ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α"

Transcript

1 Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo per con l denizione di un' unit di misur per gli ngoli; il rdinte. Angoli Il sistem internzionle per le unit di misur ( S. I. ) prevede l' uso del rdinte ( rd) come unit di misur degli ngoli pini. Vedimo llor qule l denizione di quest unit di misur e come pssre di grdi i rdinti o vicevers. Il rdinte denito come l misur dell' ngolo l centro di un circonferenz che sottende un rco di lunghezz pri l rggio dell circonferenz. L comodit del rdinte st nell relzione semplice tr l misur dell' ngolo e l lunghezz dell' rco sotteso; moltiplicndo l' ngolo per il rggio ottenimo l lunghezz dell' rco. In un cerchio di rggio unitrio, l misur di un' ngolo l centro corrisponde ll misur dell' rco sotteso. Se un ngolo espresso in grdi e lo voglimo trsformre in rdinti, lo moltiplichimo per Se un ngolo espresso in rdinti e lo voglimo trsformre in grdi, lo moltiplichimo per Qundo usimo le clcoltrici elettroniche doimo prestre ttenzione ll' unit di misur in uso. Inftti queste clcoltrici possono lvorre con i rdinti ( rd), con i grdi sessdecimli ( deg, l' ngolo retto vle 90 deg) e i grdi centesimli ( grd, l' ngolo retto vle 1 00 grd). trigonometri I pg. 1

2 Denimo or le funzioni trigonometriche sin, cos e tn, per degli ngoli compresi tr 0 e 90 grdi, grzie d un tringolo rettngolo. cteto opposto d cteto dicente d seno dell' ngolo, notto sin( ), il rpporto tr il cteto opposto d e l'. sin()= cteto opposto d coseno di, notto cos( ), il rpporto tr il cteto dicente d e l'. cos()= cteto dicente d tngente di, nott tn( ), il rpporto tr il cteto opposto e il cteto dicente d. ( l tngente non denit per un ngolo di 90 ). tn()= cteto opposto d cteto dicente d Relzioni fondmentli Dlle denizioni precedenti deducimo che il rpporto tr sin( ) e cos( ) corrisponde tn( ) ; tn( ) = sin( ) cos( ) Il teorem di Pitgor ci conduce ll second relzione fondmentle dell trigonometri; ( il qudrto di sin( ) notto sin 2 ( ) ) sin 2 ( ) + cos 2 ( ) = 1 trigonometri I pg. 2

3 1 funzioni inverse Aimo denito l funzione sin per degli ngoli compresi tr 0 e 90 grdi; d ogni ngolo corrisponde un numero compreso tr 0 e 1. L funzione cos denit iunivoc e quindi invertiile. ngoli d 0 90 grdi sin 0 o 0 numeri d o 30 o 90 o L funzione invers chimt rcsin o nche sin? 1 ngoli d 0 90 grdi sin -1 0 o 0 numeri d o 30 o 90 o Ci signic che se conoscimo il vlore del seno di un ngolo, possimo rislire l vlore dell' ngolo. Se di un tringolo rettngolo conoscimo l', per es. 5 cm, e un cteto, per es. 4 cm, sppimo che il seno dell' ngolo opposto l cteto di 4 cm vle 4/5 e, interrogndo l? clcoltrice scoprimo che quell' ngolo vle sin ( 4/5) = Aimo le funzioni inverse nche per co s e tn ; le chimimo rcco s o cos? 1? 1 e rctn o tn ngoli d 0 90 grdi cos -1 0 o 1 numeri d 0 1 ngoli d 0 90 grdi (90 escluso) tn -1 0 o 0 numeri d 0 infinito 30 o o 1 45 o 90 o o 89 o trigonometri I pg. 3

4 risoluzione di tringoli rettngoli Di un tringolo possimo conoscere l misur dei lti e desiderre conoscere il vlore dei suoi ngoli. Oppure conoscere l lunghezz di due lti e l misur di un ngolo e voler determinre l lunghezz del terzo lto e l misur degli ltri ngoli. Per risoluzione di tringoli intendimo proprio questo; l determinzione delle misure che ncor non conoscimo prtire d quello che gi sppimo. Per l risoluzione dei tringoli rettngoli fremo uso del teorem di pitgor e di qunto imo ppreso sulle funzioni trigonometriche sin, cos, tn e le loro inverse. conosciuti trovimo * sin() * cos() cteto dicente d * tn() cteto dicente d / cos() cteto dicente d cteto dicente d cteto opposto d cteto opposto d cteto opposto d / sin() cteto opposto d / tn() pitgor cteto cteto rctn(cteto / cteto ) cteto cteto rccos(cteto / ) cteto cteto rcsin(cteto / ) pitgor trigonometri I pg. 4

5 Se voglimo occuprci di tringoli qulsisi dovremo considerre degli ngoli tr 0 e Avremo dunque isogno di estendere l denizione di seno e coseno n qui dt. Per or per nticipimo solo che due ngoli supplementri ( l loro somm d 1 80 ) hnno lo stesso seno mentre il loro coseno ugule in vlore ssoluto m di segno opposto. In formule vremo: sin( ) = sin( 1 80? ) cos( ) =? cos( 1 80? ) teorem dei seni ( Eulero) Dll geometri sppimo che tutti gli ngoli ll circonferenz che si ppoggino d un cord dt sono uguli o supplementri. Il rpporto tr l lunghezz dell cord e il dimetro dell circonferenz dipende unicmente dl vlore dell' ngolo e corrisponde l seno dell' ngolo. Dto un qulsisi tringolo, possimo sempre disegnre un circonferenz che pss per i suoi vertici. l circonferenz circoscritt. Il seno di un' ngolo del tringolo sr equivlente l rpporto tr il lto opposto ll' ngolo e il dimetro dell circonferenz. Per d dimetro dell circonferenz circoscritt vremo: sin = d sin = d sin = c d Isolndo il dimetro in ognun delle eguglinze precedenti ottenimo precismente il teorem dei seni: d = sin = sin = c sin trigonometri I pg. 5

6 teorem del coseno ( Crnot) Il teorem del coseno ssomigli quello di Pitgor m vle per tutti i tringoli. E dice che: 2 = 2 + c 2? 2 c cos Per convincercene disegnmo l' ltezz z, reltiv l lto e denimo x = c cos e y =? x. Usndo Pitgor e l denizione di y vremo: 8 >< >: 2 = z 2 + y 2 z 2 = c 2? x 2 y 2 = 2 + x 2? 2 x Per sostituzione ottenimo 2 = 2 + c 2? 2 x e ricordndo che x = c cos imo il teorem. Esercizi ) scrivere il teorem per gli ltri lti: 2 = c 2 = ) girre l formul isolndo l' ngolo: = = = trigonometri I pg. 6

7 Risoluzione di tringoli qulsisi Qui di seguito illustrimo quello che potree essere il primo psso nell risoluzione di un tringolo qulsisi. Fccimo uso dei teoremi di Eulero e di Crnot e ricordimo che l somm degli ngoli di un tringolo vle dti trovimo due lti e l ngolo compreso c c (Crnot) tutti i lti c c (Crnot) un lto e gli ngoli β β γ (Eulero) γ le lunghezze di due lti e l mpiezz di un ngolo non compreso (ci possono essere zero, un o due soluzioni) (Eulero) trigonometri I pg. 7

8 Estendimo or l denizione dell funzione seno d ngoli qulsisi. Utilizzimo per questo un circonferenz di rggio unitrio centrt ll' origine degli ssi crtesini. In quest circonferenz disegnmo degli ngoli orientti che originno dl semisse x positivo e hnno vlore positivo se il loro verso ntiorrio ( vedi gur sotto). Dll denizione precedente sppimo che per gli ngoli d 0 90 grdi il seno di corrisponde ll coordint y del punto P. Estendimo llor l denizione di seno dicendo che questo vle per qulsisi ngolo. L funzione cos denit trsform un ngolo qulsisi in un numero compreso tr? 1 e + 1. Nel grco sopr gli ngoli sono espressi in grdi mentre sotto sono rdinti. trigonometri I pg. 8

9 Per estendere l denizione di coseno d ngoli qulsisi utilizzimo di nuovo l circonferenz di rggio unitrio; il coseno di corrisponde ll coordint x del punto P. Cos il punto P che si muove sull circonferenz unitri vr coordinte ( x P ; y P ) = ( cos ; sin ) Il grco dell funzione co s sr ugule quello dell funzione sin slvo uno sfsmento di 90. Queste due funzioni sono pe riodiche e il loro periodo di 360 ( 2 rdinti). Per k 2 Z possimo scrivere: sin( ) = sin( + k 360 ) cos( ) = cos( + k 360 ) Inoltre possimo vericre che vlgono le seguenti identit : sin( ) = sin( 1 80? ) cos( ) = cos(? ) trigonometri I pg. 9

10 Nell gur seguente sono riportte le coordinte di lcuni punti prticolri sull circonferenz unitri. Gli ngoli che li crtterizzno sono dti si in grdi che in rdinti. Nel primo qudrnte si il seno che il coseno sono positivi ( o nulli), nel secondo qudrnte il seno positivo e il coseno negtivo, nel terzo qudrnte entrme le funzioni sono negtive mentre nel qurto qudrnte il seno negtivo e il coseno positivo. trigonometri I pg. 1 0

c a (seno di alfa); (coseno di alfa); (tangente di alfa).

c a (seno di alfa); (coseno di alfa); (tangente di alfa). Sito Personle di Ettore Limoli Lezioni di Mtemtic Prof. Ettore Limoli Sommrio Elementi di trigonometri... 1 Angoli e loro misur... Funzioni e loro grfici... 4 Usre i grfici... 5 Funzioni inverse delle

Dettagli

LA SIMILITUDINE ( ), ( ) = (, )

LA SIMILITUDINE ( ), ( ) = (, ) Sched di mtemtic Prof. Angelo Angeletti Liceo Scientifico G.Glilei Mcert LA SIMILITUDINE L similitudine è un prticolre trsformzione geometric, nel pino o nello spzio, che conserv i rpporti tr le distnze.

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

INTRODUZIONE ALLA TRIGONOMETRIA

INTRODUZIONE ALLA TRIGONOMETRIA INTRODUZIONE ALLA TRIGONOMETRIA L trigonometri: come e perché. L prol trigonometri signific misur degli elementi di un tringolo; prolem primrio di questo cpitolo dell mtemtic è quello di determinre l misur

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Definiamo ora alcuni vettori particolarmente importanti detti versori.

Definiamo ora alcuni vettori particolarmente importanti detti versori. Prof. A. Di Mro I versori Definimo or lcni vettori prticolrmente importnti detti versori. Un versore è semplicemente n vettore di modlo nitrio. Normlmente gli ssi, e z vengono ssociti i versori i ˆ, ˆj,

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Anno 4 I Triangoli rettangoli

Anno 4 I Triangoli rettangoli Anno 4 I Tringoli rettngoli 1 Introduzione In quest lezione esmineremo i tringoli rettngoli, studindo le relzioni metriche tr i lti e gli ngoli di un tringolo. Enunceremo i teoremi sui tringoli rettngoli

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli

PRODOTTI NOTEVOLI. Esempi

PRODOTTI NOTEVOLI. Esempi PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Classi IV C IV E ALUNNO CLASSE LEGGI UNO DEI SEGUENTI TESTI. Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri

Classi IV C IV E ALUNNO CLASSE LEGGI UNO DEI SEGUENTI TESTI. Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Per informzioni, consigli, problemi robbypit@tin.it Istituto Professionle di Stto per l Industri e l Artiginto Gincrlo Vlluri Clssi IV C IV E.s. 0/0 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

Elementi di Geometria. Lezione 02

Elementi di Geometria. Lezione 02 Elementi di Geometri Lezione 02 Angoli complementri e supplementri Due ngoli si dicono complementri qundo l loro somm è un ngolo retto. In Figur 15 i due ngoli e sono complementri perché, sommti come descritto

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

APPUNTI DI TOPOGRAFIA MODULO 1

APPUNTI DI TOPOGRAFIA MODULO 1 APPUNTI DI TOPOGRAFIA MODULO 1 ELEMENTI DI TRIGONOMETRIA PIANA E USO DI MACCHINE CALCOLATRICI PROF. SPADARO EMANUELE UNITA DIDATTICA N 1 UNITA DI MISURA DEGLI ANGOLI E USO DELLE MACCHINE CALCOLATRICI http://spdroemnueletopogrfi.bloog.it/

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

30. ESERCIZI SULL ELLISSE (soluzioni alla fine della rassegna)

30. ESERCIZI SULL ELLISSE (soluzioni alla fine della rassegna) 0. ESERCIZI SULL ELLISSE (soluzioni ll fine dell rssegn) A prtire dll equzione di un ellisse stilisci qunto vlgono I. le lunghezze dei semissi orizzontle ( ) e verticle ( ); II. le coordinte dei vertici

Dettagli

Classe V E. Geometria

Classe V E. Geometria Postulti di Euclide: Primi postulti: Clsse V E Geometri Lo spzio contiene infiniti punti, infinite rette e infiniti pini, un pino contiene infiniti punti e infinite rette, un rett contiente infiniti punti.

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

UNITA DI MISURA. distanze

UNITA DI MISURA. distanze Unità di misur. ppunti di Topogrfi UNIT DI MISUR distnze L unità di misur bitulmente impiegt per esprimere le distnze è il metro. Per grndezze molto piccole è opportuno ricorrere i sottomultipli, centimetro

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Vettori Geometrici. Corso di Metodi Numerici per il Design. 30 Settembre 2002 Vettori Geometrici. Corso di Laurea in Disegno Industriale

Vettori Geometrici. Corso di Metodi Numerici per il Design. 30 Settembre 2002 Vettori Geometrici. Corso di Laurea in Disegno Industriale Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design 0 Settemre 00 Vettori Geometrici 1 Vettori Geometrici Metodi Mtemtici per il Design Leione pg. 1 1 Segmento orientto P P 1 Direione:

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2 APPENDICE 1 AL CAPITOLO 3: RAPPRESENTAZIONE GRAFICA DELLA PARABOLA Per 0 l insieme,y / y = + + c, grfico dell funzione f = + + c { } f con, è l prol di equzione y = + + c Voglimo disegnrl non è difficile

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA PROBLEMI DI APPLICAZIONE DELL'ALGEBRA ALLA GEOMETRIA ) Inscrivere in un semicirconferenz di dimetro r un rettngolo ABCD vente il lto AB sul dimetro

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno Corso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it I erminnti. Il prodotto vettorile. 11 Gennio 2016 Indice 1 Determinnti di mtrici 2 2 2 1.1 Clcolo del erminnte.

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler 2 Numeri reli M. Simonett Bernei & Horst Thler Numeri interi positivi o Nturli 0 1 2 3 4 Con i numeri Nturli è sempre possiile fre l ddizione e l moltipliczione p.es.: 5+2 = 7; 3*4 = 12; m non sempre l

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo?

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo? GB00001 Il perimetro di un rombo è triplo di quello di un ) 24 cm. b) 21 cm. c) 26,5 cm. d) 20,25 cm. d tringolo equiltero di lto 9 cm. Qunto misur il lto del rombo? GB00002 Due segmenti AB e CD sono tli

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

y = Funzioni Lineari : Funzione quadrato: Modulo Funzione omografica (iperbole): Funzioni Potenza: Funzione Esponenziale Funzione Logaritmica

y = Funzioni Lineari : Funzione quadrato: Modulo Funzione omografica (iperbole): Funzioni Potenza: Funzione Esponenziale Funzione Logaritmica Funzioni Lineri : Funzione qudrto: Modulo Funzione omogrfic (iperbole: Funzioni Elementri 1/ y m + q y + b + y y c + + b d c Funzioni Potenz: y Funzione Esponenzile Funzione Logritmic y y log ( Funzioni

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE uthor: Ing, Giulio De Meo GEOMETRIA TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE L somm degli ngoli interni di un poligono di n lti è (n - ) 180. L somm degli ngoli esterni di un qulsisi poligono vle 360.

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Vettori e coordinate cartesiane

Vettori e coordinate cartesiane ettori e coordinte crtesine ettori nel pino crtesino Aimo già incontrto i ettori e li imo usti per indicre uno spostmento: se un punto si muoe nel pino dll posizione A ll posizione B, lo spostmento AB

Dettagli

Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano

Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano Geometri nlitic punti, rette, circonferenz, ellisse, iperbole, prbol ITIS Feltrinelli nno scolstico 007-008 Il pino crtesino Si dice pino crtesino un sistem formto d due rette perpendicolri che si intersecno

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Triangoli rettangoli

Triangoli rettangoli Tringoli rettngoli Teori in sintesi Teoremi sui tringoli rettngoli Teorem In un tringolo rettngolo l misur di un cteto è ugule quell dellipotenus moltiplict per il coseno dellngolo cuto esso dicente o

Dettagli

CAPITOLO VII FUNZIONI TRASCENDENTI

CAPITOLO VII FUNZIONI TRASCENDENTI TE07_tr -fb- 5/10/007 5/10/007 VII - 1 CAPITOLO VII FUNZIONI TRASCENDENTI Pssimo or definire prim e d illustrre poi il comportmento di lcune funzioni di prticolre interesse non riconducibili lle funzioni

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

La dimostrazione per assurdo

La dimostrazione per assurdo L dimostrzione per ssurdo L dimostrzione per ssurdo in mtemtic è uno strumento utile per dimostrre certi teoremi. Ess procede secondo i seguenti pssi: 1. Si suppone che il teorem si flso. Si f vedere,

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Misura degli archi e degli angoli

Misura degli archi e degli angoli Misur degli rhi e degli ngoli. Si definise ome positivo il verso ntiorrio di perorrenz di un ironferenz; ome negtivo il verso orrio.. Fissto su un ironferenz un punto A ome origine e un punto B ome estremo

Dettagli

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato 11. Geometri pin 1. Formule fonmentli Rettngolo = h = h = h p = + h p = + h h= p = p h + ( ) = h = h h= = se = igonle p = perimetro h = ltezz = re p = semiperimetro Qurto = l l = = l l = l = lto = igonle

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Cap. 4 - Algebra vettoriale

Cap. 4 - Algebra vettoriale Mssimo Bnfi Cp. 4 - Algebr vettorile Cpitolo 4 Algebr vettorile 4.1. Grndezze sclri Si definiscono sclri quelle grndezze fisiche che sono descritte in modo completo d un numero con l reltiv unità di misur.

Dettagli

Esempio verifica integrali indefiniti e definiti - A

Esempio verifica integrali indefiniti e definiti - A Esempio verific integrli indefiniti e definiti - A ) Determin i seguenti integrli indefiniti Esercizi Punti Punti ssegnti ) d ) e / d c) d d) ln d ) Clcol i seguenti integrli definiti e ssoci ciscuno di

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

Il teorema di classificazione delle curve del secondo ordine

Il teorema di classificazione delle curve del secondo ordine Geometri nlitic e lger linere, nno ccdemico 009/10 Lezione del 14 gennio 10 Il teorem di clssificzione delle curve del secondo ordine Ponimo X T = (,). Un equzione di secondo grdo T T T XAX + BX+ c = 0,

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli