ognuna dee pocedue E1-E5 dea geomeia eucidea, può essee sosiuia da combinazioni dee pocedue 1-8 dea geomeia oigami. Infai abbiamo:

Dettagli

Urti tra due particelle

Urti tra due particelle Uti ta due paticelle Uti ta paticelle libee In un ut ta due paticelle, le fze intene hann caattee ipulsi. Se le paticelle nn sn inclate, pe la duata dell ipatt le fze estene sn lt en intense e pssn essee

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei polemi a) Sudiamo il gafico di f ( ) D: R -]- ; [ - (-) f( ) - - - - - f ( ), quindi la funzione è dispai - Le inesezioni con l asse delle hanno ascisse + e - lim f ( ) lim " + " + - si

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

ASINTOTI di una funzione

ASINTOTI di una funzione LEZIONI ASINTOTI di una funzine Definizine Sia il grafic di una funzine di equazine y f ( ) avente un ram che si estende all'infinit e sia P un su punt. Una retta r si dice asintt per tale funzine se la

Dettagli

Convertitori alternata / continua

Convertitori alternata / continua Crs di ELETTRONCA NDUSTRALE CONVERTTOR CA/CC A TRSTOR 12 1 Cnveriri alernaa / cninua Per la cnversine dalla crrene alernaa mnfase rifase alla crrene cninua si usan spess schemi a pne di Graez Si usan didi

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

Soluzioni di gas in acqua

Soluzioni di gas in acqua Sluzini di gas in acqua Cefficieni di assrbimen di gas in acqua. Le misure sn sae effeuae alla pressine di 1 am; i valri C a (T C) sn espresse in cc di gas discili in 1 cc di H 2 O alle emperaure indicae,

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI L RSFORM DI FOURIER: PROPRIE ed ESEMPI RSFORM DI FOURIER Prprieà della DF ( x( DF ( LINERI : la DF della cmbinazine lineare (smma pesaa di due segnali e uguale alla cmbinazine lineare delle DF dei due

Dettagli

2. Verifica dell apparato sperimentale Acquisizione ed analisi dati

2. Verifica dell apparato sperimentale Acquisizione ed analisi dati . Verifica dell appara sperimenale Acquisizine ed analisi dai Una vla deerminaa la lgica di rigger e la ensine di lavr dei fmliplicari, pssiam acquisire in md aumaic gli eveni significaivi ed effeuare

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR 1 La siepe Sul retr di una villetta deve essere realizzat un piccl giardin rettanglare di m riparat da una siepe psta lung il brd Dat che un lat del giardin è ccupat dalla

Dettagli

5) Equazioni delle rette tangenti ad una circonferenza condotte da un punto. 6) Equazione della retta tangente ad una circonferenza in un suo punto

5) Equazioni delle rette tangenti ad una circonferenza condotte da un punto. 6) Equazione della retta tangente ad una circonferenza in un suo punto Maemaica Liceo \ Unià Didaica N 8 La ciconfeenza Unià Didaica N 8 : La ciconfeenza Equazione della ciconfeenza di ceno C e aggio Equazione geneale della ciconfeenza Ciconfeenza avene equazione paicolae

Dettagli

Stima ai minimi quadrati e cinematica inversa controllo del peso di end-point. Sommario

Stima ai minimi quadrati e cinematica inversa controllo del peso di end-point. Sommario Sima ai minimi quadrai e cinemaica inversa cnr de pes di end-pin Prf. Aber Brghese N.B.: I diri di scaricare ques fie è riserva samene agi sudeni regarmene iscrii a crs di Rbica ed Animazine Digiae. A.A.

Dettagli

Geometria dello spazio

Geometria dello spazio Gemeria dell spazi RETTE E PINI NELLO SPZIO Una rea è individuaa in md univc da due puni. Un pian può essere individua in md univc da: re puni nn allineai una rea e un pun esern ad essa due ree incideni

Dettagli

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA Fndameni di segnali Fndameni e rasmise TLC Perche si uilizza la rappresenazine cmplessa In naura esisn sl segnali reali, uavia e pssibile pensare a segnali

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Funzioni goniometriche

Funzioni goniometriche 0 oobre 008. Trigonomeria. Misura degli angoli e cerchio rigonomerico. Definizione di seno, coseno, angene. Idenià fondamenali 5. Valori delle funzioni circolari 6. Formule rigonomeriche 7. Inverse delle

Dettagli

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA. 1 Fondamenti Segnali e Trasmissione

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA. 1 Fondamenti Segnali e Trasmissione SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA Fndameni Segnali e Trasmissine Perche si uilizza la rappresenazine cmplessa In naura esisn sl segnali reali, uavia e pssibile pensare a segnali che abbian

Dettagli

Il terreno conduttore elettrico

Il terreno conduttore elettrico Il teen cndutte elettic 1/35 Pemessa La cente che fluisce attaves il cp uman si chiude tamite il teen, salv il cas paticlae di una pesna islata da tea ed in cntatt simultane cn due punti del cicuit elettic

Dettagli

SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1

SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1 www.matefilia.it SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1 Dat un triangl ABC, si indichi cn M il punt medi del lat BC. Si dimstri che la mediana AM è il lug gemetric dei punti

Dettagli

Le disequazioni di primo grado

Le disequazioni di primo grado ) Disequazini di prim grad intere Le disequazini di prim grad Cnsider due plinmi A() e B(), entrambi di prim grad in. Le seguenti espressini: A()>B() A() B() A() B() A()

Dettagli

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione INRODUZIONE AI SEGNALI Fndameni Segnali e rasmissine Classificazine dei segnali ( I segnali rappresenan il cmpramen di grandezze fisiche (ad es. ensini, emperaure, pressini,... in funzine di una piu variabili

Dettagli

Unità Didattica N 08 Moto Curvilineo 1

Unità Didattica N 08 Moto Curvilineo 1 Unià Didaica N 08 M Curiline 1 Unià Didaica N 8 I mi curilinei 01) M curiline ( pian ) riferi ad un sisema di assi caresiani : le grandezze eriali espresse in cmpneni caresiane 0) La cmpsizine dei mi reilinei

Dettagli

LE FUNZIONI REALI DI VARIABILE REALE

LE FUNZIONI REALI DI VARIABILE REALE LE FUNZIONI REALI DI VARIABILE REALE 1. La deinizine di unzine reale di variabile reale.. Le rappresentazini di una unzine reale di variabile reale. La classiicazine delle unzini. 4. Il dmini delle unzini.

Dettagli

Soluzioni di gas in acqua

Soluzioni di gas in acqua Sluzini di gas in acqua Cefficieni di assrbimen di gas in acqua. Le misure sn sae effeuae alla pressine di 1 am; i valri C a (T C) sn espresse in cc di gas discili in 1 cc di H 2 O alle emperaure indicae,

Dettagli

Fase. P = 1 liquidi completamente miscibili 1 < P n liquidi parzialmente miscibili. P = n 1 < P n solidi parzialmente miscibili (soluzioni solide)

Fase. P = 1 liquidi completamente miscibili 1 < P n liquidi parzialmente miscibili. P = n 1 < P n solidi parzialmente miscibili (soluzioni solide) 1 Equilibri di fase 1. Definizine del cncett di Fase 2. Definizine del cncett di Numer di Cmpnenti Indipendenti 3. Definizine del cncett di Gradi di Libertà (Varianza) 4. Cndizini generali dell equilibri

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR 1 Luci sul palc La ptenza elettrica P assrbita da ciascuna lampada utilizzata per illuminare un palcscenic segue la seguente legge: Pr () V R = R Rr r dve V indica la tensine

Dettagli

ISTRUZIONI PER INIZIARE

ISTRUZIONI PER INIZIARE I.C. Scarpa - Scula media Cairli ISTRUZIONI PER INIZIARE Questa è la barra di menu: serve per dare tutte le infrma zini sui file che devi creare, salvare, ecc. Questa icna serve per chiudere a brd pagina

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). ppunti di gemetria.s. 15-16 1 Prf. Luigi ai PPUNTI ngli frmati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, crrispndenti, cniugati). In un triangl l angl estern è cngruente

Dettagli

Indagine delle marche di dentifricio più utilizzate ed i loro benefici.

Indagine delle marche di dentifricio più utilizzate ed i loro benefici. REPORT 5 COSCI PIETRO Indagine delle marche di dentifrici più utilizzate ed i lr benefici. 1) OBIETTIVO DELLA RICERCA Abbiam fatt un sndaggi tramite un questinari creat da ni per capire e analizzare le

Dettagli

LABORATORIO DI OTTICA GEOMETRICA Esperienza n. 1: Misura del raggio di curvatura di una superficie sferica

LABORATORIO DI OTTICA GEOMETRICA Esperienza n. 1: Misura del raggio di curvatura di una superficie sferica LABORATORIO DI OTTICA GEOMETRICA Espeienza n. 1: Misua del aggi di cuvatua di una supeficie sfeica Stumenti a dispsizine: sfemet Descizine dell espeienza: a) Deteminae l ze h dell stument pnend l sfemet

Dettagli

Capitolo 6 Configurazioni elementari di amplificatori in tecnologia CMOS

Capitolo 6 Configurazioni elementari di amplificatori in tecnologia CMOS aptl 6 nfuazn eleenta d aplfcat n tecnla MO 6. cut eneale d plazzazne del tansste l ccut eneale pe la detenazne della plazzazne del tansste MOFET è l seuente: M F. 6. cut eneale d plazzazne Tale ccut a

Dettagli

Rotocalco. Scheda prodotto DESCRIZIONE. Carta transfer di cellulosa purissima stampata in rotocalco per la nobilitazione di vari tipi di supporti.

Rotocalco. Scheda prodotto DESCRIZIONE. Carta transfer di cellulosa purissima stampata in rotocalco per la nobilitazione di vari tipi di supporti. Rtcalc Scheda prdtt Date 30.06.2016 Rev.4 DESCRIZIONE Carta transfer di cellulsa purissima stampata in rtcalc per la nbilitazine di vari tipi di supprti. SUPPORTO - pes di base: 20 / 30 / 40 g/m² - altezza

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Mode Locking. Generazione di impulsi laser di brevissima durata temporale. Simone Cialdi

Mode Locking. Generazione di impulsi laser di brevissima durata temporale. Simone Cialdi Mde Lckin Generazine di ipulsi laser di brevissia duraa eprale Sine Cialdi Ouline nalisi delle ulie isure Sper delle scillazini di rilassaen Mdulare O per Q-swich Misura del delay ie per la frazine dell

Dettagli

IL POTENZIALE ELETTRICO

IL POTENZIALE ELETTRICO IL OTNZIAL LTTRICO ssend la fza di Culmb una fza centale, alla è una fza cnsevativa (si icda che una fza si dice cnsevativa se il lav che cmpie su un cp che si spsta da A a B nn dipende dalla paticlae

Dettagli

PROGETTO E VERIFICA DI GENERATORI D ONDA TRIANGOLARE E QUADRA CON FREQUENZA E AMPIEZZA FISSE E CON FREQUENZA ED AMPIEZZA REGOLABILI

PROGETTO E VERIFICA DI GENERATORI D ONDA TRIANGOLARE E QUADRA CON FREQUENZA E AMPIEZZA FISSE E CON FREQUENZA ED AMPIEZZA REGOLABILI POGEO E EIFICA DI GENEAOI D ONDA IANGOLAE E QUADA CON FEQUENZA E AMPIEZZA FISSE E CON FEQUENZA ED AMPIEZZA EGOLABILI POGEO E EIFICA DI UN GENEAOE D ONDA IANGOLAE E QUADA A FEQUENZA ED AMPIEZZA FISSA Schema

Dettagli

Equazioni. Prerequisiti. Definizioni e concetti generali. Incognita Lettera (di solito X) alla quale è possibile sostituire dei valori numerici

Equazioni. Prerequisiti. Definizioni e concetti generali. Incognita Lettera (di solito X) alla quale è possibile sostituire dei valori numerici Scmpsizini plinmiali Calcl del M.C.D. e del m.c.m. tra plinmi P), cn P) plinmi di grad qualsiasi Equazini Prerequisiti Definizini e cncetti generali Incgnita Lettera di slit ) alla quale è pssibile sstituire

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Unità Didattica N 28

Unità Didattica N 28 Unità Didattica N 8 Estremi,Asintti,lessi del graic di una unzine Unità Didattica N 8 Estremi, asintti, lessi del graic di una unzine ) Estremi delle unzini derivabili ) Prprietà degli estremi delle unzini

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO RELTÀ E MODELLI SCHED DI LVORO La rampa di access Per accedere a un edifici pubblic ci sn 6 gradini alti 6 cm e prfndi 0 cm; è necessari cstruire una rampa di access per carrzzine. La nrmativa prevede

Dettagli

A. Relazione illustrativa

A. Relazione illustrativa Cntrattintegrativecnmicperl utilizzazinedelfnddelpersnalenn dirigenzialeann2012sttscrittil24settembre2012.relazineillustrativae tecnicfinanziaria(articl 40, cmma 3 sexies, Decret Legislativ n.165/2001;

Dettagli

si abbia AC þ AD ¼ 2kr. Posto CAB b ¼ 2x, con 0 x 4, si ottiene l equazione 2 cos2 x þ cos 2 ¼ x, si ottiene l equazione 2 sin x þ una soluzione per

si abbia AC þ AD ¼ 2kr. Posto CAB b ¼ 2x, con 0 x 4, si ottiene l equazione 2 cos2 x þ cos 2 ¼ x, si ottiene l equazione 2 sin x þ una soluzione per Esecizi Poblemi di igonomeia con discussione Poblemi sui iangoli eangoli 1 Considea una semiciconfeenza di diameo e aggio uniaio. Deemina su di essa un uno P in modo che, dea M la sua oiezione oogonale

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

( ) ( ) d x = ω. dsenθ dθ. d 2 senθ dθ 2. = d dθ. = sen θ. = d cosθ dθ. d 2 cosθ dθ. dcosθ dθ. = cosθ dθ. = d( senθ) = d sen θ dθ

( ) ( ) d x = ω. dsenθ dθ. d 2 senθ dθ 2. = d dθ. = sen θ. = d cosθ dθ. d 2 cosθ dθ. dcosθ dθ. = cosθ dθ. = d( senθ) = d sen θ dθ Mt armnic Cnsideriam ra il cas in cui l'accelerazine dipenda dalla psizine del punt materiale, in particlare esaminerem il cas in cui l'accelerazine è prprzinale all'ppst della psizine attravers la cstante

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

, controllando che risulta: () 1

, controllando che risulta: () 1 Sessione suppleiva di odinameno 008 009 ESAME DI STATO DI LICEO SCIENTIFICO Indiizzo M: odinameno liceo della comunicazione CORSO DI ORDINAMENTO Sessione suppleiva 009 Tema di MATEMATICA Il candidao isolva

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

Moti relativi. dt dt dt. r r

Moti relativi. dt dt dt. r r P Moi elaivi Se i due sisemi aslano solo fa di loo, i vesoi non vaiano nel empo. = + ' d d d' v = = + = v + d d d Leggi di asfomazione di velocià e acceleazione P P pe due sisemi che aslano l uno ispeo

Dettagli

2. Cinematica. - Legge oraria: x(t) (cioè la funzione che associa ad ogni istante t (secondi) una certa posizione x (metri))

2. Cinematica. - Legge oraria: x(t) (cioè la funzione che associa ad ogni istante t (secondi) una certa posizione x (metri)) 2. Cinemaica Moo eilineo - Definizioni elemenai Definio un asse di ifeimeno x pe la descizione del moo di un puno (pe il momeno non si considea la sua massa), si definiscono: - Legge oaia: x() (cioè la

Dettagli

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Corso di Fisica CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Docente: Deborah Lacitignola Dipartimento di Scienze Motorie e della Salute Università di Cassino Email: d.lacitignola@unicas.it

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

4 C. Prati. Il teorema del campionamento

4 C. Prati. Il teorema del campionamento 4 C. Prati Il terema del campinament Esercizi di verifica degli argmenti svlti nel quart capitl del test Segnali e Sistemi per le Telecmunicazini McGraw-Hill. ESERCIZIO Sia dat il seguente segnale temp

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

VERIFICA IN CONTINUA E IN ALTERNATA DEL COMPORTAMENTO DI UN CONDENZATORE

VERIFICA IN CONTINUA E IN ALTERNATA DEL COMPORTAMENTO DI UN CONDENZATORE VIFICA IN CONTINUA IN ALTNATA DL COMPOTAMNTO DI UN CONDNZATO Un cndensatre, cstituit da due armature metalliche parallele separate da un dielettric, è un bipl in grad di immagazzinare energia, caricandsi,

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

LE LEGGI GEOMETRICHE LA CONDIZIONE DI PARALLELISMO

LE LEGGI GEOMETRICHE LA CONDIZIONE DI PARALLELISMO LE LEGGI GEOMETRICHE LA CONDIZIONE DI PARALLELISMO 01. CONSIDERAZIONI GENERALI ED INTRODUTTIVE Stabilire cndizini, in generale, vul dire definire e fissare alcune nrme da rispettare e/ imprre in un dat

Dettagli

32. Significato geometrico della derivata. 32. Significato geometrico della derivata.

32. Significato geometrico della derivata. 32. Significato geometrico della derivata. 32. Significato geometico della deivata. Deivata Definizione deivata di una funzione in un punto (30) Definizione deivata di una funzione (30) Significato della deivata Deivata in un punto (32) Deivata

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà di Ingegneia Poa in Itinee di Fisica I (a. a. 004-005) 6 Noebe 004 COPITO C Esecizio n. 1 Un copo di assa è appoggiato su di un piano oizzontale scabo, con coefficiente di attito dinaico µ d. Coe

Dettagli

8. REGRESSIONE E CORRELAZIONE

8. REGRESSIONE E CORRELAZIONE UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Crs di Laurea in Scienze per l'investigazine e la Sicurezza 8. REGRESSIONE E CORRELAZIONE Prf. Maurizi

Dettagli

DIODO E RADDRIZZATORI DI PRECISIONE

DIODO E RADDRIZZATORI DI PRECISIONE OO E AZZATO PECSONE raddrzzar ( refcar) sn crcu mpega per la rasfrmazne d segnal bdreznal n segnal undreznal. Usand, però, dd per raddrzzare segnal, s avrà l svanagg d nn per raddrzzare segnal la cu ampezza

Dettagli

1.1 LA RADIOATTIVITÀ

1.1 LA RADIOATTIVITÀ 1.1 LA RADIOATTIVITÀ Il fenmen della radiaivià fu scper da H. Bequerel nel 1896 e cnsise nel fa che alcuni ispi di elemeni esiseni in naura nn sn sabili ma capaci di disinegrarsi rasfrmandsi in ispi di

Dettagli

Fasci di rette nel piano affine

Fasci di rette nel piano affine Fasci di rette nel piano affine Definizione Data una retta r 0 di equazione a 0 x + b 0 y + c 0 = 0, si chiama fascio improprio di sostegno r 0 la totalità delle rette parallele a r 0, inclusa r 0. F r0

Dettagli

PROBABILITÀ' ED INFERENZA STATISTICA (10 cfu) (COSTANZO) L S. in Economia Azienda/e - Appello del i 6/01/20 i 2

PROBABILITÀ' ED INFERENZA STATISTICA (10 cfu) (COSTANZO) L S. in Economia Azienda/e - Appello del i 6/01/20 i 2 PRBBILITÀ' ED INFERENZ STTISTIC (1 cfu) (CSTNZ) L S. in Ecnmia zienda/e - ppell del i 6/1/2 i 2 Cgnme Nme Matr Firma ESERCIZI 1 In vista del lanci di un nuv mdell di cellulare, una nta azienda del settre,

Dettagli

LA TEORIA IN SINTESI LA GEOMETRIA ANALITICA DELLO SPAZIO

LA TEORIA IN SINTESI LA GEOMETRIA ANALITICA DELLO SPAZIO ESERCII CAPIOLO 6. LA GEOMERIA ANALIICA DELLO SPAIO LA EORIA IN SINESI LA GEOMERIA ANALIICA DELLO SPAIO. LE COORDINAE CARESIANE NELLO SPAIO La disana fra due puni A e B è: AB = ( - + ( - + ( -. Le coordinae

Dettagli

SOMMATORI. Il circuito di figura, detto sommatore invertente, fornisce in uscita una combinazione lineare dei segnali d ingresso, del tipo V

SOMMATORI. Il circuito di figura, detto sommatore invertente, fornisce in uscita una combinazione lineare dei segnali d ingresso, del tipo V SOMMATOI SOMMATOE INETENTE Il circuit di figura, dett smmatre invertente, frnisce in uscita una cmbinazine lineare dei segnali d ingress, del tip A A A. Essend un circuit lineare in cui agiscn più cause,

Dettagli

IPSSAR "PIETRO PIAZZA" - PALERMO Orario provvisorio dal 06/10/ BB

IPSSAR PIETRO PIAZZA - PALERMO Orario provvisorio dal 06/10/ BB 1 A 1 AA 1 B 1 BB 1 C 1 CC 1 D 1 DD Teresi R. () Teresi R. () P. Teresi R. () P. Teresi R. () Teresi R. () Teresi R. () Pizzolato (4h) Pizzolato (4h) Orario Facile 8 Copyright 1999-2014 mathema software

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

Delibera 254/04/CSP rilevazione indicatori

Delibera 254/04/CSP rilevazione indicatori 1 - Temp di frnitura dell'allacciament ale Obbligatri Delibera 254/4/CSP rilevazine indicatri OPERATORE: EOLO SpA PERIODO DI RILEVAZIONE DEI DATI: Secnd Semestre 216 DENO. INDICATORE / SERVIZIO CUI SI

Dettagli

1 Equilibrio statico nei corpi deformabili

1 Equilibrio statico nei corpi deformabili Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)

Dettagli

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE. Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti

Dettagli

Delibera 254/04/CSP rilevazione indicatori

Delibera 254/04/CSP rilevazione indicatori Delibera 254/4/CSP rilevazine indicatri OPERATORE: NGI SpA PERIODO DI RILEVAZIONE DEI DATI: Secnd Semestre 215 DENO. INDICATORE / SERVIZIO CUI SI APPLICA ISURE INDICAZIONI OBBLIGATORIE 1 - Temp di frnitura

Dettagli

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e

Dettagli

N09 (Quesito Numerico)

N09 (Quesito Numerico) N09 (Quesio Numerico): La "legge di graviazione universale" afferma che l'inerazione ra due oggei assimilabili a puni maeriali, di masse m 1 ed m 2 posi a disanza r 12 si esplica ramie una forza il cui

Dettagli

Nota di rilascio protocollo client / server. Vers. 5.02.02

Nota di rilascio protocollo client / server. Vers. 5.02.02 30 gennai 2013 Nta di rilasci prtcll client / server. Vers. 5.02.02 referente Marc Stanisci Stefan Cciancich rivlt a biettiv autrizzat IAQ-AQ-MD-01-bis Pag.1 di 16 30 gennai 2013 SOMMARIO 1. TABELLA ANAGRAFICA...

Dettagli

CINEMATICA. Concetto di moto

CINEMATICA. Concetto di moto Uniersià degli Sudi di Torino D.E.I.A.F.A. CINEMATICA La cinemaica è una branca della meccanica classica che si occupa dello sudio del moo dei corpi senza preoccuparsi delle cause che lo deerminano. Tecnicamene

Dettagli

Ingegneria dei Sistemi Elettrici_5c_1

Ingegneria dei Sistemi Elettrici_5c_1 ngegnei dei Sistemi Elettici_5c_1 Esempi di cmpi mgnetici e clcl di induttnze. M. Usi ngegnei dei sistemi Elettici_5c_1 1 Cndutte ettiline indefinit Si cnsidei un cndutte mgene cilindic ettiline di gnde

Dettagli

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola:

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola: UNIVERSITÀ DEGLI STUDI DI VERONA CORSO DI LAUREA IN SCIENZE E TECNOLOGIE VITICOLE ED ENOLOGICHE Esame di MATEMATICA San Flrian, 08/09/07 Infrmazini persnali Si prega di indicare il prpri nme, cgnme e numer

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

Esercizio 19 - tema di meccanica applicata e macchine a fluido- 2001

Esercizio 19 - tema di meccanica applicata e macchine a fluido- 2001 Esercizi 19 - tema di meccanica appicata e macchine a fuid- 001 Si fa iptesi che durante un adeguat perid di prva di un autvettura, vengan segnaate rtture de fust dee biee veci in prssimità de piede. Dp

Dettagli

3.2.6 Modifica ordine di visualizzazione delle aree... 12 3.2.7 Griglia... 12 4 Modelli... 12 5 Prerequisiti... 13

3.2.6 Modifica ordine di visualizzazione delle aree... 12 3.2.7 Griglia... 12 4 Modelli... 12 5 Prerequisiti... 13 Manuale utente Smmari 1 Libreria... 5 1.1 Elenc libri... 5 1.2 Nuv libr... 5 1.3 Apri libr... 5 1.4 Dettagli Libr... 5 1.5 Leggi libr... 5 1.6 Elimina libr... 6 1.7 Pubblica/Cndividi libr... 6 1.8 Imprta

Dettagli

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U Prendiamo in considerazione le figure geometriche nel piano, cioè le figure piane, intendendo con questo termine un qualsiasi insieme di punti appartenenti a uno stesso piano. Disegniamo più segmenti consecutivi:

Dettagli

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 28/29 (aggiornaa al 2/9/28) 2 Proprieà della rasformaa

Dettagli

La retta è il luogo geometrico dei punti che soddisfano la seguente relazione

La retta è il luogo geometrico dei punti che soddisfano la seguente relazione RETTE Definizine intuitiva La retta linea retta è un dei tre enti gemetrici fndamentali della gemetria euclidea. Viene definita da Euclide nei sui Elementi cme un cncett primitiv. Un fil di ctne di spag

Dettagli

Circonferenza e cerchio

Circonferenza e cerchio Cerchio e circonferenza - 1 Circonferenza e cerchio La circonferenza è il luogo geometrico dei punti del piano equidistanti da un unico punto detto centro. Il cerchio è l insieme costituito dai punti appartenenti

Dettagli

Installazione e creazione sito

Installazione e creazione sito Installazine e creazine sit INSTALLAZIONE Dppi clic sul file «setup.exe» Prima finestra di installazine Cliccare su «Successiv» Secnda finestra di installazine In questa finestra è pssibile: Scegliere

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli