LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO"

Transcript

1 LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici e sistemi di secondo grdo. b) Disequzioni intere e frzionrie numeriche con fttori di grdo superiore l primo. c) Il concetto di modulo e reltive ppliczioni espressioni ed equzioni. d) Problemi con teoremi di Pitgor ed Euclide. II QUADRIMESTRE: ) Clcolo con i rdicli numerici. b) Clcolo con rdicli letterli e reltiv discussione in csi semplici. c) Equzioni e disequzioni di grdo superiore l secondo e con uno o più moduli. d) Equzioni irrzionli : risoluzione con discussione. e) Sistemi di grdo superiore l secondo risolvibili utilizzndo riduzione o sostituzione e semplici sistemi simmetrici. f) L rett nel pino crtesino. g) Problemi di geometri con l ppliczione dell similitudine, del teorem dell bisettrice e delle relzioni tr i lti di un tringolo rettngolo con ngoli prticolri e l utilizzo di equzioni o sistemi. Per il ripsso utilizzre gli ppunti e il libro di testo fcendo esercizi proposti su ogni rgomento trttto e poi rifre i compiti in clsse ssegnti durnte l nno. Circ l verific che srà ssegnt nell esme d gosto, fre riferimento soprttutto i compiti in clsse di prile e mggio.

2 COMPITI IN CLASSE ASSEGNATI NELLE CLASSI ^D- E 7 novembre 04 ^D E. Risolvere e discutere il seguente sistem linere: = = 4 y y E. Risolvere e discutere le seguenti equzioni : ) b) c) ( ) ( ) = E. Risolvere il seguente sistem: ( ) = = = z y y z y y z E.4 D un punto P esterno d un crf. conduci un tngente e indic con A il punto di tngenz. Dl punto medio M del segmento AP conduci l ulteriore tngente ll crf., indicndo con B il punto di tngenz. Detto poi C l ltro estremo del dimetro per A, dimostr che i punti P,B,C sono llineti. E.5 è un qudriltero inscritto in un crf. Spendo che:,, determinre l misur degli ngoli di Quindi dire di che qudriltero si trtt, giustificndo l rispost.

3 0 novembre 04 ^E E. Risolvere e discutere il seguente sistem linere: E. Risolvere e discutere le seguenti equzioni: ) b) c) E. Risolvere il seguente sistem di secondo grdo: E.4 Si AB un dimetro di un crf di centro O ; per il punto A si trcci un cord qulunque AC, poi l tngente in C e l tngente in B. Si D il punto d incontro delle due tngenti. Dimostrre che OD è prllelo d AC. E.5 ABCDE è un pentgono inscritto in un crf. Spendo che: Determinre l misur degli ngoli del pentgono. Cos si può dire del tringolo? ( giustificre l rispost)

4 5 dicembre 04 ^E E. Risolvere l seguente disequzione: E. Risolvere il seguente sistem di disequzioni: E. risolvere e discutere l seguente disequzione, l vrire di : E.4 dt l equzione k Determinre tle che le rdici dell equzione e sino reli, di segno concorde e l cui somm si minore di. 9 dicembre 04 ^D E. Risolvere l seguente disequzione: E. Risolvere il seguente sistem di disequzioni: 4

5 E. risolvere e discutere l seguente disequzione, l vrire di : E.4 dt l equzione k Determinre tle che le rdici dell equzione e sino reli, bbino il prodotto minore di 5 e l somm compres tr e. 9 gennio 05 ^E E. Risolvere il seguente sistem di disequzioni: E. Risolvere l seguente disequzione: E. Risolvere le seguenti equzioni: ) = ; = ; = d) E.4 dt l equzione k Determinre tle che le rdici dell equzione e sino reli, bbino il prodotto minore di 5 e l somm compres tr e. gennio 05 ^D 5

6 E. Risolvere le seguenti equzioni: ) b) E. Risolvere il seguente sistem di disequzioni: E. Risolvere,l vrire del prmtro E.4 In un semicirconferenz di dimetro è inscritto il trpezio. Determinre i lti del trpezio spendo che il suo perimetro misur. 9 gennio 05 ^E Cognome.Nome. Risolvere e discutere, l vrire di ) ) 6

7 Risolvere l seguente disequzione: ) 0 gennio 05 ^D Cognome.Nome. E. Risolvere e discutere, l vrire di E. Risolvere le seguenti disequzioni: ) E. Il tringolo è rettngolo in e si l ltezz reltiv ll ipotenus. Spendo che: e che determinre: lti del tringolo e febbrio 05 ^E E. Risolvere le seguenti disequzioni: 5 ) 4 4 0; b) >0; c) ; E. Risolvere il seguente sistem di disequzioni: 7

8 E. Clcolre: ( ) ( ) ( ) 8 4 : 6 6 = 4 E.4 Nel tringolo l ngolo di vertice misur. Spendo che i lti e misurno rispettivmente e, determinre il lto, e. E.5 In un circonferenz di rggio è inscritto il tringolo. Spendo che e che, determinre i lti del tringolo 7 febbrio 05 ^D E. Risolvere le seguenti disequzioni: ) 0 b) E. Risolvere il seguente sistem di disequzioni: 8

9 < 0 E. Clcolre: E.4 : = b) 6 6 ) ( ) ( ) = Nel tringolo l ngolo di vertice misur e l ngolo in misur. Spendo che il perimetro di misur, determinre i lti di e dello stesso tringolo. E.5 In un circonferenz di rggio è dt l cord. Si un punto dell rco minore tle che:. Determinre i lti del tringolo e del tringolo stesso. 7 mrzo 05 ^E Cognome.Nome.. E. Clcolre: p..5 ) b) E. Clcolre e discutere: p. 9

10 E. Risolvere le seguenti disequzioni: p..5.5 ) b) EX.4 Risolvere il seguente sistem di equzioni: p..5 7 mrzo 05 ^D Cognome.Nome.. E. Clcolre: p..5 c) d) E. Clcolre e discutere: p. E. Risolvere le seguenti disequzioni: p

11 c) d) EX.4 Risolvere il seguente sistem di equzioni: p..5 prile 05 ^E ) Risolvere l seguente disequzione: ) Risolvere il seguente sistem: ) Clcolre 6 ( ) : ( ) 4 4) Risolvere l seguente disequzione: 7 prile 05 ^D

12 5) Risolvere l seguente disequzione: 6) Risolvere il seguente sistem: 7) Clcolre : 8) Risolvere l seguente disequzione: 8 mggio 05 ^D E. Risolvere le seguenti disequzioni: ) 0 6 b) p..5 p. c) p..5

13 d) ( ) [ ( ) ] < 0 p..5 e) p. E. Un trpezio è circoscrivibile d un circonferenz e il rpporto tr le bsi e è. Spendo che l somm dei lti obliqui è, determin il perimetro del tringolo, essendo il punto di incontro dei prolungmenti dei lti obliqui. E.. D un punto esterno d un circonferenz si conduce un tngente e un secnte. Spendo che il segmento di tngente è, determinre l lunghezz dell cord. dell cord intercettt dll secnte e che l prte estern dell secnte misur E.4. L re del tringolo ABC misur e il rpporto tr i lti AC e BC è. Si CD l bisettrici dell ngolo interno in C e d D trccire l cord DE prllel d AC. Determinre l re del tringolo DEB. 4 mggio 05 ^D E. Dti i punti A(- 5,); B(,5); C(,- ), determinre: ) Il bricentro del tringolo ABC b) L superficie del tringolo ABC c) L lunghezz dell medin BM d) Il vertice D del prllelogrmm ABCD ( con opposto ) E. Dti A(-,- ); B(,0), determinre: ) Il vertice C del tringolo isoscele di bse AB, essendo C un punto dell sse y b) L equzione dell crf. di dimetro AB e verificre che il punto C è un punto dell crf. trovt. Cos si può dire dl tringolo ABC? c) I punti di intersezione con gli ssi dell precedente crf. E. Dt l rett, determinre:

14 ) L equzione dell rett pssnte per A(-,) b) L rett pssnte per O(0,0) e r. c) L equzione dell rett pssnte per B(,0) e per il punto di intersezione di con l rett 8 mggio 05 ^E ) Dti i punti Determinre il perimetro, l re, il bricentro e ortocentro del tringolo ) Dti e determinre il punto sull rett tle che il tringolo si isoscele di bse. Determinre,inoltre, il qurto vertice del prllelogrmmo ( vertice opposto ). ) Dti i punti e, determinre sull sse un punto C tle che il tringolo si rettngolo di ipotenus AC. Quindi determinre l equzione dell circonferenz circoscritt l tringolo. 4) Determinre l equzione dell circonferenz pssnte per e l cui tngente in è prllel ll sse crtesini.. Determinre inoltre i punti di intersezione dell circonferenz con gli ssi mggio 05 ^D E. Dti i punti A(0,6) e B(5,): ) Determinre il terzo vertice del tringolo ABC, spendo che il suo Bricentro è G(,). b) Verificre che ABC è un tringolo isoscele. c) Determinre l ortocentro del tringolo ABC. E. Nel tringolo il vertice è il punto d incontro delle rette dei lti e coordinte dei vertici e. Spendo che è il piede dell ltezz reltiv l lto, determinre le 4

15 E. Determinre l circonferenz tngente ll rett nel suo punto di intersezione con l sse e vente il centro sull rett pssnte per e. Quindi determinre i punti di intersezione dell circonferenz ottenut con gli ssi coordinti. E.4 Dti i punti A(-,) e B(,) : ) Determinre il vertice C del tringolo ABC, spendo che è rettngolo in B e che il vertice C è un punto dell b,4. b) Determinre l equzione dell circonferenz circoscritt l tringolo ABC. 8 mggio 05 ^E E. Risolvere le seguenti disequzioni: ) p..5 b) p. E. Risolvere le seguenti equzioni irrzionli: ) p. b) p. E. Risolvere i seguenti sistemi: ) p..5 b) y y = 4 = 8 p. E.4 p.4 Dto C(-,) e l rett t: y- =0 5

16 ) Determinre l equzione dell crf. di centro C e tngente t b) Determinre le intersezioni dell crf con l rett c) Verificre che uno dei due punti trovti pprtiene ll rett t. Cos si può dire di questo punto? d) Determinre l rett tngente pssnte per l ltro punto trovto. 9 mggio 05 ^D E. Risolvere le seguenti disequzioni: b) p..5 b) p. E. Risolvere le seguenti equzioni irrzionli: b) p. b) p. E. Risolvere i seguenti sistemi: b) p..5 b) y y = 0 y 4y = p. E.4 p.4 Dto il punto, determinre: ) L equzione dell circonferenz di centro e pssnte per. b) Il punto di intersezione di con l sse. c) L equzione dell rett tngente in ll circonferenz. 6

17 d) L equzione delle rette tngenti e prllele ll 7

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO LICEO SCIENTICO STATALE LEONARDO DA VINCI GENOVA.s.04-5 MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO Coordintrice: Prof. ANTONINA CASTANIOTTO

Dettagli

Appunti di matematica 3 Indice

Appunti di matematica 3 Indice Appunti di mtemtic Indice. Ripsso di lgebr e geometri del biennio. Geometri nlitic Il pino crtesino Rett Circonferenz Prbol Ellisse Iperbole Complementi di geometri nlitic. Successioni numeriche. Funzione

Dettagli

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo?

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo? GB00001 Il perimetro di un rombo è triplo di quello di un ) 24 cm. b) 21 cm. c) 26,5 cm. d) 20,25 cm. d tringolo equiltero di lto 9 cm. Qunto misur il lto del rombo? GB00002 Due segmenti AB e CD sono tli

Dettagli

Antonella Greco, Rosangela Mapelli. E-Matematica. E-Book di Matematica per il triennio. Volume 1

Antonella Greco, Rosangela Mapelli. E-Matematica. E-Book di Matematica per il triennio. Volume 1 Antonell Greco, Rosngel Mpelli E-Mtemtic E-Book di Mtemtic per il triennio Volume COPIA SAGGIO Cmpione grtuito fuori commercio d esclusivo uso dei docenti Grmond 009 Tutti i diritti riservti Vi Tevere,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO ACCADEMIA NAVALE Sllbus POLIGRAFICO ACCADEMIA NAVALE LIVORNO PREFAZIIONE È noto che in tluni ordini dell scuol medi superiore l'insegnmento dell mtemtic non giunge sino ll'ultimo nno, in ltri, lo svolgimento

Dettagli

Classe V E. Geometria

Classe V E. Geometria Postulti di Euclide: Primi postulti: Clsse V E Geometri Lo spzio contiene infiniti punti, infinite rette e infiniti pini, un pino contiene infiniti punti e infinite rette, un rett contiente infiniti punti.

Dettagli

Triangoli rettangoli

Triangoli rettangoli Tringoli rettngoli Teori in sintesi Teoremi sui tringoli rettngoli Teorem In un tringolo rettngolo l misur di un cteto è ugule quell dellipotenus moltiplict per il coseno dellngolo cuto esso dicente o

Dettagli

5 Geometria analitica

5 Geometria analitica 58 Formulrio di mtemtic 5 eometri nlitic 5.1 Punti e rett distnz di due punti d ( ) + ( y y ) 1 1 distnz tr due punti con ugule sciss d y y1 distnz tr due punti con ugule ordint d 1 punto medio di un segmento

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

PROGRAMMA SVOLTO A. S. 2014/ 2015

PROGRAMMA SVOLTO A. S. 2014/ 2015 A. S. 4/ Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G mnutenzione e ssistenz tecnic ore complessive di insegnmento settimne X 4 ore = ore Nome Ins. Tecn.

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Cubiche e quartiche luoghi geometrici di punti del piano (parte I) Elena Stante

Cubiche e quartiche luoghi geometrici di punti del piano (parte I) Elena Stante Cubiche e qurtiche luoghi geometrici di punti del pino (prte I) Elen Stnte L strofoide rett In un riferimento crtesino O si A ( h, 0) un punto generico dell sse Dett s l rett condott per il punto A prllel

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio Unità LA GEOMETRIA Lungezz dell circonferenz e re del cercio Misur dell circonferenz Il rpporto fr l misur c di un circonferenz e l misur d del suo dimetro è costnte ed è ugule π (si legge pi greco) L

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed ppunti di geometria.s. 14-15 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo esterno

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Funzioni Elementari 1/2

Funzioni Elementari 1/2 Funzioni Lineri : Funzione qudrto: Modulo Funzione omogric iperbole: Funzioni Elementri / y m q y y y c b c b d Funzioni Potenz: Funzione Esponenzile Funzione Logritmic y y y log Funzioni trigonometriche

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

Corsi di Laurea in Ingegneria Meccanica e Informatica e corsi V.O. Anno Accademico 2014/2015 Meccanica Razionale, Fisica Matematica

Corsi di Laurea in Ingegneria Meccanica e Informatica e corsi V.O. Anno Accademico 2014/2015 Meccanica Razionale, Fisica Matematica orsi di Lure in Ingegneri Meccnic e Informtic e corsi V.. nno ccdemico 2014/2015 Meccnic Rzionle, Fisic Mtemtic Nome... N. Mtricol... ncon, 15 gennio 2015 1. Un lmin pin omogene qudrt D di mss m e lto

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

ELEMENTI GEOMETRIA ANALITICA SABO

ELEMENTI GEOMETRIA ANALITICA SABO ELEMENTI DI GEOMETRIA ANALITICA SABO COORDINATE CARTESIANE Ascisse dei Punti di un Rett Dt un rett orientt (verso di percorrenz positivo d sinistr verso destr per rette orizzontli; dl sso verso l lto per

Dettagli

Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano

Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano Geometri nlitic punti, rette, circonferenz, ellisse, iperbole, prbol ITIS Feltrinelli nno scolstico 007-008 Il pino crtesino Si dice pino crtesino un sistem formto d due rette perpendicolri che si intersecno

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza ironferenz e erhio L ironferenz e il erhio Poligoni insritti e irosritti un ironferenz L ironferenz e il erhio Stilisi se le seguenti ffermzioni sono vere o flse. SEZ. M e f g h Il rpporto tr l lunghezz

Dettagli

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico Noe Cognoe. Clsse D 9 Novebre 00 erific di Fisic forul Noe grfico Proporzionlità qudrtic invers = ) icordndo i possibili legi tr due grndezze,, coplet l seguente tbell ) Specific il significto dei prefissi

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica Liceo Scientifico E. Mjorn Guidoni Numeri Nturli Sintesi dell teori Domnde Risposte Esempi Come si indic l insieme dei numeri nturli {0,,,,, }? L insieme dei numeri nturli si indic con l letter N. Quli

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

I.I.S. G. Brotzu Quartu S. Elena

I.I.S. G. Brotzu Quartu S. Elena I.I.S. G. Brotzu Classe : 1 C Libro di testo: Bergamini-Trifone-Barozzi Manuale di algebra Vol 1 e Manuale di geometria Gli insiemi e la loro rappresentazione. Sottoinsieme, insieme delle parti, intersezione

Dettagli

1) TEOREMA: OGNI TRIANGOLO E INSCRIVIBILE/CIRCOSCRIVIBILE IN/AD UNA CIRCONFERENZA

1) TEOREMA: OGNI TRIANGOLO E INSCRIVIBILE/CIRCOSCRIVIBILE IN/AD UNA CIRCONFERENZA 1) TEORE: OGNI TRINGOLO E INSRIVIILE/IROSRIVIILE IN/ UN IRONFERENZ TRINGOLO INSRITTO: isegniamo il triangolo. Si tracciano i due assi r ed s dei lati e. Indichiamo con il loro punto di incontro. Sappiamo

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

Problemi sui teoremi di Euclide

Problemi sui teoremi di Euclide Capitolo 1 Problemi sui teoremi di Euclide 1.1 Problemi svolti 1. Calcolare il perimetro e l area di un triangolo rettangolo sapendo che la misura di un cateto, supera di 4 cm. quella della sua proiezione

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE Università degli studi di Cgliri CORSO ANALISI II A.A. 007/008 Rppresentzione delle CONICHE e QUADRICHE Rppresentzione delle CONICHE Generlità Si definiscono coniche le curve pine risultto dell intersezione

Dettagli

Misura degli archi e degli angoli

Misura degli archi e degli angoli Misur degli rhi e degli ngoli. Si definise ome positivo il verso ntiorrio di perorrenz di un ironferenz; ome negtivo il verso orrio.. Fissto su un ironferenz un punto A ome origine e un punto B ome estremo

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1 Esercizio n.1 Un appezzamento di terreno quadrilatero ABCD è stato rilevato andando a misurare: AB = 345,65 m AD = 308,68 m CD = 195,44 m a = 95,3852 gon g = 115,5600 gon Rappresentare in scala opportuna

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

June 14, 2011. solidi e realtà.notebook. apr 6 17.59. mar 20 12.20. mar 17 18.22. mar 17 18.23

June 14, 2011. solidi e realtà.notebook. apr 6 17.59. mar 20 12.20. mar 17 18.22. mar 17 18.23 solidi e reltà.noteook Un solido è un prte di spzio delimitt d un superficie cius. SOLII E RELT' (immgini per l mtemtic) I solidi delimitti d poligoni vengono cimti poliedri I solidi ce nno superfici curve

Dettagli

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI LE RELAZIONI FRA GLI ELEMENTI DI UN TRIANGOLO 1) La somma degli angoli interni di un triangolo è 180 γ Consideriamo il triangolo ABC. Tracciamo la parallela

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

MATEMATICA CLASSI PRIME A.S. 2013/2014 PROGRAMMA EFFETTIVAMENTE SVOLTO

MATEMATICA CLASSI PRIME A.S. 2013/2014 PROGRAMMA EFFETTIVAMENTE SVOLTO LICEO SCIENTIFICO F.LUSSANA - BEGAMO A.S. 0/0 CLASSE E MATEMATICA CLASSI PIME A.S. 0/0 POGAMMA EFFETTIVAMENTE SVOLTO DOCENTE MAFFI MAIA ANGELA DISCIPLINA MATEMATICA Testi in uso Leonrdo Ssso "Mtemtic colori

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado U.D.1:ripetizione U.D.1: pino rtesino U.D.2 :L rett U. D.3 : I sistemi U.D.1: Le equzioni frtte U.D.1:Disequzioni di primo grdo Istituzione Solsti MARGHERITA DI SAVOIA Anno Solstio 2014/15 CLASSE II B

Dettagli

PIANO di LAVORO A. S. 2013/ 2014

PIANO di LAVORO A. S. 2013/ 2014 Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G IPSIA ore complessive di insegnmento 33 settimne X 3 ore = 99 ore Nome Ins. Tecn. Prtico Testo in dozione

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Geometria solida Rette e piani nello spazio + poliedri + solidi di rotazione

Geometria solida Rette e piani nello spazio + poliedri + solidi di rotazione Geometri solid ette e pini nello spzio + poliedri + solidi di rotzione ette e pini nello spzio tilisi se le seguenti ffermzioni sono vere o flse. EZ. d e e tre rette nello spzio sono tr loro prllele, llor

Dettagli

Equazioni e disequazioni

Equazioni e disequazioni Cpitolo Equzioni e disequzioni.1 Princìpi di equivlenz 1. Sommndo o sottrendo l stess quntità d entrmbi i membri di un equzione o di un disequzione ess non cmbi, ovvero: A(x) B(x) A(x) k(x) B(x) k(x).

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S. VIA SILVESTRI ANNO SCOLASTICO 2015-2016 INSEGNANTE: MASCI ORNELLA ALGEBRA - Equazioni letterali fratte

Dettagli

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio.

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio. TEOREMA DI TALETE Piccolo Teorema di Talete Dato un fascio di rette parallele tagliate da due trasversali, a segmenti congruenti su una trasversale corrispondono segmenti congruenti sull altra trasversale.

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Lezione 14. Risoluzione delle equazioni algebriche.

Lezione 14. Risoluzione delle equazioni algebriche. Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD. Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Lelezionifrontalisarannoassociateadelleesperienzedilaboratorioperaccompagnarelateoriae

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare

Dettagli

Regime di interesse semplice

Regime di interesse semplice Formule d usre : I = interesse ; C = cpitle; S = sconto ; K = somm d scontre V = vlore ttule ; i = tsso di interesse unitrio it i() t = it () 1 ; s () t = ( 2) 1 + it I() t = Cit ( 3 ) ; M = C( 1 + it)

Dettagli

COGNOME... NOME... Classe... Data...

COGNOME... NOME... Classe... Data... Cpitolo I tringoli Criteri i ongruenz - Tringoli isoseli erifi per l lsse prim Clsse.................................... Dt............................... Congruenz Tringolo isosele Teorem Quesiti 186

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare

Dettagli