1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA"

Transcript

1 1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA Per una serie i applicazioni legate allo stuio elle antenne interessa valutare come si moifica il comportamento i una antenna in presenza el suolo. Per frequenze non troppo alte, il suolo può essere consierato con ottima approssimazione un piano i massa e cioè un conuttore elettrico perfetto. Questo consente sia i calcolare, utilizzano il teorema elle immagini, il campo prootto alla antenna in questa nuova situazione, sia i eterminare se, e come, si moifica la istribuzione i corrente sulla antenna. Limitanoci ancora alle antenne filiformi, si può imostrare che, per antenne non troppo lunghe (ma anche per antenne lontane al suolo, inipenentemente alla loro lunghezza), la istribuzione i corrente non varia rispetto al caso ella stessa antenna in spazio libero 1. C.E.P. Fig. 1a Antenna filiforme in assenza el suolo. Fig. 1b Antenna filiforme in presenza el suolo. Per calcolare il campo i una antenna lunga 2l, posta a istanza a un piano perfettamente conuttore, come in Fig. 1b, occorre quini eterminare la istribuzione i corrente ella antenna in spazio libero, sostituire alla antenna la istribuzione i corrente inotta (Fig. 2 a sinista) e poi applicare, alle correnti, il teorema elle immagini (Fig. 2 a estra). La istribuzione i corrente immagine è posta in posizione speculare rispetto al C.E.P. e poich si tratta i una corrente elettrica verticale avrà la stessa ampiezza e la stessa fase ella corrente inotta sulla antenna reale. Consieriamo ora un sistema i ue antenne allineate, lunghe entrambe 2l, e poste a istanza 2, come in Fig. 3. Alimentiamo le ue antenne con la stessa corrente (in moulo e fase) usata per l antenna i Fig La corrente su i una antennapotrebbe variare a causa ella interazione ella antenna col piano conuttore, che moifica il campo iffuso alla antenna, ovvero il campo prootto alla corrente inotta sulla antenna, in conseguenza el teorema elle immagini. L eventuale variazione ella corrente è quini un effetto ella interazione ella antenna col suolo. Per antenne non troppo lunghe, abbiamo visto che la istribuzione i corrente è inipenente alla presenza i altre antenne vicine. Ne segue che, analogamente, la istribuzione i corrente sarà inipenente alla presenza el suolo. 1

2 J in J in C.E.P. J imm Fig. 2a: Distribuzione i corrente inotta sulla antenna in presenza el suolo (sinistra). Fig. 2b: Correnti ottenute al teorema elle immagini (estra). r 1 θ r 2 cos θ 2 cos θ r 2 Fig. 3 Fig. 4 Due antenne in spazio libero. Differenze i cammino per il sistema i Fig. 3 (e i Fig. 2b). Se la lunghezza i ciascuna antenna è tale a garantire istribuzione i corrente inipenente alla presenza ell altra antenna, allora la istribuzione i corrente inotta complessivamente sulle ue antenne è ientica a quella i Fig. 2b (salvo che ora entrambe le correnti 2

3 sono correnti inotte reali). Ne segue che il campo elle correnti i Fig. 2b è lo stesso i quello prootto alle ue antenne i Fig. 3. Passiamo ora al calcolo el campo lontano ella situazione i Fig. 3 (campo che coincie con quello i Fig. 2b e quini, per il teorema elle immagini, con quello i Fig. 1, almeno al i sopra el C.E.P.). La prima cosa a notare è che ora il iametro ella antenna non è più pari a 2l, come per l antenna i Fig. 1 in spazio libero, ma iventa l+2+l = 2(+l), e pertanto la istanza a cui inizia il campo lontano è maggiore (eventualmente molto maggiore) i quella a cui inizia il campo lontano per la antenna i Fig. 1a. Per calcolare il campo, ovvero il fattore i interferenza, per il sistema i Fig. 3, inziamo a calcolare le ifferenze i cammino. Dalla Fig. 4, in cui sono rappresentati solo i centri i fase elle antenne, a sceglieno il centro ella antenna completa nel punto meio, ovvero sul piano i massa esattamente sotto le antenne, si trova Il campo vale allora (vei (53)) r 1 = r cosθ r 2 = r +cosθ ] E(r) = j 2λr e jβr h (θ)e jβcosθ + h (θ)e jβcosθ = j 2λr e jβr h (θ) 2cos ( βcosθ )] (2) esseno h (θ) la altezza efficace ella antenna singola 2 (quella i Fig. 1a). Nel caso i Fig. 1b, è la corrente i alimentazione ella antenna ipolo più piano i massa, e quini il termine in parentesi quara al secono rigo ella (2) è (per θ π/2) la altezza efficace h S (θ) ella antenna in presenza el piano i massa (ovvero ella antenna i Fig. 1b). Si ha cioè h S (θ) = { 2h (θ) cos ( βcosθ ) θ π 2 π 2 θ π (3) Consieriamo come esempio il caso i una antenna a λ/ 2, la cui altezza efficace h (θ) è ata alla (46). Se =λ/ 2, allora il iametro ella antenna iventa pari a D = 1.5λ, e la conizione i campo lontano risulta verificata se vale la secona elle (24), ovvero per r > 3λ. Il fattore ella (3) ovuto alla interazione col suolo, ovvero 2cos ( βcosθ ) = 2cos ( πcosθ ) ha nulli quano l argomento el coseno vale π/ 2 +nπ, ovvero per θ = 6 o, e massimi quano l argomento vale oppure π, che corrisponono a θ = 9 o e θ = rispettivamente. In Fig. 5 sono riportati gli anamenti (normalizzati al massimo) i h e el fattore preceente. In Fig. 6 è invece riportato il moulo ella altezza efficace complessiva (3). 2 A rigori, la antenna immagine (più precisamente la istribuizione i corrente immagine) è ribaltata rispetto al piano i massa, e non semplicemente traslata. Quini il secono termine ella (2) ovrebbe contenere h (π θ). Poiché però la istribuzione i corrente ella antenna i Fig. 1a è simmetrica rispetto alla mezzeria, anche la altezza efficace è simmetrica, ovvero h (π θ) = h (θ). (1) 3

4 Fig. 5: Anamenti (normalizzati al massimo) i h e i 2cos(πcosθ). (È rappresentato, ovviamente, solo il semispazio per z, e in particolare il campo in tutto un piano verticale)..5 1 Fig. 6: Anamento (normalizzati al massimo) i h S (θ) per =λ/ 2. Se aumenta, il fattore cos(β cos θ) varia più rapiamente. Se consieriamo, come esempio, la stessa antenna a λ/ 2, ma posta a = 5λ, allora la altezza afficace complessiva (3) varia molto più rapiamente, come si vee alla Fig. 7. Ovviamente, usare l altezza efficace per ottenere il campo è corretto solo in campo lontano, che ora inizia a r = 22λ..5 1 Fig. 7: Anamento (normalizzati al massimo) i h S (θ) per = 5λ. L aggiunta i un piano i massa a una antenna verticale non moifica la simmetria, e 4

5 mquesto rene la trattazione preceente abbastanza semplice. La simmetria si pere nel caso i antenne filiformi orizzontali (o, airittura, oblique), e quini verranno solo consierati alcuni casi particolari. Cominciamo a consierare una antenna filiforme parallela al piano i massa (Fig. 8a). C.E.P. 2 - Fig. 8a: Antenna orizzontale in presenza el suolo (sinistra). Fig. 8b: Coppia i antenne che forniscono lo stesso campo ella Fig. 8a (estra). Assumeno che la istribuzione i corrente sulla antenna non varia per la presenza el piano i massa, possiamo (analogamente a quanto fatto per antenne verticali) sostituire alla antenna la istribuzione i corrente inotta, che irraia in presenza el piano i massa. Il campo che questa prouce si ottiene al teorema elle immagini, sostitueno il piano conuttore con una istribuzione i correnti immagini. Possiamo poi notare che la istribuzione i correnti, inotta più immagine, è la stessa che si ottiene consierano ue antenne uguali in spazio libero (come in Fig. 8b). Va però notato che, esseno la antenna reale posta orizzontalmente, allora la corrente sulla antenna immagine eve essere opposta. Le ifferenze i cammino sono ancora ate alle (1), e teneno conto elle corenti opposte, si trova, come campo ] E(r) = j 2λr e jβr h e jβcosθ h e jβcosθ = j 2λr e jβr h 2jsin ( βcosθ )] (4) ove θ è quello i Fig. 4 e h è la altezza efficace ella antenna orizzontale isolata. Questa altezza efficace è funzione ell angolo tra la antenna e la irezione el punto campo, angolo che ora non coincie con θ. Pertanto, non è possibile ricavare una espressione semplice ella altezza efficace h S = h 2jsin(βcosθ)] ella antenna in presenza el suolo che sia anche valia ovunque (come invece è la (3)). Consiereremo allora solo ue casi particolari. Nel piano ella 5

6 Fig. 8, e per φ = (ovvero nella sola parte estra ella figura), l angolo a cui ipene h risulta il complementare i θ. Pertanto, per una antenna a λ/ 2, l uso ella (46) fornisce h S (θ,φ = ) = 2j λ π cos ( π 2 sinθ) ] sin ( βcosθ ) cosθ e la irezione è nel piano ella figura. Se invece consieriamo un piano ortogonale alla antenna (e quini ortogonale al preceente) la altezza efficace h vale sempre λ/π, e quini ( h S θ,φ = ± π ) = 2j λ 2 π sin( βcosθ ) In Fig. 9 sono riportati i campi nel piano che contiene l antenna, e nel piano ortogonale (ovvero gli anamenti elle ue espressioni preceenti) per =.75 λ Fig. 9: Anamenti (normalizzati) el campo i una antenna orizzontale su piano i massa. A sinistra il campo nel piano elle antenne e a estra quello nel piano ortogonale. Resta a calcolare l impeenza i ingresso, e a questa gli altri parametri ella antenna in presenza el piano i massa. Se possiamo ancora assumere che il piano i massa non moifica la istribuzione i corrente, allora l impeenza i ingresso ella antenna i Fig. 1b (rispettivamente 8a), è l impeenza attiva ella antenna superiore nella Fig. 3 (rispettivamente 8b). In altri termini, per una antenna in presenza el piano i massa, l impeenza i ingresso si ottiene sempre usano l impeenza mutua tra la antenna e una antenna immagine. A esempio, per una antenna a λ/ 2 orizzontale, assumeno i poter calcolare la mutua impeenza Z m in campo lontano, e ricorano che le correnti sono opposte, si ha Z in,s = Z Z m = Z j 4λ e j2β ( ) 2 λ (5) π che è unabuonaapprossimazione per >λ/ 4 (e è facilmente generalizzabile a lunghezze iverse, moificano l ultimo fattore). Z è l impeenza ella antenna isolata (e ipene eventualmente anch essa alla lunghezza). Il iscorso è più complesso per una antenna verticale, in quanto calcolare la mutua impeenza in campo lontano conuce a Z m =, che è accettabile solo le la antenna reale e la antenna immagine sono effettivamente in campo lontano. Il che richee (si veano i paragrafi 6

7 2 e 14) che > 1.25λ per una antenna a λ/ 2 3 Ne segue che, per istanze tra antenna e suolo uguali o superiori a 1.25 λ, l impeenza i ingresso ella antenna in presenza el suolo risulta uguale a quella in assenza el suolo. Per istanze inferiori, esiste una mutua impeenza ovuta alla componente i r el campo prootto, che moifica significativamente l impeenza i ingresso. 2 MONOPOLO IN TRASMISSIONE SU PIANO DI MASSA Consieriamo una antenna filiforme i lunghezza 2l, alimentata al centro (Fig. 1). Se preniamo un sistema i riferimento con asse z lungo l antenna e origine al centro, la ensità i corrente inotta è simmetrica rispetto a z J(z) = J( z) e questo prouce un campo anch esso simmetrico. In particolare il campo prootto ha, per z =, la sola componente verticale. Pertanto. se inseriamo in z = un piano i conuttore elettrico perfetto (linea tratteggiata in Fig. 1), le conizioni la contorno non cambiano, e in particolare i campi e le correnti restano ientici. L C.E.P. Fig. 1: Antenna filiforme completa Fig. 2: Monopolo equivalente su C.E.P. In questo moo si ottiene un nuovo tipo i antenna, ovvero un monopolo, lungo l, posto su i un C.E.P., e alimentato rispetto al conuttore (Fig. 2). La corrente che si inuce su tale monopolo è esattamente la stessa che si inuce sulla parte superiore i un ipolo lungo 2l, a parità i corrente i alimentazione. Il campo corrisponente coincie, nel semispazio z >, con quello el ipolo lungo 2l, e è ovviamente nullo per z <, come si si ottiene anche al teorema elle immagini. Per valutare i parametri i un monopolo lungo l, conviene prenere come riferimento un ipolo lungo 2l, e collegare i parametri el monopolo, che inicheremo col peice M, a quelli el ipolo, che inicheremo col peice D. Si ha, per l altezza efficace (che non ipene a ϕ) 3 Questo valore limite aumenta o iminuisce linearmente con la lunghezza ella antenna, anche se eve sempre essere superiore a (5/2π)λ per essere in campo lontano. 7

8 h D (ϑ) per ϑ π 2 h M (ϑ) = per ϑ > π (6) 2 A partire alla altezza efficace si possono calcolare gli altri parametri. La potenza irraiata, con una corrente i alimentazione, vale (vei (26)) P irr,m = (2λ) 2 2π π/2 h M (ϑ) 2 sinϑϑ = (2λ) 2 2π mentre quella irraiata al ipolo corrisponente vale π/2 h D (ϑ) 2 sinϑϑ iventa P irr,d = (2λ) 2 2π π h D (ϑ) 2 sinϑϑ Ma h D (ϑ) è simmetrica attorno a π/2 (vei(42)) e quini la espressione preceente P irr,d = (2λ) 2 2π 2 π/2 h D (ϑ) 2 sinϑϑ Dalla (33) segue allora 2D D (ϑ,ϕ) per ϑ π 2 D M (ϑ,ϕ) = per ϑ > π 2 ] = 2 P irr,m (7) (8) e in prima approssimazione le efficienze sono uguali 1, per cui la relazione preceente vale anche tra i guaagni. La relazione (7) tra le potenze irraiate (a parità i corrente i alimentazione) conuce a relazioni ientiche tra le resistenze i ingresso e i irraiazione R irr,m = 1 2 R irr,d R in,m = 1 2 R in,d (9) Per quanto riguraa la reattanza i ingresso, va ricorato che questa reattanza serve a compensare la ifferenza tra le energie elettriche e magnetiche attorno all antenna (poiché subito oltre la zona elle sorgenti il vettore i Poynting iventa reale). Nel caso el monopolo, le energie immagazinate sono separatamente la metà i quelle immagazinate attorno al ipolo corrisponente, e quini imezza anche la reattanza i ingresso. Si ha quini Z in,m = 1 2 Z in,d (1) 1 Se assumiamo il piano conuttore effettivamente i conuttoreperfetto, le efficienze sono eattamente uguali, visto che su mezzo ipolo, e quini sul monopolo, si issipa esattamente la metà ella potenza che si issipa su tutto il ipolo. Se invece ci sono perite sul piano ocnuttore, ovvero la sua conucibilità non è infinita, allora η M < η D. 8

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE.

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE. POBLEMA 11 SIA DATO UN SOLENOIDE ETTILINEO DI LUNGHEZZA, AGGIO e COSTITUITO DA N SPIE. A) DETEMINAE IL CAMPO MAGNETICO PODOTTO LUNGO L ASSE DEL SOLENOIDE. Un solenoie rettilineo è costituito a un filo

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esercizi Schea N. 45 Fisica II Esercizio. Esercizi con soluzione svolti Si calcoli la capacità ei conensatori a piatti paralleli riempiti a iversi ielettrici come in figura caso a) caso b) caso c) 3 a)

Dettagli

1 ANTENNE IN RICEZIONE SU PIANO DI MASSA

1 ANTENNE IN RICEZIONE SU PIANO DI MASSA 1 ANTENNE IN RICEZIONE SU PIANO DI MASSA Esaminiamo il problema di una antenna in ricezione in presenza di un C.E.P. piano. Supponiamo di avere un antenna filiforme verticale investita da un campo elettromagnetico

Dettagli

1 EQUAZIONI DI MAXWELL

1 EQUAZIONI DI MAXWELL 1 EQUAZIONI DI MAXWELL Il campo elettromagnetico è un campo i forze. Può essere utile utilizzare una efinizione oparativa i campo: iciamo che in unazona ello spazio è presente un campo seèutile associare

Dettagli

Schiere passive. Schiere Yagi-Uda...6 Antenne log-periodiche...8

Schiere passive. Schiere Yagi-Uda...6 Antenne log-periodiche...8 Appunti i Antenne Capitolo Schiere i antenne () Schiere passive... Schiere Yagi-Ua...6 Antenne log-perioiche...8 Schiere passive Una schiera i antenne si efinisce attiva quano tutte le sue antenne sono

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

è definito in tutto il dielettrico e dipende dalla sola carica libera

è definito in tutto il dielettrico e dipende dalla sola carica libera Dielettrici I. Un conensatore a facce piane e parallele, i superficie S e istanza fra le armature, h, viene parzialmente riempito con un ielettrico lineare omogeneo i costante ielettrica.e spessore s Il

Dettagli

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε I conensatori. onsieriamo il potenziale per un conensatore sferico: Possiamo scrivere Il fattore Q π R Q π R π R contiene valori costanti che escrivono caratteristiche fisiche(il ielettrico ) e geometriche

Dettagli

Nome..Cognome. classe 5D 9 Febbraio VERIFICA di FISICA

Nome..Cognome. classe 5D 9 Febbraio VERIFICA di FISICA ome..cognome. classe 5D 9 Febbraio 9 VIFIC i FIIC Domana n. (punti: ) Dai la efinizione i capacità i un conensatore e ricava l espressione ella capacità i un conensatore piano i area e istanza tra le armature

Dettagli

8. Muri di sostegno e NTC 2008

8. Muri di sostegno e NTC 2008 8. Muri i sostegno e NTC 008 Normativa (NTC 008, par. 5.3..) Le combinazioni i carico per le azioni sono poste nella forma: F = γ G G + γ G G + γ Q Q + γ Q Q + γ Q3 Q 3 +... Le spinte ella terra e ell

Dettagli

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii)

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii) Si usano ue metoi ifferenti per misurare il carico i rottura i un filo i acciaio e si fanno 0 misure per ognuno ei metoi. I risultati, espressi in tonnellate, sono i seguenti: Metoo :..5.7..6.5.6.4.6.9

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d Esercizi svolti i geometria elle aree Alibrani U., Fuschi P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale

Dettagli

INDICE CAPITOLO 6 CAPITOLO 6

INDICE CAPITOLO 6 CAPITOLO 6 NDCE CTOLO 6 6. Teoremi sulle reti 6.. Teorema el Massimo trasferimento i otenza ttiva... Caso impeenza interna el eneratore reale e carico reale... Caso impeenza interna el eneratore reattiva e carico

Dettagli

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura 13. Magnetismo 13.1 La forza i Lorentz. Il magnetismo è un fenomeno noto a molti secoli, ma fino all inizio ell ottocento la teoria trattava i calamite, aghi magnetici e elle loro interazioni con il magnetismo

Dettagli

Fisica II. 14 Esercitazioni

Fisica II. 14 Esercitazioni Esercizi svolti Esercizio 141 La lunghezza 'ona in aria ella luce gialla el soio è λ 0 = 589nm eterminare: a) la sua frequenza f; b) la sua lunghezza 'ona λ in un vetro il cui inice i rifrazione è n =

Dettagli

Prova scritta di Elettricità e Magnetismo ed Elettromagnetismo A.A. 2006/ Settembre 2007 (Proff. F. Lacava, C. Mariani, F. Ricci, D.

Prova scritta di Elettricità e Magnetismo ed Elettromagnetismo A.A. 2006/ Settembre 2007 (Proff. F. Lacava, C. Mariani, F. Ricci, D. Prova scritta i Elettricità e Magnetismo e Elettromagnetismo A.A. 2006/2007 6 Settembre 2007 (Proff. F. Lacava, C. Mariani, F. Ricci, D. Trevese) Moalità - Prova scritta i Elettricità e Magnetismo: Esercizi

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Campi elettromagnetici - Anno 2012

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Campi elettromagnetici - Anno 2012 S.Barbarino - Esercizi svolti i Campi Elettromagnetici Esercizi svolti i Campi elettromagnetici - Anno 2012 12-1) Esercizio n. 1 el 4/7/2012 Un ona elettromagnetica piana, viaggiante in aria e i frequenza

Dettagli

Coppia differenziale con BJT e carico passivo

Coppia differenziale con BJT e carico passivo oppia ifferenziale con BJ e carico passivo tensione ifferenziale e i moo comune: v v v B1 B v M v + v B1 B risposta al segnale i moo comune G. Martines 1 oppia ifferenziale con BJ e carico passivo Saturazione

Dettagli

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0 Moulo i Elementi i Fluioinamica Corso i Laurea in Ingegneria ei Materiali/Meccanica AA 00/005 Ing Paola CINNELLA ESERCIZI SVOLTI I FLUIOINAMICA Parte 3: Equazione i Bernoulli Versione 10 Esercizio 1 Si

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in uiete a una istanza = 100 µm a un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti el campo E in un generico punto P el semispazio

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

E i D dl = V A V B (1)

E i D dl = V A V B (1) SENSORI DI CMPO La tensione a vuoto indotta su di una antenna di piccole dimensioni può essere calcolata agevolmente anche senza assumere alcuna propietà particolare per il campo che produce tale tensione.

Dettagli

Note su alcuni concetti di base dell elettromagnetismo

Note su alcuni concetti di base dell elettromagnetismo A Maffucci F Villone: Note su alcuni concetti i base ell elettromagnetismo ver - 09/003 DEFINIZIONE DI CARICA E DI CORRENTE ELETTRICA Università egli tui i Cassino Note su alcuni concetti i base ell elettromagnetismo

Dettagli

Curve in R n. Curve parametrizzate.

Curve in R n. Curve parametrizzate. Curve in R n Generalmente ci sono ue moi per escrivere una curva in R n, ovvero è possibile scrivere un equazione parametrica o un equazione cartesiana. Esempio: una retta in R 2 può essere escritta in

Dettagli

La densità di potenza S irradiata da una sfera di potenza P alla distanza r è data da:

La densità di potenza S irradiata da una sfera di potenza P alla distanza r è data da: UNION SCHWIZRISCHR KURZWLLN-AMATUR UNION DS AMATURS SUISSS D ONDS COURTS UNION RADIOAMATORI DI OND CORT SVIZZRI UNION OF SWISS SHORT WAV AMATURS Member of the International Amateur Raio Union Formule e

Dettagli

Corso di Elettromagnetismo Prova scritta / recupero esoneri: a.a. 2014/15, 13 Luglio 2015 Proff. S. Giagu, F. Lacava, D. Trevese

Corso di Elettromagnetismo Prova scritta / recupero esoneri: a.a. 2014/15, 13 Luglio 2015 Proff. S. Giagu, F. Lacava, D. Trevese Corso i Elettromagnetismo Prova scritta / recupero esoneri: a.a. 214/15, 13 Luglio 215 Proff. S. Giagu, F. Lacava, D. Trevese - intero scritto: risolvere i problemi 1, 2 e 3: tempo a isposizione 3.5; -

Dettagli

Studio del comportamento. Esercitazione 02

Studio del comportamento. Esercitazione 02 DINAMICA DELLE MACCHINE E DEGLI IMPIANTI ELETTRICI: Stuio el comportamento inamico i i un elettromagnete t Esercitazione Moellizzazione i un sistema i inuttori Sistema i inuttori: i è un multiporta Legame

Dettagli

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) m (B) m (C) m (D) m (E) m

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) m (B) m (C) m (D) m (E) m L FORZ DI OULOM.. Date le ue cariche fisse ella figura ove = 0. e = 0.5 la posizione i euilibrio lungo l'asse i una terza carica mobile 3 = 0.0 si trova nel punto con ascissa ().7 m () 0.387 m () 0.500

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

2. Canali radio, propagazione per canali a banda larga/stretta.

2. Canali radio, propagazione per canali a banda larga/stretta. istemi i raiocomunicazione: esercitazioni.. Canali raio, propagazione per canali a bana larga/stretta.. Definizione i bana i coerenza e tempo i coerenza Bana i coerenza B C : Misura statistica ell intervallo

Dettagli

Equazioni della fisica matematica

Equazioni della fisica matematica Equazioni ella fisica matematica Equazione i conservazione ella massa in fluioinamica Questo principio ella fisica si può scrivere come ρ = ρv n, t ove è una generica porzione i spazio occupata al fluio,

Dettagli

1 Progettare e verificare la trave di colmo con sezione presunta di mm2, che viene appoggiata sui pilastri prolungati

1 Progettare e verificare la trave di colmo con sezione presunta di mm2, che viene appoggiata sui pilastri prolungati 4 Il legno 4. Elementi strutturali e strutture in legno ESERCIZI SVOLTI 4.. Coperture Progettare e verificare la trave i colmo con sezione presunta i 0 0 mm, che viene appoggiata sui pilastri prolungati

Dettagli

Il campo magnetico: introduzione.

Il campo magnetico: introduzione. ** ITN - Caboto - Gaeta ** isica - prof. Vinice Luigi - **IISS-Caboto- Gaeta**isica-prof. Vinice Luigi- I campo magnetico: introuzione. acciamo 'ipotesi i avere un eettrone che viaggia a veocità v e è

Dettagli

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19 TFA A048. Matematica applicata Incontro el 16 aprile 014, ore 17-19 Appunti i iattica ella matematica applicata all economia e alla finanza. Funzioni (i una variabile) utilizzate nello stuio ell Economia

Dettagli

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI 1 QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI Margherita Moretti (3D P.N.I.) Viviana Scoca (3D P.N.I.) Simone Moretti (3H P.N.I.) Abstract Si affronta il problema ella eterminazione el quarilatero i

Dettagli

ELETTROMAGNETISMO PARTE II - POTENZIALE ELETTRICO

ELETTROMAGNETISMO PARTE II - POTENZIALE ELETTRICO ELETTROMAGNETISMO PARTE II - POTENZIALE ELETTRICO ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. Calcolo el potenziale ato il campo elettrico Exercise 1. La ifferenza i potenziale elettrico tra il terreno

Dettagli

ESERCIZI SUL CAMPO ELETTRICO 2

ESERCIZI SUL CAMPO ELETTRICO 2 ESERIZI SUL AMPO ELETTRIO 5. Una sfera di massa m possiede una carica q positiva. Essa è legata con un filo ad una lastra piana infinita uniformemente carica con densità superficiale σ, e forma un angolo

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Appello del 25 novembre 2003

Appello del 25 novembre 2003 ema esame el 5/11/00 COSUZIONE DI MCCINE NO Prof. Sergio Baragetti (llievi el Corso i Laurea in Ingegneria Meccanica) ppello el 5 novembre 00 Un motore elettrico asincrono trifase aziona una macchina operatrice

Dettagli

Appendice B Ripartizione del carico reattivo

Appendice B Ripartizione del carico reattivo 139 Appenice B Ripartizione el carico reattivo B.1 Gruppi elettrogeni in parallelo in isola La istribuzione ella potenza attiva è realizzata con i ripartitori i carico che, interfaccianosi con i regolatori

Dettagli

ESEMPIO 1: giunto a cerniera con squadrette d anima

ESEMPIO 1: giunto a cerniera con squadrette d anima ESEMPIO 1: giunto a cerniera con squarette anima Si etermini la massima reazione che il giunto a cerniera mostrato in igura è in grao i sopportare. Si illustrano tre soluzioni equilibrate poiché il giunto

Dettagli

Dispense di Fisica Matematica. Prof. Maura Ughi

Dispense di Fisica Matematica. Prof. Maura Ughi Dispense i Fisica Matematica Prof. Maura Ughi 13 febbraio 2005 Capitolo 1 Equazioni ella Dinamica 1.1 Introuzione, Principio i D Alembert Una grossa scorciatoia mentale valia in Meccanica Classica è il

Dettagli

Corso di Laurea in Ingegneria Aerospaziale Modulo di PRESTAZIONI

Corso di Laurea in Ingegneria Aerospaziale Modulo di PRESTAZIONI Moulo Prestazioni Docente F. Nicolosi CAP. 7 Volo livellato 1 Corso i Laurea in Ingegneria Aerospaziale Moulo i PRESTAZIONI Docente : Ing. F. NICOLOSI CAP. 7 CALCOLO DELLA VELOCITA IN VOLO LIVELLATO Moulo

Dettagli

DINAMICA. F i + Φ i = R est. + R int. + R est.+ 0 R int., m i a i = m i

DINAMICA. F i + Φ i = R est. + R int. + R est.+ 0 R int., m i a i = m i DINAMICA Principi ella inamica e equazioni carinali Principio 1 (ella inamica o Principio Inerzia) Esiste un osservatore, chiamato inerziale o Galileiano, rispetto al quale un punto materiale isolato (

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) Prova in Itinere 22 Giugno 2012 SOLUZIONI Domana 1 Con riferimento al sistema rappresentato in figura, enunciare con precisione il criterio i Boe per la stabilità a

Dettagli

IL TRASPORTO DEGLI INQUINANTI

IL TRASPORTO DEGLI INQUINANTI La iffusione molecolare La ispersione avviene principalmente in irezione longituinale rispetto al flusso meio, e le variazioni i velocità non spiegano l aumento l i ampiezza in irezione normale al moto

Dettagli

La teoria della scelta del consumatore nell ipotesi di utilità misurabile o cardinale

La teoria della scelta del consumatore nell ipotesi di utilità misurabile o cardinale Appenice 5A La teoria ella scelta el consumatore nell ipotesi i utilità misurabile o carinale NelCapitolo5,èstatapresentataunateoriaellascelta el consumatore basata sull ipotesi che il consumatorefosseingraoiorinareognipossibilepaniereibenieserviziinbaseall

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO CINEMATICA DEL CORPO RIGIDO 5 Premettiamo una Definizione: si chiama atto i moto i un sistema materiale in un ato istante t, l insieme elle velocità i tutti i punti el sistema all istante t. E errato parlare

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 11 Aprile 2006

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 11 Aprile 2006 SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI NUOVO ORDINAMENTO DIDATTICO Aprile 26 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI ESERCIZIO (8 punti) Progettare

Dettagli

Quella della formula (1) è una definizione operativa di L, ovvero fornisce un modo del tutto generale per calcolare L dal rapporto F IHB I L

Quella della formula (1) è una definizione operativa di L, ovvero fornisce un modo del tutto generale per calcolare L dal rapporto F IHB I L AUTOINDUTTANZA 1. INTRODUZIONE L auto inuttanza L è la granezza fisica che lega la corrente I che scorre in un ato circuito con il flusso el campo i inuzione magnetica B(I), quest ultimo generato proprio

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ILLUMINOTECNICA. Lezione n 2: Grandezze fotometriche fondamentali 2. Ing. Oreste Boccia

CORSO DI FISICA TECNICA 2 AA 2013/14 ILLUMINOTECNICA. Lezione n 2: Grandezze fotometriche fondamentali 2. Ing. Oreste Boccia CORO D FCA TECNCA AA 13/14 LLUMNOTECNCA Lezione n : Granezze fotometriche fonamentali ng. Oreste Boccia 1 LLUMNAMENTO Effetto prootto al flusso luminoso sulla superficie illuminata Granezza puntuale: varia

Dettagli

GIUNTO SALDATO: ESEMPIO [EC3 Appendice J]

GIUNTO SALDATO: ESEMPIO [EC3 Appendice J] GIUNTO SALDATO: ESEPIO [EC3 Appenice J] (revisione..3) HE A h (mm) b (mm) tw (mm) 7 tf (mm) r (mm) 8 A (cm) 64,34 Iy (cm4) 54 Wy (cm3) 55, Wpl,y (cm3) 568,5 IPE 3 h (mm) 3 b (mm) 5 tw (mm) 7, tf (mm),7

Dettagli

10.4 Azionamento per motori sincroni IPM

10.4 Azionamento per motori sincroni IPM 10.4 Azionamento per motori sincroni PM motori sincroni a magneti sepolti hanno recentemente guaagnato crescente popolarità per una larga serie i applicazioni inustriali. Questo tipo i motore ha una costruzione

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

ESERCITAZIONE 11 V S LA SCARICA NEI MATERIALI ISOLANTI

ESERCITAZIONE 11 V S LA SCARICA NEI MATERIALI ISOLANTI ESERCITAZIONE 11 INTRODURRE IL CONCETTO DI SCARICA IN UN MATERIALE ISOLANTE ELETTRICO. DESCRIVERE I MECCANISMI DELLA SCARICA NEGLI ISOLAMENTI GASSOSI E LIQUIDI. TRATTARE I DIVERSI ASPETTI DELLA SCARICA

Dettagli

PRIMA PROVA INTERMEDIA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO ORDINAMENTO DIDATTICO 15 Aprile 2009

PRIMA PROVA INTERMEDIA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO ORDINAMENTO DIDATTICO 15 Aprile 2009 PRIMA PROVA INTERMEDIA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO ORDINAMENTO DIDATTICO 15 Aprile 2009 NOME: COGNOME: MATRICOLA: ESERCIZIO 1 (11 punti) Progettare una rete sequenziale

Dettagli

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI Università egli Stui i Uine, Corso i Laurea in Ingegneria Gestionale A.A. 016/017, Sessione i Settembre 017, Esame i FISICA GENERALE 1 1 CFU) Appello Unico, PROVA SCRITTA, 1 Settembre 017 TESTI E SOLUZIONI

Dettagli

condensatori in parallelo

condensatori in parallelo conensatori in parallelo 1/ 1 Q V 1 Q V Q Q V 1 Q 1 V V Q 1 + Q Q parallelo 1 1 conensatori in serie / 1 Q V 1 Q V V 1 V V Q V 1 serie 1 1 1 1 1 1 1 conensatori 3/ Nel calcolo ella capacità el conensatore

Dettagli

CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE

CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE E. Sernesi 1 Poligoni etichettati Denoteremo con il simbolo P 2n, o semplicemente con P, un poligono compatto e convesso i R 2, a 2n lati, n 2. Consiereremo

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 19 Aprile 2007

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 19 Aprile 2007 SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI NUOVO ORDINAMENTO DIDATTICO 9 Aprile 27 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI ESERCIZIO (0 punti) Progettare

Dettagli

Esercizi con campi magnetici statici

Esercizi con campi magnetici statici Esercizi con campi magnetici statici Il problema più generale è il calcolo del campo magnetico generato da uno o più fili percorsi da corrente. In linea di principio, questo tipo di problema dovrebbe essere

Dettagli

antenna ΔV J b V o O : centro di fase dell antenna

antenna ΔV J b V o O : centro di fase dell antenna CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 2013-14 - MARCO BRESSAN 1 Antenne Riceventi Per determinare le caratteristiche di un antenna ricevente ci si avvale del teorema di reciprocità applicato al campo

Dettagli

Cap.7 Volo livellato. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. Coiro / Nicolosi

Cap.7 Volo livellato. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. Coiro / Nicolosi PRESTAZIONI IN VOLO NON ACCELERATO Velocità massima in volo livellato Velocità i crociera (a un grao i ammissione

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

1 FORMA GENERALE DELLE ONDE PIANE

1 FORMA GENERALE DELLE ONDE PIANE 1 FORMA GENERALE DELLE ONDE PIANE Quando abbiamo ricavato le equazioni delle onde piane, abbiamo scelto il sistema di riferimento in direzione z, e questo ha condotto, per una onda che si propaga in direzione

Dettagli

Equazioni di bilancio per un volume di controllo

Equazioni di bilancio per un volume di controllo Capitolo 11 Equazioni i bilancio per un volume i controllo Deriviamo l equazione i conservazione ella massa, l equazione i evoluzione ella q..m, el momento ella q..m e ell energia in forma integrale per

Dettagli

Esercizio 1. Gli utilizzatori di un ponte sono disposti a pagare giornalmente una tariffa T data da

Esercizio 1. Gli utilizzatori di un ponte sono disposti a pagare giornalmente una tariffa T data da Esercizio 1 Gli utilizzatori i un ponte sono isposti a pagare giornalmente una tariffa T ata a T = 1000 4 Q ove Q = numero i passaggi richiesti. Il costo sociale i ogni passaggio in più (costo marginale)

Dettagli

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA:

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA: PROVA SCRITTA DEL MODULO DI NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 9 febbraio 205 NOME: COGNOME: MATRICOLA: ESERCIZIO (5-6 CFU: 0 punti; 7 CFU: 8 punti) Progettare una rete sequenziale che presenti

Dettagli

LA TRATTAZIONE NEI MANUALI DI FISICA

LA TRATTAZIONE NEI MANUALI DI FISICA LA TRATTAZIONE NEI MANUALI DI FIICA 5.1 BECKER R., Teoria ella elettricità, vol. I, pag. 161-165, ansoni, (1970) " ƒ 52. - La legge ell'inuzione i Faraay. Faraay fece nel 1831 la scoperta fonamentale che

Dettagli

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI I ONDE PIANE E MATERIALI OP 1 Il campo elettrico nel punto A ha un modulo di 1V/m e forma un angolo di 6 o con la normale alla superficie. Calcolare e(b). ε 1 ε 2 A B 6 o e ε 1 =, ε 2 = 2 Nel punto A le

Dettagli

Ènoto ad un qualunque studente di matematica Un criterio di divisibilità generalizzato. di Paolo La Rocca 1. matematicamente.

Ènoto ad un qualunque studente di matematica Un criterio di divisibilità generalizzato. di Paolo La Rocca 1. matematicamente. 1. Un criterio i ivisibilità generalizzato SUNTO In questo articolo viene presentato un criterio i ivisibilità per un qualunque numero purché sia coprimo i. Di questo criterio si offre una imostrazione

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Bobina di Rogowski lineare

Bobina di Rogowski lineare Bobina i Rogowski lineare V. Nassisi, D. Delle Sie, F. Palaini Università el Salento, Dipartimento i Matematica e Fisica Ennio De Giorgi, Laboratorio i Elettronica Applicata e Strumentazione an I.N.F.N.

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

CLASSE 5^ A LICEO SCIENTIFICO 27 Aprile 2017 Integrali

CLASSE 5^ A LICEO SCIENTIFICO 27 Aprile 2017 Integrali CSSE 5^ ICEO SCIENTIFICO 7 prile 7 Integrali Problema Data la funzione, con, : etermina i coefficienti,, in moo che il punto ; sia un massimo relativo e la retta 36 sia asintoto obliquo; B esegui lo stuio

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) II Prova in Itinere 3 Luglio 2014 TRACCIA DI SOLUZIONE Domana 1 Si consieri il sistema i controllo schematizzato in figura. Definire la funzione i sensitività, illustrano

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni Contenuto ell unità A Informazioni logistiche e organizzative Applicazione i riferimento caratteristiche e tipologie i mouli Circuiti con operazionali reazionati amplificatori

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

Lezione 5 I mercati finanziari: il ruolo delle banche

Lezione 5 I mercati finanziari: il ruolo delle banche Lezione 5 I mercati finanziari: il ruolo elle banche Macroeconomia C. Petraglia Unibas 2012/13 1 Intermeiari finanziari Intermeiari finanziari : istituzioni che ricevono foni e li usano per accorare prestiti

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica INGEGNERIA GESTIONALE corso i Fisica Generale Prof. E. Puu LEZIONE DEL 7 8 OTTOBRE 2008 Lavoro e energia cinetica 1 Il lavoro Il lavoro W fatto su un oggetto a un agente che esercita su i esso una forza

Dettagli

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La livellazione trigonometrica

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La livellazione trigonometrica Università egli stui i rescia Facoltà i Ingegneria Corso i Topografia Nuovo Orinamento La livellazione trigonometrica 1 Misura ei islivelli: livellazione trigonometrica Dislivello tra i punti e : Differenza

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO. di Francesco Camia

INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO. di Francesco Camia INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO di Francesco Camia 1)Rappresentare nel piano complesso gli insiemi: A = { 2, 3 }, B = { : =+1+2, }. Siccome nel piano complesso e

Dettagli

Sezione 5. Mezzi trasmissivi e sistemi

Sezione 5. Mezzi trasmissivi e sistemi sercitazioni i sistemi i comunicazione 9/ ezione 5 5. i consieri la trasmissione i canali teleonici CM canale vieo coiicato a Mbit/s. er trasmettere i ati si impiega una multiplazione M su un ponte raio

Dettagli

6. Applicazione di curve di probabilità pluviometrica in ambito di verifica.

6. Applicazione di curve di probabilità pluviometrica in ambito di verifica. 6. Applicazione i curve i probabilità pluviometrica in ambito i verifica. Viene qui riportato un esempio i applicazione i curve i probabilità pluviometrica per la eterminazione el perioo i ritorno i un

Dettagli

31. LE MOLLE = (31.1,2)

31. LE MOLLE = (31.1,2) . Petrucci ezioni i Costruzione i Macchine. E MOE e molle sono elementi meccanici in grao i assorbire grani quantità i energia elastica senza che le tensioni agenti raggiungano livelli critici. A questo

Dettagli

8 La luce nei manti vegetali

8 La luce nei manti vegetali 8 a luce nei manti vegetali Per moellare correttamente la traspirazione a manti vegetali vegetali e l'evaporazione a superfici i suolo o foglie è necessario stimare la frazione i raiazione intercettata

Dettagli

Esercitazione 11: Stato di tensione nella sezione di trave

Esercitazione 11: Stato di tensione nella sezione di trave Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo I Prof. Leonardo BERTINI Ing. Ciro SNTUS Esercitazione 11: Stato di tensione nella sezione di trave Indice 1 Forza normale

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

(esercizi A: 6 punti ciascuno; quesiti B: 4 punti ciascuno) A. Risolvere i seguenti esercizi

(esercizi A: 6 punti ciascuno; quesiti B: 4 punti ciascuno) A. Risolvere i seguenti esercizi UNIVESITA DEGLI STUDI DI OMA LA SAPIENZA Facoltà i Ingegneria - Anno Accaemico 008-009 Esame i Elettromagnetismo - Ing. Aerospaziale Prova scritta el 15/1/009 (I appello) (esercizi A: 6 punti ciascuno;

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli