Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizione di equilbrio Leve

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizione di equilbrio Leve"

Transcript

1 Statica Equilibrio dei corpi Corpo rigido Momento di una forza Condizione di equilbrio Leve

2 Statica La statica è la parte della meccanica che studia l equilibrio di un corpo materiale, ovvero le condizioni necessarie affinché un corpo, inizialmente in quiete, resti in quiete anche dopo l intervento di forze esterne. Consideriamo ad esempio un corpo appoggiato su un piano orizzontale.

3 F ad = f d N f d coeff. attrito dinamico Forza d attrito Risultante macroscopica delle azioni tra molecole che si oppongono allo scorrimento. Quando proviamo a far scivolare un oggetto su un altro queste microscopiche protuberanze si oppongono al moto. Questo tipo di attrito viene chiamato "attrito dinamico". Quando un corpo è in moto lungo una superficie rugosa, la forza di attrito dinamico agisce in direzione opposta alla velocità del corpo. Il modulo della forza di attrito dinamico dipende dalla natura delle due superfici che scivolano l una sull altra, ed è proporzionale al modulo della forza normale al piano di scorrimento.

4 Forza d attrito F as = f s N f s coeff. attrito statico Esiste anche un attrito statico, forza parallela alle due superfici, che è presente in assenza di moto relativo. Supponiamo di esercitare una forza orizzontale su un banco, ma questo non si muove (la risultante delle forze è zero). Deve quindi esistere una forza, detta di attrito statico, che agisce sul banco che gli impedisce di muoversi. Anche l attrito statico è proporzionale al modulo della forza normale al piano di scorrimento.

5 Forza d attrito Si noti che è spesso più facile mantenere un oggetto pesante in movimento, rispetto a muoverlo dalla sua posizione iniziale: F as F ad Questo si traduce nella relazione: f s f d L attrito fa venir meno la conservazione dell energia meccanica, che invece degrada in forme diverse di energia (calore). Se si tiene conto di tutte le forme di energia, questa si conserva!!!

6 Esempi Lezione I 6

7 Momento di una forza Il momento di una forza rispetto ad un punto O ne misura la capacità di mettere in rotazione il punto o oggetto a cui è applicata rispetto ad O. Il momento di una forza rispetto ad un punto è definito come il prodotto vettoriale tra il vettore posizione e la forza: M = r x F

8 Momento di una forza Il modulo di M è r F sen θ = F b. La grandezza r sen θ, distanza dell'asse di rotazione dalla retta su cui giace F, è detta braccio della forza F. Se F ed r sono perpendicolari, il braccio si identifica con r, ed il momento è massimo. M può essere nullo se F o b sono nulli, oppure se F ed r sono paralleli.

9 Esempi Coppia di forze: 2 forze uguali in modulo e direzione ma verso opposto, applicate in punti diversi di un corpo rigido che può ruotare attorno ad un asse.

10 Equilibrio di un corpo rigido Un corpo rigido è per definizione indeformabile. Esso è in equilibrio se le risultanti delle forze e dei momenti sono identicamente nulle: Σ i F i = 0 Σ i M i = 0 Le forze rendono conto dei moti di traslazione, i momenti dei moti di rotazione.

11 Centro di massa o baricentro Rappresenta il punto in cui si può immaginare concentrata la massa di un corpo esteso, quando se ne vogliono determinare le condizioni di equilibrio o si vuole studiare il suo comportamento dinamico. x CM = (m 1 /M)r 1 +(m 2 /M)r 2 M = m 1 +m 2

12 La bilancia

13 Le leve Una leva è una macchina semplice che trasforma il movimento. È composta da due bracci solidali fra loro (che ruotano cioè dello stesso angolo e con la stessa velocità angolare) incernierati per un'estremità ad un fulcro, attorno al quale sono liberi di ruotare.

14 Condizione di equilibrio di una leva La condizione di equilibrio di una leva è che la somma dei momenti delle forze ad essa applicate sia nulla: F 1 b 1 =F 2 b 2 Da cui b 1 /b 2 =F 2 /F 1 ovvero il braccio e la forza su di esso applicata sono inversamente proporzionali.

15 Condizione di equilibrio di una leva Perché sia garantito l equilibrio, il braccio della forza peso della palla di 5kg dev essere 20 volte maggiore di quello della forza peso della palla da 100kg.

16 Tipi di leve Il rapporto tra forza resistente e forza motore (o potenza), uguale al rapporto fra b p e b r, viene chiamato G=guadagno meccanico. È una proprietà geometrica della leva! Le leve si distinguono in: svantaggiose: se la forza applicata richiesta è maggiore della forza resistente, ovvero se il braccio-resistenza è più lungo del braccio-potenza (b p / b r < 1); indifferenti: se la forza applicata richiesta è uguale alla forza resistente, ovvero se il braccio-resistenza è uguale al bracciopotenza (b p / b r = 1); vantaggiose: se la forza applicata richiesta è minore della forza resistente, ovvero se il braccio-resistenza è più corto del braccio-potenza (b p / b r > 1).

17 Esercizio

18 Esercizio

19 Leve e conservazione energia meccanica

20 Leve e conservazione energia meccanica

21 Tipi di leve In base alla posizione reciproca del fulcro e delle forze si ha un ulteriore distinzione: I genere: il fulcro si trova tra le due forze (vantaggiose, svantaggiose o indifferenti) II genere: la forza resistente si trova fra il fulcro e la forza applicata (sempre vantaggiose) III genere: la forza applicata si trova fra il fulcro e la forza resistente (sempre svantaggiose)

22 Leve del corpo umano Nel nostro corpo: i muscoli scheletrici (elemento attivo) inserendosi sulle ossa (elemento passivo) per mezzo della contrazione muscolare determinano il movimento. Questo è possibile grazie anche alle articolazioni, le regioni di snodo tra le parti fisse. Tutto l'apparato locomotore è basato su un sistema di leve che possono essere di primo, secondo o terzo tipo.

23 Leve del corpo umano Nelle leve del corpo umano: Il fulcro è dato dall'asse di rotazione (di solito l'articolazione, ma può anche essere un punto di appoggio o di presa); la potenza è data dal punto in cui viene applicata la forza (di solito l'origine o l'inserzione muscolare); la resistenza è data dal punto in cui viene generata la resistenza stessa (un peso, la gravità, ecc.).

24 Esempi di sistemi di forze agenti sul corpo umano

25 Articolazione di appoggio della testa Per bilanciare il peso del capo ed evitare che la testa ciondoli in avanti, viene esercitata una potenza da parte dei muscoli della nuca. L'intensità di F m è tale da produrre un momento uguale a quello prodotto da F r. Si noti che l'insieme delle due forze tenderebbe a causare un abbassamento del sistema: il fulcro esercita anche una reazione vincolare che si oppone alla traslazione. Per questo dopo un certo tempo l'articolazione è affaticata.

26 Equilibrio tronco-vertebrale Leva del I genere: F P = Forza peso (60 kg*g) che agisce sul baricentro del corpo, all altezza del ventre e anteriore alla spina dorsale F M = Forza Motrice, forza esercitata dai muscoli dorsali R = Reazione vincolare sul fulcro (la spina dorsale) all altezza della settima vertebra Equilibrio traslazionale: R= F M +F P Equilibrio rotazionale: a*f M =b*f P F M = b/a * F P = 2 F P = 120 kg*g=1200 N R= 2 F P + F P = 3 F P = 180 kg*g=1800 N

27 Equilibrio tronco-vertebrale Nel caso di obesità non solo cambia il peso ma anche la sua distribuzione, se il baricentro si sposta in avanti di soli 2 cm abbiamo (a parità di peso): Equilibrio traslazionale: R= F M +F P Equilibrio rotazionale: a*f M =b*f P F M = b/a * F P = 5/2 F P = 150 kg*g=1500 N R= 5/2 F P + F P = 7/2 F P = 210 kg*g=2100 N

28 Innalzamento sulle dita del piede Esempio di leva del II genere F T = Forza Motrice, forza muscolare (polpaccio) applicata dal tendine sul calcagno. F O = Forza Resistente, forza esercitata dalle forze della gamba (tibia e fibula) sul piede. 10 cm F P = reazione vincolare del suolo sulla pianta del piede, causata dalla forza peso del corpo che agisce sul fulcro (punto fermo).

29 Innalzamento sulle dita del piede Equilibri traslazionali Verticale: F T cos(7 o ) + F P = F O cos(θ) Orizzontale: F T sin(7 o )= F O sin(θ) Equilibrio rotazionale rispetto al punto centrale: 5.6 * F T cos(7 o ) = 10 * F P da cui si ricava 10 cm F T =10*F P /(5.6*0.992)=1.8*F P Sostituendo nelle precedenti equazioni si ha: 1.8* F P * F P = F O cos(θ) 1.8* F P *0.122= F O sin(θ) tg(θ)=0.2196/ F P = da cui θ=4.5 ο F O = 2.8 F P

30 Abduzione del braccio Esempio di leva del III genere la potenza (esercitata dal bicipite) è molto vicina al fulcro (gomito), mentre la resistenza (data dal peso del braccio, più un eventuale peso sostenuto dalla mano) è più distante.

Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizioni di equilibrio Leve

Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizioni di equilibrio Leve Statica Equilibrio dei corpi Corpo rigido Momento di una forza Condizioni di equilibrio Leve Statica La statica è la parte della meccanica che studia l equilibrio di un corpo materiale, ovvero le condizioni

Dettagli

Momento di una forza:

Momento di una forza: omento di una forza: d 1 d 2 d C In quale situazione la persona percepisce di più il peso del corpo? D d o? C o D? 1 2 1 2 L altalena è in equilibrio? Dipende dalla distanza d1 e d2 e dalle due forze:

Dettagli

MOMENTO DI UNA DI FORZA. Il momento è responsabile delle rotazioni del corpo intorno all asse di rotazione passante per il vincolo nel punto O.

MOMENTO DI UNA DI FORZA. Il momento è responsabile delle rotazioni del corpo intorno all asse di rotazione passante per il vincolo nel punto O. MOMENTO DI UNA DI ORZA Il momento è responsabile delle rotazioni del corpo intorno all asse di rotazione passante per il vincolo nel punto O. M = r = r sinα M = N L = M L T 2 L = ML 2 T 2 1 MOMENTO DI

Dettagli

La Statica. La statica è una parte della meccanica che studia l equilibrio dei corpi. Prof Giovanni Ianne

La Statica. La statica è una parte della meccanica che studia l equilibrio dei corpi. Prof Giovanni Ianne La Statica La statica è una parte della meccanica che studia l equilibrio dei corpi. Sistemi rigidi ed equilibrio Un corpo è in equilibrio quando è fermo e continua a restare fermo. Il punto materiale

Dettagli

Studia le condizioni di equilibrio dei corpi. Caso particolare della dinamica: forze presenti, ma nessuna variazione di movimento.

Studia le condizioni di equilibrio dei corpi. Caso particolare della dinamica: forze presenti, ma nessuna variazione di movimento. Studia le condizioni di equilibrio dei corpi. Caso particolare della dinamica: forze presenti, ma nessuna variazione di movimento. Massa: misura della quantità di materia di un corpo, ha la proprietà dell

Dettagli

Datemi un punto d'appoggio e solleverò il mondo. (Archimede)

Datemi un punto d'appoggio e solleverò il mondo. (Archimede) Datemi un punto d'appoggio e solleverò il mondo. (Archimede) Le leve Le leve sono macchine semplici che consentono di svolgere lavoro con minore energia. LA LEVA è una macchina semplice Le macchine semplici:

Dettagli

L Equilibrio dei Corpi Solidi

L Equilibrio dei Corpi Solidi L Equilibrio dei Corpi Solidi 1 L Equilibrio dei Corpi Solidi Punto Materiale Le reazioni vincolari Corpo igido Baricentro Momento di una forza Momento di una coppia Equilibrio e Stabilità Le Macchine

Dettagli

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Lezione 5. L equilibrio dei corpi. Lavoro ed energia. Lezione 5 L equilibrio dei corpi. Lavoro ed energia. Statica E la parte della Meccanica che studia l equilibrio dei corpi. Dai principi della dinamica sappiamo che se su un corpo agiscono delle forze allora

Dettagli

Equilibrio di un punto materiale su un piano

Equilibrio di un punto materiale su un piano 1 Equilirio di un punto materiale su un piano no inclinato Se un corpo si trova su un piano inclinato, possiamo scomporre il suo peso in due componenti: una parallela al piano, l'altra perpendicolare.

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

L equilibrio dei corpi solidi

L equilibrio dei corpi solidi 1 L equilibrio dei corpi Quando un corpo è fermo e rimane fermo al trascorrere del tempo, diciamo che quel corpo è in equilibrio. Si definisce corpo rigido un corpo che non si deforma nonostante su di

Dettagli

Momento delle forze e equilibrio di un corpo rigido

Momento delle forze e equilibrio di un corpo rigido Momento delle forze e equilibrio di un corpo rigido F r r F + F = 0 Equilibrio? NO Il corpo può ruotare F Perche un corpo esteso sia in equilibrio non basta imporre che la somma delle forze che agiscono

Dettagli

Le condizioni di equilibrio di un punto materiale Giuseppe Frangiamore con la collaborazione di Daniele Alessi

Le condizioni di equilibrio di un punto materiale Giuseppe Frangiamore con la collaborazione di Daniele Alessi Le condizioni di equilibrio di un punto materiale Giuseppe Frangiamore con la collaborazione di Daniele Alessi Un punto materiale soggetto a più forze rimane in equilibrio se il vettore risultante (R)

Dettagli

Momento di una forza. Si definisce momento di una forza F rispetto ad un punto O il prodotto vettoriale

Momento di una forza. Si definisce momento di una forza F rispetto ad un punto O il prodotto vettoriale 3. Biomeccanica 1 Momento di una forza O b P F Si definisce momento di una forza F rispetto ad un punto O il prodotto vettoriale M = b F 2 Ricordi il prodotto vettoriale???? 3 Prodotto Vettoriale Il prodotto

Dettagli

Modulo B Unità 2 L'equilibrio dei sistemi rigidi. Equilibrio di un punto materiale

Modulo B Unità 2 L'equilibrio dei sistemi rigidi. Equilibrio di un punto materiale 1 Equilirio di un punto materiale Per punto materiale intendiamo un qualsiasi corpo dotato di massa le cui dimensioni sono trascuraili rispetto a quelle dello spazio circostante. Il corpo rigido è un oggetto

Dettagli

Le grandezze vettoriali e le Forze

Le grandezze vettoriali e le Forze Fisica: lezioni e problemi Le grandezze vettoriali e le Forze 1. Gli spostamenti e i vettori 2. La scomposizione di un vettore 3. Le forze 4. Gli allungamenti elastici 5. Le operazioni sulle forze 6. Le

Dettagli

Compito ) Cognome Nome Data Classe

Compito ) Cognome Nome Data Classe Compito 999568 1 ) Cognome Nome Data Classe Scegliere le risposte corrette e poi scriverle nella riga in fondo al foglio 2) Con riferimento alla figura seguente, calcola il momento della forza di modulo

Dettagli

Fisica dei Materiali A.A Dinamica III. P.A. Tipler, "Invito alla Fisica", volume 1, Zanichelli 2001, 5.2, 5.3, 6.5

Fisica dei Materiali A.A Dinamica III. P.A. Tipler, Invito alla Fisica, volume 1, Zanichelli 2001, 5.2, 5.3, 6.5 Dinamica III.A. Tipler, "Invito alla isica", volume 1, Zanichelli 2001, 5.2, 5.3, 6.5 A.A. 2003-2004 isica dei Materiali 71 Equilibrio statico di un corpo esteso La statica è quella parte della dinamica

Dettagli

PERCORSO DIDATTICO : FORZE, EQUILIBRIO, MACCHINE SEMPLICI

PERCORSO DIDATTICO : FORZE, EQUILIBRIO, MACCHINE SEMPLICI PERCORSO DIDATTICO : FORZE, EQUILIBRIO, MACCHINE SEMPLICI PREREQUISITI parte 1 forze ed equilibrio statico essere capaci di riferire su osservazioni e di riferire con descrizioni. Saper operare nel piano

Dettagli

I n s e g n a m e n t o d i BIOMECCANICA

I n s e g n a m e n t o d i BIOMECCANICA A A 2 0 1 3-2014 U N I V E R S I TA D E G L I S T U D I DI R O M A T O R V E R G ATA F A C O LTA DI M E D I C I N A E C H I R U R G I A L A U R E A T R I E N N A L E I N S C I E N Z E M O T O R I E I n

Dettagli

L EQUILIBRIO DEL PUNTO MATERIALE

L EQUILIBRIO DEL PUNTO MATERIALE 1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione

Dettagli

C Dott. Claudio Costa Ing. Biomedico Indirizzo Biomeccanico Laureato al Politecnico di Torino. Analisi Biomeccanica e Ingegneria della Riabilitazione

C Dott. Claudio Costa Ing. Biomedico Indirizzo Biomeccanico Laureato al Politecnico di Torino. Analisi Biomeccanica e Ingegneria della Riabilitazione C C Dott. Claudio Costa Ing. Biomedico Indirizzo Biomeccanico Laureato al Politecnico di Torino Analisi Biomeccanica e Ingegneria della Riabilitazione Controllo Nervoso e Muscolare del Movimento L atto

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

MOTO DI PURO ROTOLAMENTO

MOTO DI PURO ROTOLAMENTO MOTO DI PURO ROTOLAMENTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOTO DI PURO ROTOLAMENTO

Dettagli

Le macchine semplici. Leve Carrucole Paranco Verricello Argano Piano Inclinato Vite

Le macchine semplici. Leve Carrucole Paranco Verricello Argano Piano Inclinato Vite Le macchine semplici Leve Carrucole Paranco Verricello Argano Piano Inclinato Vite Le macchine semplici Le macchine semplici sono chiamate così perché non si possono scomporre in macchine ancora più elementari.

Dettagli

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni. (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO

EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO Equilibrio di un Punto Materiale Definizione 1 Un punto materiale è in una posizione di equilibrio quando posto in quella posizione

Dettagli

attrito2.notebook March 18, 2013

attrito2.notebook March 18, 2013 Proviamo a tirare una tavoletta di legno, appoggiata su un piano, mediante un dinamometro e aumentiamo lentamente l'intensità della forza applicata fino a quando la tavoletta inizia a muoversi. Indichiamo

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Lezione 18: la meccanica dei corpi rigidi

Lezione 18: la meccanica dei corpi rigidi Lezione 18 - pag.1 Lezione 18: la meccanica dei corpi rigidi 18.1. Corpi estesi e punti materiali Pur senza mai dirlo apertamente, fin qui abbiamo parlato di corpi puntiformi, ovvero, come si dice abitualmente,

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Compito di Fisica I A geometri 18/12/2008

Compito di Fisica I A geometri 18/12/2008 1.Una trave lunga 120 cm appoggia su di un fulcro posto a 40 cm da un suo estremo sul quale agisce una forza resistente del peso di 300 N. Quale forza deve essere applicata all altro estremo per equilibrare

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

VERIFICA L equilibrio dei corpi e le macchine semplici

VERIFICA L equilibrio dei corpi e le macchine semplici ERIICA L equilibrio dei corpi e le macchine semplici Cognome Nome Classe Data I/1 ero o also? Se un corpo è immobile si trova in una situazione di equilibrio Un corpo appoggiato su un piano può restare

Dettagli

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale Le forze (2 a parte) Massa, temperatura, volume, densità sono grandezze scalari La forza è una grandezza vettoriale Scalari e vettori Si definiscono SCALARI le grandezze fisiche che sono del tutto caratterizzate

Dettagli

Statica. corso di Fisica per Farmacia - Anno Accademico

Statica. corso di Fisica per Farmacia - Anno Accademico Statica Studia le condizioni i equilibrio dei corpi Per sistemi puntiformi si ha equilibrio quando la somma delle forze e nulla per sistemi estesi e importante anche dove le forze sono applicate Marcello

Dettagli

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture Introduzione La meccanica è quella parte delle scienze applicate che studia le forze ed il moto. In questo campo è fondamentale la nozione di equilibrio, ovvero la condizione che si instaura quando le

Dettagli

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze LE FORZE Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze Le forze possono agire: Per contatto a distanza Effetto delle forze Le

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Equilibrio statico sul piano inclinato

Equilibrio statico sul piano inclinato Esperienza 3 Equilibrio statico sul piano inclinato Obiettivi - Comprendere la differenza tra grandezze vettoriali e grandezze scalari attraverso lo studio delle condizioni di equilibrio statico di un

Dettagli

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

SISTEMI DI RIFERIMENTO NON INERZIALI

SISTEMI DI RIFERIMENTO NON INERZIALI SISTEMI DI RIFERIMENTO NON INERZIALI ESERCIZIO 1 Un punto materiale di massa m è disposto sul pavimento della cabina di una funicolare che si muove con accelerazione costante a lungo un pendio inclinato

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

Lezione 10: Le forze vengono a coppie

Lezione 10: Le forze vengono a coppie Lezione 10 - pag.1 Lezione 10: Le forze vengono a coppie 10.1. Ricordiamo la prima e la seconda legge della dinamica Abbiamo visto come, per prevedere il moto di un corpo, sia necessario conoscere le forze

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia Il concetto fondamentale che mette in relazione forze, spostamenti ed energia è quello di lavoro Lavoro di una forza costante Nel caso di forza e spostamento con uguale direzione

Dettagli

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali Forza gravitazionale e forza peso massa e peso, peso apparente Forze normali Moto circolare

Dettagli

Riassunto. Moto di caduta libera 2D: moto di un proiettile Moto relativo 1 / 68

Riassunto. Moto di caduta libera 2D: moto di un proiettile Moto relativo 1 / 68 Riassunto Moto di caduta libera 2D: moto di un proiettile Moto relativo 1 / 68 Moto di caduta libera: Accelerazione di gravità: Equazioni del moto: g = 9.8 m/s 2 y = y 0 + v 0 t 1 2 gt2 v = v 0 gt 2 /

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

Gradi di libertà e vincoli. Moti del corpo libero

Gradi di libertà e vincoli. Moti del corpo libero Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Momento. Si può definire il momento rispetto ad un punto. in è possibile riassumere questa definizione nella formula

Momento. Si può definire il momento rispetto ad un punto. in è possibile riassumere questa definizione nella formula Momento di una forza rispetto a un punto Si può definire il momento rispetto ad un punto 1 Il suo modulo è il prodotto della forza per la distanza del punto dall asse di applicazione di questa 2 La direzione

Dettagli

Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano

Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano Reazioni vincolari e equilibrio del corpo rigido Reazioni vincolari del corpo rigido 2 I corpi rigidi sono generalmente vincolati al riferimento fisso tramite i vincoli, che esercitano delle forze sul

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2 MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata

Dettagli

Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido

Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido Capitolo 2 Statica del corpo rigido La statica è la parte della meccanica che si occupa dello studio dell equilibrio di corpi in quiete, ossia fermi, o mobili di moto rettilineo uniforme. In effetti applichiamo

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

LA FORZA...SIA CON TE!

LA FORZA...SIA CON TE! LA FORZA...SIA CON TE! CHE COS'E' LA FORZA? E' UNA GRANDEZZA FISICA VETTORIALE. L'UNITA' DI MISURA NEL S.I. E' IL "NEWTON" ( N ), DAL CELEBRE SCIENZIATO INGLESE ISAAC NEWTON, CHE NE HA STUDIATO LE LEGGI,

Dettagli

Prova scritta del corso di Fisica con soluzioni

Prova scritta del corso di Fisica con soluzioni Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 17/04/013 Quesiti 1. Una massa si trova al centro di un triangolo equilatero di lato L = 0 cm ed è attaccata con tre molle di costante

Dettagli

L Unità didattica in breve

L Unità didattica in breve L Unità didattica in breve Una macchina semplice è un dispositivo utilizzato per equilibrare o vincere una forza resistente (resistenza) mediante una forza motrice (po tenza) avente caratteristiche diverse.

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Primo principio detto d'inerzia o di Galileo

Primo principio detto d'inerzia o di Galileo Dinamica del punto Forza ed accelerazione La prima legge di Newton : l inerzia La seconda legge di Newton: il pirincipio fondamentale della dinamica La terza legge di Newton : azione e reazione Le differente

Dettagli

Lez. BM3. Giovedì 16 Aprile :30. Luca P. Ardigò. I = mr2

Lez. BM3. Giovedì 16 Aprile :30. Luca P. Ardigò. I = mr2 I = mr Il momento d inerzia di un corpo è la somma degli I di tutti i segmenti che formano quel corpo, ne consegue che il corpo umano assume valori di I diversi a seconda delle posizioni spaziali assunte

Dettagli

1) Fare il diagramma delle forze, cioè rappresentare graficamente tutte le forze agenti sul corpo o sui corpi considerati.

1) Fare il diagramma delle forze, cioè rappresentare graficamente tutte le forze agenti sul corpo o sui corpi considerati. Suggerimenti per la risoluzione di un problema di dinamica: 1) Fare il diagramma delle forze, cioè rappresentare graficamente tutte le forze agenti sul corpo o sui corpi considerati. Forza peso nero) Forza

Dettagli

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE www.aliceappunti.altervista.org IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE Nel moto circolare uniforme, il moto è generato da una accelerazione centripeta, diretta verso

Dettagli

Esercizi di Statica - Moti Relativi

Esercizi di Statica - Moti Relativi Esercizio 1 Esercizi di Statica - Moti Relativi Esercitazioni di Fisica LA per ingegneri - A.A. 2004-2005 Un punto materiale di massa m = 0.1 kg (vedi sotto a sinistra)é situato all estremitá di una sbarretta

Dettagli

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare.

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare. 2ª lezione (21 ottobre 2006): Che cos è una forza? Idea intuitiva: forza legata al concetto di sforzo muscolare. L idea intuitiva è corretta, ma limitata ; le forze non sono esercitate solo dai muscoli!

Dettagli

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo.

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. C Si consideri il veicolo rappresentato in figura per il quale valgono le seguenti

Dettagli

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

P = r. o + r. O + ω r (1)

P = r. o + r. O + ω r (1) 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

L ENERGIA E LA QUANTITÀ DI MOTO

L ENERGIA E LA QUANTITÀ DI MOTO L ENERGIA E LA QUANTITÀ DI MOTO Il lavoro In tutte le macchine vi sono forze che producono spostamenti. Il lavoro di una forza misura l effetto utile della combinazione di una forza con uno spostamento.

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Osservazioni sperimentali

Osservazioni sperimentali Attrito Nel contatto tra due corpi interviene sempre l attrito. Attrito statico, dinamico, volvente sono aspetti diversi di uno stesso principio fisico. La maggior parte dell attrito è dovuto alle forze

Dettagli

La situazione è rappresentabile così:

La situazione è rappresentabile così: Forze Equivalenti Quando viene applicata una forza ad un corpo rigido è importante definire il punto di applicazione La stessa forza applicata a punti diversi del corpo può produrre effetti diversi! Con

Dettagli

IL LAVORO E L ENERGIA. che si possono trasformare tra loro lasciando invariata la quantità totale di energia.

IL LAVORO E L ENERGIA. che si possono trasformare tra loro lasciando invariata la quantità totale di energia. IL LAVORO E L ENERGIA ENERGIA: Grandezza scalare associata allo stato di un corpo Esistono varie forme: Energia cinetica Energia potenziale Energia elettrica Energia chimica Energia termica Energia elastica..

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Il segno del momento è positivo perché il corpo ruota in senso antiorario.

Il segno del momento è positivo perché il corpo ruota in senso antiorario. MOMENTO DI UNA FORZA E DI UNA COPPIA DI FORZE Esercizi Esempio 1 Calcola il momento della forza con cui si apre una porta, ruotando in verso antiorario, nell'ipotesi che l'intensità della forza applicata

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2012/2013, Fisica

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2012/2013, Fisica Unità di misura - misurare oggetti -grandezze fisiche: fondamentali: lunghezza, tempo, massa, intensità di corrente, temperatura assoluta, quantità di sostanza derivate: velocità, accelerazione, forza,

Dettagli

Vettore forza. che si chiamano Newton. Oppure in gr cm /s. che si chiamano dine. Ovviamente 1 N = 10 5 dine. F i = m a F i j = F j i

Vettore forza. che si chiamano Newton. Oppure in gr cm /s. che si chiamano dine. Ovviamente 1 N = 10 5 dine. F i = m a F i j = F j i Dinamica Mi occupo delle cause del moto Ogni volta che un oggetto viene disturbato dico che agisce una forza La forza è caratterizzata da direzione e verso. Non basta per dire che è un vettore ma è una

Dettagli

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Corso di Fisica CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Docente: Deborah Lacitignola Dipartimento di Scienze Motorie e della Salute Università di Cassino Email: d.lacitignola@unicas.it

Dettagli