Modello del Gruppo d Acquisto

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modello del Gruppo d Acquisto"

Transcript

1 InVMall - Intellgent Vrtual Mall Modello del Gruppo d Acqusto Survey L attvtà svolta per la realzzazone dell attvtà B7 Defnzone del Gruppo d Acqusto e de Relatv Algortm d Inferenza, prevsta dal captolato all nterno dell obettvo realzzatvo B, ha avuto come obettvo la defnzone d un modello teorco che descrve l gruppo d acqusto, ovvero un gruppo d clent del mall che hanno nteress analogh, e le tecnche/algortm d nferenza per la deduzone delle nformazon mplcte del gruppo stesso, al fne d fornre funzonaltà nnovatve per gl utent del sstema. Il documento n oggetto llustra l modello realzzato che, come mostrato n Fgura 1, è naturalmente relazonato con gl altr modell teorc defnt n InVMall, n partcolare quello del domno da cu rcava le nformazon su prodott e le categore, e quello d vendta, da cu rcava le nformazon sul vendtor. Fgura 1 Relazon con gl altr modell teorc Il modello presenta la defnzone d due tpologe d gruppo: Il gruppo tematco che rappresenta un aggregazone d utent ntorno al tema del gruppo. Tale tema è defnto come una o pù categore d prodotto (defnte nel modello del domno) o l sngolo prodotto; Il gruppo d acqusto d prodotto che rappresenta un aggregazone d utent nteressat all acqusto d un determnato prodotto proposto da un vendtore al fne d ottenere un vantaggo economco (tpcamente uno sconto sgnfcatvo sul prezzo d lstno). Per ognuna delle tpologe d gruppo sono state defnte le nformazon esplcte, coè quelle dcharate espressamente dall utente, e quelle mplcte, coè estratte con apposte tecnche. MoMA Pagna 1/6

2 InVMall - Intellgent Vrtual Mall Per l gruppo tematco, oltre alla defnzon delle nformazon esplcte qual nome, descrzone, tema ecc., l modello prevede le seguent nformazon mplcte per le qual sono state defnte le tecnche per calcolarle: Utltà potenzale d un nuovo gruppo tematco: l sstema, analzzando le preferenze (esplcte ed mplcte) degl utent, ndca qual possono essere grupp tematc da creare rtenut potenzalmente utl per gl utent; Utltà del gruppo tematco per l utente: l sstema calcola l ndce d utltà del gruppo tematco rspetto agl utent; Utltà del gruppo tematco per un prodotto: l sstema calcola l ndce d utltà del gruppo tematco rspetto a prodott. Sntetcamente, l processo d calcolo dell utltà potenzale d un gruppo tematco, s basa sul seguente flusso: - 1 step Identfcazone de tem canddat; - 2 step - Calcolo dell utltà parzale de tem canddat; - 3 step - Flterng e rankng de tem canddat. L dentfcazone de tem canddat consste nel selezonare prodott per qual non esste gà un gruppo tematco drettamente correlato ed è stata realzzata utlzzando la tecnca d Fuzzy Formal Concept Analyss. Tale tecnca è basata su una teora matematca che permette d costrure una gerarcha de concett espress da un fuzzy formal context, d oggett (.e. prodott e/o tem esstent) e attrbut (.e., categore), descrtto attraverso una matrce booleana. In dettaglo la tecnca segue seguent pass: Costruzone del Fuzzy Formal Context; Costruzone del Fuzzy Lattce. Fgura 2 Lattce estratto MoMA Pagna 2/6

3 InVMall - Intellgent Vrtual Mall Alla fne del processo l fuzzy lattce costruto (ved esempo n Fgura 2) conterrà l nseme d tem canddat selezonat. Per ogn tem canddato ne verrà calcolata l utltà parzale dstnguendo cas per qual l tema è rappresentato dal sngolo prodotto oppure da una o pù categore. Nel prmo caso s utlzzerà la formula seguente: u parzale ( T ) u U u( p ) dove T = p (prodotto -esmo), U ={u 1,, u n } l nseme d utent del mall e u(p ) è l utltà Utente/Prodotto defnta nel modello del clente. Nel caso, nvece, n cu l tema è composto da una o pù categore l sstema tene conto d due fattor: ratng mplcto delle sngole categore che compongono l tema (calcolat nel Modello del Domno) che vengono utlzzate per calcolare l ratng medo (r medo ) del tema smlartà tra tem canddat e tem esstent. U In questo modo l utltà parzale vene calcolata con la seguente formula u parzale ( T ) r ( T ) sm( T, Tˆ) medo L ultmo passo per l calcolo dell utltà potenzale consste nel fltrare e classfcare (con un punteggo) tem canddat ndvduat. Dopo aver calcolato l utltà parzale, l sstema fltra rsultat estraendo tutt que tem (.e., categore) l cu valore d utltà parzale è superore ad un certo valore d threshold, τ, prefssato. Infne, per calcolare l utltà potenzale, l sstema terrà conto degl utent potenzalmente nteressat a quel tema (# utent ) utlzzando la seguente formula: u ( T ) u ( T ) # parzale Ordnando n ordne decrescente tal valor, s ottene l rankng de tem canddat. utent Il processo d calcolo dell utltà del gruppo tematco per l utente, nvece, è basato sull aggregazone pesata degl Indc d utltà (descrtto nel modello del clente) degl utent rspetto a prodott classfcat con le categore appartenent alle tematche del gruppo, come llustrato sntetcamente n Fgura 3. MoMA Pagna 3/6

4 InVMall - Intellgent Vrtual Mall Fgura 3 Schema del calcolo dell utltà potenzale del gruppo tematco per un utente Nel caso del gruppo tematco l cu tema concde con una categora o un nseme d categore, per calcolare l utltà potenzale s consdera l nseme de prodott che appartengono alla categora/nseme d categore selezonate, ordnandol n base al numero d categore che coprono rspetto a quelle selezonate (nel caso d gruppo tematco su un nseme d categore). Qund selezonando prm n prodott estratt s va a calcolare, per ogn utente, un utltà meda facendo la somma delle utltà per ogn prodotto selezonato e dvdendo per l numero d prodott. Tutto questo vene sntetzzato nella seguente formula: data u (p) la funzone d utltà del prodotto p per l utente u defnta nel modello clente, la funzone d utltà del gruppo tematco G rspetto all utente U j (e coè l valore nserto nella poszone, j della matrce d adacenza) è calcolata come: u,j = u (p y ) / m p y P ed m è la cardnaltà d P Banalmente nel caso d un gruppo tematco l cu tema concde con un prodotto specfco, l utltà potenzale equvale all utltà del prodotto rspetto agl utent del mall (matrce d adacenza Utente/Prodotto defnta nel modello del Clente). Il processo d calcolo dell utltà del gruppo tematco per un prodotto, nfne, è basato sull aggregazone dell ndce d utltà degl utent che partecpano al gruppo tematco rspetto al prodotto n questone, pesato rspetto alle categore con cu l prodotto è classfcato e rspetto al fatto che esse faccano parte o meno della tematca del gruppo. Il processo è llustrato grafcamente n Fgura 4. MoMA Pagna 4/6

5 InVMall - Intellgent Vrtual Mall Fgura 4 Schema del calcolo dell utltà del gruppo tematco per un prodotto La funzone d utltà tra l Gruppo Tematco -esmo e l prodotto j-esmo (qund l elemento n poszone, j della matrce d adacenza Gruppo Tematco/prodotto) sarà calcolato come segue: p,j = weght(pj) * uk(pj) / m uk U,s ed m è la cardnaltà d U,s Analogamente, per l gruppo d acqusto d prodotto, oltre alla defnzon delle nformazon esplcte qual nome, descrzone, prodotto n vendta ecc., l modello prevede le seguent nformazon mplcte per le qual sono state defnte le tecnche per calcolarle: Utltà potenzale d un gruppo d acqusto d prodotto Utltà del gruppo d acqusto d prodotto per un clente Utltà del gruppo d acqusto d prodotto rspetto ad un gruppo tematco Le prme due utltà vengono calcolate utlzzando l ndce d preferenza clente/prodotto calcolato nel modello clente mentre l ultma vene calcolata utlzzando l calcolo dell utltà del gruppo tematco rspetto al prodotto oggetto del gruppo d acqusto d prodotto che è un nformazone mplcta calcolata per l gruppo tematco. Nel documento vengono presentat, a ttolo esemplfcatvo, esemp d utlzzo d alcune delle tecnche per l calcolo delle nformazon mplcte descrtte sopra al fne d fornre funzonaltà avanzate al sstema qual: Suggerment personalzzat d grupp tematc agl utent del sstema Suggerment d grupp d acqusto d prodotto ne grupp tematc MoMA Pagna 5/6

6 InVMall - Intellgent Vrtual Mall Infne sono presentate delle lnee guda alla rappresentazone del modello, che rporta alcune consderazon volte a gudare le scelte tecnologche da applcare, eventualmente, nelle successve fas mplementatve per la rappresentazone del modello del gruppo d acqusto. Concludendo, tale modello consente d rappresentare l aggregazone d clent con nteress analogh e fornsce tecnche che consentono d desumere, a partre dalle nformazon esplcte, le nformazon mplcte utl per la realzzazone de servz nnovatv che InVMall ntende offrre. MoMA Pagna 6/6

Tecniche di Composizione Personalizzata

Tecniche di Composizione Personalizzata Tecnche d Composzone Personalzzata Survey Il documento n essere costtusce la sntes del delverable dell attvtà C.3, ossa Defnzone e Valdazone delle Tecnche d Composzone Personalzzata prevsta nell ambto

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04 UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso d Allocazone de centr d servzo SCG-E04 Le fas del processo d msurazone de cost Fase 1 Rlevazone de cost Fase 2 Assegnazone de cost Cost drett (Drect cost) Attrbuzone

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

ISTRUZIONE OPERATIVA:

ISTRUZIONE OPERATIVA: Pagna 1 d 7 SETTORE LI CA calcestruzz AG aggregat LM LS AC AP da c. a. p. AL Acca da lamnat e INDICE: 1) Scopo 2) Campo d applcazone 3) Norma d rfermento 4) Defnzon e smbol 5) Responsabltà 6) Apparecchature

Dettagli

Economia del turismo

Economia del turismo Unverstà degl Stud d Caglar Facoltà d Economa Corso d Laurea n Economa e Gest. de Serv. Turstc A.A. 2013-2014 Economa del tursmo Prof.ssa Carla Massdda Sezone 5 ANALISI MICROECONOMICA DEL TURISMO Argoment

Dettagli

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro NUMERI GRANDI DI FIBONACCI come trovare velocemente loro esatt valor numerc Crstano Teodoro crstanoteodoro@vrglo.t Sommaro: n questo artcolo vene proposto, n alternatva al metodo classco per l calcolo

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

VISUALIZZAZIONE INTERATTIVA DI SUPERFICI CON JAVAVIEW

VISUALIZZAZIONE INTERATTIVA DI SUPERFICI CON JAVAVIEW UNIVERSITA DEGLI STUDI DI TORINO Facoltà d Scenze M.F.N. Corso d laurea n Matematca VISUALIZZAZIONE INTERATTIVA DI SUPERFICI CON JAVAVIEW Relatore: Canddata: Sergo Console Francesca Marmora La vsualzzazone

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

PORTALE CLIENTI GUIDA INTRODUTTIVA RAPIDA

PORTALE CLIENTI GUIDA INTRODUTTIVA RAPIDA Shell Chemcals PORTLE CLIENTI GUID INTRODUTTIV RPID CCEDI CONTENUTI GUID LL INTERFCCI UTENTE PROCESSI DI GESTIONE DEGLI ORDINI REGISTRI E REPORTING Schermata nzale Effettuare ordn I me ordn sul portale

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso d Economa Applcata a.a. 2007-08 II modulo 16 Lezone Programma 16 lezone Democraza rappresentatva e nformazone Rcaptolando L agenza e l mercato (Arrow, 1986) Lezone 16 2 Introduzone Governo e Parlamento

Dettagli

COMANDO PROVINCIALE VIGILI DEL FUOCO DI MILANO ALLEGATA AL PROGETTO DI LAVORI DI COSTRUZIONE NUOVA PALESTRA SCOLASTICA POLIVALENTE

COMANDO PROVINCIALE VIGILI DEL FUOCO DI MILANO ALLEGATA AL PROGETTO DI LAVORI DI COSTRUZIONE NUOVA PALESTRA SCOLASTICA POLIVALENTE COMUNE DI SEREGNO PROVINCIA DI MONZA BRIANZA COMANDO PROVINCIALE VIGILI DEL FUOCO DI MILANO ALLEGATA AL PROGETTO DI LAVORI DI COSTRUZIONE NUOVA PALESTRA SCOLASTICA POLIVALENTE ATTIVITÀ NORMATA (D.M. 18.03.1996

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato:

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato: ESERCIZIO N. 1 Il canddato proceda a calcolare l tasso d congrua remunerazone reale dell azenda Gess al 31.12.2003 applcando l CAPM e l WACC della stessa azenda; dat d cu s dspone sono seguent: a) rendmento

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

ISTRUZIONE OPERATIVA:

ISTRUZIONE OPERATIVA: Pagna 1 d 5 legant da Acca da INDICE: 1) Scopo 2) Campo d applcazone 3) Norma d rfermento 4) Defnzon e smbol 5) Responsabltà 6) Apparecchature 7) Modaltà esecutve 8) Esposzone de rsultat calcestruzz aggregat

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry CEFRIEL Consorzo per la Formazone e la Rcerca n Ingegnera dell Informazone Poltecnco d Mlano s Sommator: x y c x y c x y c x y c x y c Archtetture artmetche s x y Sommator:, Rpple Carry Sommator: Carry

Dettagli

Corso di Architettura (Prof. Scarano) 25/03/2002

Corso di Architettura (Prof. Scarano) 25/03/2002 Corso d rchtettura (Prof. Scarano) // Un quadro della stuazone Lezone Logca Dgtale (): Crcut combnator Vttoro Scarano rchtettura Corso d Lauren Informatca Unverstà degl Stud d Salerno Input/Output Regstr

Dettagli

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia Poltca Economca E. Marchett 1 Approfondmento Captolo 4 efnzon esstono due tp d grandezze n economa Grandezze Flusso: una quanttà che s forma n un ntervallo d tempo (es.: reddto, rsparmo, nvestmento ) Grandezze

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

AVVISO PUBBLICO Costituzione di short list: Servizio di pulizie presso l Istituto di Ricerca Biogem s.c.ar.l. Via Camporeale, Ariano Irpino (AV)

AVVISO PUBBLICO Costituzione di short list: Servizio di pulizie presso l Istituto di Ricerca Biogem s.c.ar.l. Via Camporeale, Ariano Irpino (AV) AVVISO PUBBLICO Costtuzone d short lst: Servzo d pulze presso l Isttuto d Rcerca Camporeale, Arano Irpno (AV) In esecuzone della Determna Presdenzale n. 15/103 del 10/09/2015, la Bogem Scarl ntende procedere

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

InfoCenter Product A PLM Application

InfoCenter Product A PLM Application genes d un fra o Gestone de crcolazone dell'nformazone sa crcoscrtta entro Pdetermnat ambt settoral. L'ntegrazone de sstem e de odpartment azendal rchede nuove modaltà operatve, nuove t competenze e nuov

Dettagli

Le decisioni di gruppo in materia di trasporti: teorie, modelli, applicazioni Romeo Danielis e Lucia Rotaris

Le decisioni di gruppo in materia di trasporti: teorie, modelli, applicazioni Romeo Danielis e Lucia Rotaris Le decson d gruppo n matera d trasport: teore, modell, applcazon Romeo Danels e Luca Rotars Unverstà degl Stud d Treste Il decsore ndvduale solato della mcroeconoma neoclassca non è la norma spesso: le

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

CONFORMITA DEL PROGETTO

CONFORMITA DEL PROGETTO AMGA - Azenda Multservz S.p.A. - Udne pag. 1 d 6 INDICE 1. PREMESSA...2 2. CALCOLI IDRAULICI...3 3. CONFORMITA DEL PROGETTO...6 R_Idr_Industre_1 Str.doc AMGA - Azenda Multservz S.p.A. - Udne pag. 2 d 6

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

PIANIFICAZIONE DEI TRASPORTI

PIANIFICAZIONE DEI TRASPORTI Unverstà d Caglar DICAAR Dpartmento d Ingegnera Cvle, Ambentale e archtettura Sezone Trasport PIANIFICAZIONE DEI TRASPORTI Eserctazone su modell d generazone A.A. 2016-2017 Ing. Francesco Pras Ing. Govann

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Il Ministro delle Infrastrutture e dei Trasporti

Il Ministro delle Infrastrutture e dei Trasporti Il Mnstro delle Infrastrutture e de Trasport VISTO l decreto legslatvo 30 aprle 1992, n. 285, come da ultmo modfcato dal decreto legslatvo 18 aprle 2011, n. 59, recante Attuazone delle drettve 2006/126/CE

Dettagli

Telefoni Avaya T3 collegabile a Integral 5 Configurazione e utilizzo sala conferenze Integrazione del manuale utente

Telefoni Avaya T3 collegabile a Integral 5 Configurazione e utilizzo sala conferenze Integrazione del manuale utente Telefon Avaya T3 collegable a Integral 5 Confgurazone e utlzzo sala conferenze Integrazone del manuale utente Issue 1 Integral 5 Software Release 2.6 Settembre 2009 Utlzzo sala conferenze Utlzzo sala conferenze

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

8.2 CORSO DI FORMAZIONE

8.2 CORSO DI FORMAZIONE SRVeSS Sstema d Rfermento Veneto per la Scurezza nelle Scuole La runone perodca 8.2 CORSO DI FORMAZIONE RAPPRESENTANTI DEI LAVORATORI PER LA SICUREZZA EX D.Lgs. 81/08 LA RIUNIONE PERIODICA DI SICUREZZA

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Giovanni Buti STIMA DELL INCERTEZZA DI MISURA GB INTERTEK LABTEST

Giovanni Buti STIMA DELL INCERTEZZA DI MISURA GB INTERTEK LABTEST Govann But STIM DELL INCERTEZZ DI MISUR GB008-0405 INTERTEK LBTEST FIRENZE 8 PRILE 005 INDICE DEI CONTENUTI o bstract Scopo e campo d pplcazone..p 3 o Document d Rfermento...p 3 o Premessa..p 3 o nals.

Dettagli

INDAGINE ESAUSTIVA O CAMPIONARIA?

INDAGINE ESAUSTIVA O CAMPIONARIA? INDAGINE ESAUSTIVA O CAMPIONARIA? S rcorre certamente all ndagne per campone quando la rlevazone completa è mpossble e quando la determnazone delle modaltà possedute dalle untà n esame ne comporta la dstruzone

Dettagli

Verifiche di congruità tecnica delle offerte rispetto ai margini

Verifiche di congruità tecnica delle offerte rispetto ai margini Dsposzone tecnca d funzonaento Pagna 1 d 7 Dsposzone tecnca d funzonaento n. 10 rev.1 MPE (a sens dell artcolo 4 del Testo ntegrato della Dscplna del ercato elettrco, approvato con decreto del Mnstro delle

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplice Radiazioni ionizzanti

DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplice Radiazioni ionizzanti DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplce 21.01 Radazon onzzant TITOLO Interconfronto Consorzo Eraclto Msure d rateo d dose gamma n campo - Cuncolo esploratvo de la Maddalena Allneamento msure

Dettagli

MISURA DELLA FOCALE POSTERIORE DI UNA LENTE BICONVESSA.

MISURA DELLA FOCALE POSTERIORE DI UNA LENTE BICONVESSA. MISURA DELLA FOCALE POSTERIORE DI UNA LENTE BICONVESSA. Spermentatore: Marco Erculan (n matrcola: 4549 V.O Durata dell espermento:,5 ore ( dalle ore 0:30 alle ore :00 Data d effettuazone: Venerd 6 Marzo

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Anals de dat 6 Y Rcaptolo generale Dato un nsee d sure sperental d una varable dpendente al varare d una varable ndpendente è possble edante l crtero de

Dettagli

Metodologia per l individuazione di aree e linee critiche sulla rete in alta e altissima tensione ai sensi della delibera ARG/elt 99/08 e s.m.i.

Metodologia per l individuazione di aree e linee critiche sulla rete in alta e altissima tensione ai sensi della delibera ARG/elt 99/08 e s.m.i. ag. 1 d 6 Metodologa per l ndvduazone d aree e lnee crtche sulla rete n a e ssma tensone a sens della delbera RG/elt 99/08 e s.m.. SOMMRIO 1. Rerment... 2 2. remessa... 2 3. Ipotes... 2 4. Metodologa...

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Segmentazione di immagini

Segmentazione di immagini Segmentazone d mmagn Introduzone Segmentazone: processo d partzonamento d un mmagne n regon dsgunte e omogenee. Esempo d segmentazone. Tratta da [] Introduzone (def. formale ( Sa R l ntera regone spazale

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

Allegato A. Modello per la stima della produzione di una discarica gestita a bioreattore

Allegato A. Modello per la stima della produzione di una discarica gestita a bioreattore Modello per la stma della produzone d una dscarca gestta a boreattore 1 Produzone d Bogas Nella letteratura tecnca sono stat propost dvers modell per stmare la produzone d bogas sulla base della qualtà

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

COLLUSIONE NELLE GARE D APPALTO DEI SERVIZI PUBBLICI LOCALI: Un analisi empirica

COLLUSIONE NELLE GARE D APPALTO DEI SERVIZI PUBBLICI LOCALI: Un analisi empirica UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN SCIENZE STATISTICHE ECONOMICHE TESI DI LAUREA COLLUSIONE NELLE GARE D APPALTO DEI SERVIZI PUBBLICI LOCALI: Un anals emprca

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

ELETTRONICA dei SISTEMI DIGITALI Universita di Bologna, sede di Cesena. Fabio Campi

ELETTRONICA dei SISTEMI DIGITALI Universita di Bologna, sede di Cesena. Fabio Campi ELETTROICA de SISTEMI DIGITALI Unversta d Bologna, sede d Cesena Fabo Camp Aa 3-4 Artmetca Computazonale S studano possbl archtetture hardware (ASIC) per realzzare operazon Matematche su segnal compost

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Scenari di frenata per il comparto elettrico: il nodo della valorizzazione del prodotto

Scenari di frenata per il comparto elettrico: il nodo della valorizzazione del prodotto CRESME Scenar d frenata per l comparto elettrco: l nodo della valorzzazone del prodotto Il mercato elettrco rappresenta uno de pù nteressant compart economc del nostro paese, caratterzzato da profonde

Dettagli

McGraw-Hill. Tutti i diritti riservati. Caso 11

McGraw-Hill. Tutti i diritti riservati. Caso 11 Caso Copyrght 2005 The Companes srl Stma d un area fabbrcable n zona ndustrale nella cttà d Ferrara. La stma è effettuata con crter della comparazone e quello del valore d trasformazone. Indce Confermento

Dettagli