TASSI DI ACCRESCIMENTO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TASSI DI ACCRESCIMENTO"

Transcript

1 TASSI DI ACCRESCIMENTO Sia N il numero di individui di una data popolazione. N varia col tempo: N= f(t) Se indichiamo con t 1 e t 2 due istanti distinti di tempo, allora f(t 1 ) ed f(t 2 ) sono i numeri di individui corrispondenti. La differenza ΔN= f(t 2 ) - f(t 1 ) è la variazione totale dell ampiezza della popolazione nell intervallo di tempo da t 1 a t 2. Per ΔN>0 si ha un aumento, per ΔN<0 si ha una diminuzione. E rilevante anche la lunghezza dell intervallo di tempo Δt = t 2 - t 1

2 Il rapporto TASSI DI ACCRESCIMENTO ΔN Δt = f(t 2 ) - f(t 1 ) t 2 -t 1 rappresenta la variazione media per unità di tempo nell intervallo da t 1 a t 2. Diremo tale quantità tasso medio di variazione, detto anche tasso di accrescimento o, in termini matematici, rapporto incrementale. Si osserva che l accrescimento può essere talvolta una quantità negativa.

3 TASSI DI ACCRESCIMENTO Sia M=f(t) la massa di un certo alimento nutriente in funzione del tempo, supponiamo che l alimento si disgreghi chimicamente e, quindi M diminuisca nel tempo ΔM= f(t 2 ) - f(t 1 ) indica la diminuzione della massa nel passare dal tempo t 1 a t 2 ΔM Δt = f(t 2 ) - f(t 1 ) t 2 -t 1 Rappresenta il tasso medio di reazione. Per quanto supposto, se t 1 < t 2, tale tasso è negativo

4 TASSI DI ACCRESCIMENTO OSSERVAZIONE Non è necessario che la variabile libera sia il tempo, ad esempio potremmo pensare al tasso di variazione del volume di una cellula, supposta approssimativamente sferica, in funzione del raggio: V(r ) e considerare ΔV/Δr. Indichiamo, più in generale, y=f(x). Il tasso di variazione, o rapporto incrementale è Δy f(x 2 ) - f(x 1 ) Δx = x 2 - x 1

5 DERIVATE La variazione media è il coefficiente angolare della retta che collega i punti (x 1, f(x 1 )) e (x 2,f(x 2 )), che ha equazione y = f(x 1 ) + Δf Δx (x-x 1 ) Facciamo tendere x 2 a x 1 e consideriamo la variazione istantanea, che indicheremo indifferentemente lim x2 x 1 Δy Δx lim x 2 x 1 Δf Δx

6 DERIVATE Genericamente si indica il punto verso cui si fa tendere x con x 0 Δf f(x 1 ) - f(x 0 ) lim x1 x 0 Δx =lim x 1 x 0 x 1 - x 0 f(x 0 +Δx) - f(x 0 ) f(x 0 +h) - f(x 0 ) =lim Δx 0 Δx = lim h 0 h

7 DERIVATE Se il limite del rapporto incrementale esiste ed è finito, diremo che la funzione è derivabile in x 0. Il valore del limite viene detto derivata di f in x 0, ed indicato con varie simbologie lim x x0 Δy Δx = y'= f '(x 0 ) = dy dx = df dx = Df(x 0 )

8 DERIVATE In effetti il limite del rapporto incrementale non è detto che esista. Per esempio, scriviamo f(x) - f(x 0 ) = (x-x 0 ) f(x) - f(x 0 ) x-x 0 Se f è derivabile in x 0, allora per x x 0 il secondo membro tende a 0 (perché?); quindi f(x) tende a f(x 0 ), cioè f è continua in x 0

9 DERIVATE Possiamo quindi affermare che se la funzione non è continua in x 0 allora non può essere derivabile in x 0, vale a dire: f(x) derivabile in x 0 f(x) continua in x 0 Tuttavia la continuità in x 0 non assicura la derivabilità in x 0

10 DERIVATE Geometricamente l esistenza del limite del rapporto incrementale significa che le rette secanti per x e x 0 tendono ad una retta limite quando x tende a x 0. Questa retta è detta retta tangente al grafico di f in x 0 ed ha equazione y=f(x 0 ) + f (x 0 )(x-x 0 )

11 La derivata di una funzione costante, f(x)=c per ogni x, è 0, infatti [f(x+h)-f(x)]/h = (c - c)/h = 0 Pensando in termini geometrici non stupisce! Vale anche il viceversa Una funzione derivabile con derivata identicamente nulla su un intervallo è necessariamente costante su quell intervallo

12 La derivata di una funzione lineare, f(x)=mx+q costante, infatti [f(x+h)-f(x)]/h = [m(x+h) +q - (mx+q)]/h = mh/h =m è Pensando in termini geometrici non stupisce! La funzione valore assoluto f(x)= x non è derivabile in x=0, infatti il rapporto incrementale è h h, ed ha limite destro, per x che tende a 0, 1 e limite sinistro -1

13 Se le funzioni f e g sono derivabili in x anche la loro somma (o la loro differenza) è derivabile in x e si ha Provalo per esercizio! (f ± g) (x) = f (x) ± g (x) Due funzioni derivabili che hanno la stessa derivata differiscono per una costante additiva, infatti se f =g allora (f-g) = f -g =0, per cui f-g è una costante c e quindi f=g+c

14 La derivata di f(x)=ax 2 è f (x)= 2ax, infatti il rapporto incrementale [a(x+h) 2 - ax 2 ]/h = (2axh + ah 2 )/h = 2ax +ah quindi per h 0, si ottiene il limite f (x)=2ax La derivata di una funzione quadratica f(x) = ax 2 +bx+c è quindi f (x)= 2ax + b

15 Più in generale, si dimostra che la derivata di f(x)=ax n è f (x)= nax n-1 La derivata di un prodotto fg di due funzioni derivabili: [(fg)(x+h)-(fg)(x)]/h =[f(x+h)g(x+h)-f(x)g(x)]/h = [f(x+h)g(x+h) -f(x)g(x+h) +f(x)g(x+h)-f(x)g(x)]/h= [(f(x+h)-f(x))/h]g(x+h) + [(g(x+h)-g(x))/h]f(x) Passando al limite per h 0, si ha (fg) (x) = f (x)g(x) + f(x)g (x)

16 Supponiamo che f:i R sia una funzione derivabile in un punto x con f(x) 0 allora 1/f è derivabile in x e si ha (1/f) = -f / f 2 Dimostriamolo: [1/f(x+h) - 1/f(x)]/h = (f(x) - f(x+h))/(f(x+h)f(x)h)= -[(f(x+h)-f(x))/h] 1/(f(x+h)f(x) da cui, passando al limite per h 0, si ottiene il risultato annunciato Esempio: deriviamo 1/x 3, si ha (1/x 3 ) =-3x 2 /x 6 =-3x -4

17 Più in generale deriviamo 1/x n, si ha (1/x n ) =-nx n-1 /x 2n =-nx -n-1 Si osserva che poiché 1/x n = x -n, e si è ottenuto (x -n ) =-nx -n-1 la regola di derivazione per le potenze ad esponente naturale si estende anche alle potenze intere

18 Supponiamo che f e g siano funzioni derivabili in un punto x con g(x) 0 allora f/g è derivabile in x e si ha (f/g) = (f g-fg )/ g 2 Infatti, per la regola del prodotto, si ha (f/g) = (f 1/g) =f (1/g) + f (1/g) =f (1/g) +f (-g /g 2 )= = (f g-fg )/g 2

19 Esempio: deriviamo la seguente funzione razionale (x 2-3x+6)/(3x+2) per x -2/3 ((x 2-3x+6) (3x+2) - (x 2-3x+6)(3x+2) )/(3x+2) 2 = ((2x-3) (3x+2) - 3(x 2-3x+6))/(3x+2) 2 = (6x 2-5x -6-3x 2 +9x -18)/(9x 2 +12x+4)= (3x 2 +4x-24)/(9x 2 +12x+4)

20 Vogliamo determinare la derivata di una funzione composta go f, supponendo f derivabile in x e g derivabile in f(x), e la composizione go f definita vicino ad x, si ha (go f(x+h)- go f(x))/h = [g(f(x+h)) -g(f(x))]/h= [g(f(x)+f(x+h)-f(x))-g(f(x))]/(f(x+h)-f(x)) (f(x+h)-f(x))/h= [g(y+h 1 )-g(y)]/h 1 (f(x+h)-f(x))/h dove si è posto y=f(x) ed h 1 =f(x+h)-f(x). Poiché f, essendo derivabile, è anche continua, quando h tende a 0 anche h 1 tende a 0, e quindi passando al limite, otteniamo (go f) (x)=g (f(x))f (x)

21 Sia f una funzione invertibile, derivabile in un punto x, tale che f(x)=y, con f (x) 0, allora la funzione inversa f -1 è derivabile nel punto y=f(x) e vale (f -1 ) (y) = 1/f (f -1 (y)) Infatti, dal rapporto incrementale [f -1 (y+h)- f -1 (y)]/h= [f -1 (y+h)- x]/(y+h-y) = (x 1 -x)/[f(x 1 )-f(x)] = h 1 /[f(x+h 1 )-f(x)] dove si è posto x 1 = f -1 (y+h) ed h 1 = x 1 -x Poiché f -1 è continua in y, per h 0 anche h 1 0, quindi si ottiene la regola enunciata

22 Siamo in grado ora di calcolare la derivata della funzione potenza con esponente razionale x p/q. Tale funzione può essere vista come funzione composta go f(x), dove f(x)= x 1/q e g è la funzione potenza di esponente p, quindi, utilizzando la relazione vista per la derivata di una funzione composta, abbiamo (x p/q ) =((x 1/q ) p ) =p (x 1/q ) p-1 (x 1/q ) Dobbiamo calcolare la derivata di x 1/q che possiamo vedere come funzione inversa della funzione potenza con esponente q, si ottiene (x 1/q ) =1/[q (x 1/q ) q-1 ]=(1/q) (x (1-q)/q )

23 Ed infine (x p/q ) =((x 1/q ) p ) =p (x 1/q ) p-1 (x 1/q ) = p (x 1/q ) p-1 (1/q) (x (1-q)/q )= (p/q) x (p/q)-1 Possiamo quindi concludere che, anche per le potenze con esponente razionale, vale la stessa regola di derivazione delle potenze con esponente naturale.

24 Calcoliamo la derivata della funzione logaritmo in base naturale, si ha [log(x+h) - logx]/h =(log[(x+h)/x])/h = log(1+h/x) 1/h Ricordiamo che lim n (1+a/n) n = e a quindi, indicando con a=1/x, e ponendo h=1/n, si ottiene che lim h 0 (1+h/x) 1/h = e 1/x per cui il limite del rapporto incrementale esiste ed è uguale a log( e 1/x )= 1/x La derivata del logaritmo in base naturale è 1/x

25 Si osserva che il calcolo della derivata per un logaritmo in una base b diversa dalla naturale procederebbe in modo analogo e si avrebbe (log b x) =log b ( e 1/x )=(1/x) log b e =1/(x logb) dove, nell ultima uguaglianza, si è applicato il cambiamento di base, ripordandoci alla base naturale

26 Per ottenere la derivata della funzione exp(x)=e x, possiamo applicare il teorema per la derivata della funzione inversa, considerando e x come funzione inversa di logx, si ha (e x ) = 1/(1/ e x ) = e x per cui la derivata della funzione esponenziale con base e è uguale alla funzione stessa Per una funzione esponenziale di base b>0, possiamo considerare la relazione b x =exp(xlogb), per cui, utilizzando la derivata di una funzione composta, si ha (b x ) =(logb) b x

27 Possiamo analogamente calcolare la derivata di una qualsiasi funzione potenza x α, dalla relazione x α =exp(log x α )=exp(αlogx), per cui (x α ) = x α (α/x)= αx α 1 Tale regola di derivazione per una funzione potenza vale, quindi, per ogni esponente reale

28 Calcoliamo la derivata della funzione sinx: Scriviamo il rapporto incrementale e usiamo le formule di prostaferesi [sin(x+h)-sinx]/h= [2cos((x+h+x)/2)sin((x+h)-x)/2)]/h= [2cos(2x+h)sin(h/2)]/h =cos(2h+x)sin(h/2)/(h/2) Passando al limite per h 0 e ricordando che lim x 0 (sinx)/x =1, otteniamo (sinx) = cosx In modo analogo si ottiene (cosx) = - sinx

29 Per la derivata della funzione tanx, teniamo conto che tanx=sinx/cosx, applichiamo quindi la regola di derivazione per il rapporto tra due funzioni (tanx) = [cosxcosx-sinx(-sinx)]/(cosx) 2 =1/ (cosx) 2 Per la derivata della funzione arcsinx, usiamo la derivata della funzione inversa (arcsinx) = 1/cos(arcsinx), poiché cost=sqr(1-sin 2 t) nell intervallo [-π/2, π/2] dove è possibile invertire sint, si ottiene (arcsinx) =1/sqr(1-sin 2 (arcsinx))=1/sqr(1-x 2 )

30 Analogamente per la derivata della funzione arccosx, si ottiene (arccosx) = -1/sqr(1-x 2 ) Per la derivata della funzione arctanx, si ha (arctanx) = cos 2 (arctanx) scrivendo 1+tan 2 x=1+sin 2 x/cos 2 x=1/cos 2 x, si ha cos 2 x=1/(1+tan 2 x), da cui (arctanx) =1/(1+ tan 2 (arctanx))=1/(1+x 2 )

CALCOLO DI DERIVATE. Passando al limite per h 0, si ha (fg) (x) = f (x)g(x) + f(x)g (x)

CALCOLO DI DERIVATE. Passando al limite per h 0, si ha (fg) (x) = f (x)g(x) + f(x)g (x) La derivata di un prodotto fg di due funzioni derivabili: [(fg)(x+h)-(fg)(x)]/h =[f(x+h)g(x+h)-f(x)g(x)]/h = [f(x+h)g(x+h) -f(x)g(x+h) +f(x)g(x+h)-f(x)g(x)]/h= [(f(x+h)-f(x))/h]g(x+h) + [(g(x+h)-g(x))/h]f(x)

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

La funzione primitiva

La funzione primitiva La funzione primitiva Può accadere di conoscere la derivata di una funzione f (x) e di voler conoscere f(x). Ad esempio, conosciamo il tasso di accrescimento di una data popolazione e vorremmo conoscere

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Derivazione Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Matematica I, Derivate e operazioni algebriche.

Matematica I, Derivate e operazioni algebriche. Matematica I, 6.0.202 Derivate e operazioni algebriche.. Prima di iniziare questa lezione, conviene rendere espliciti due fatti che sono impliciti nella definizione informale di derivata, banalmente verificabili

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Metodi Matematici per l Economia anno 2017/2018 Gruppo B

Metodi Matematici per l Economia anno 2017/2018 Gruppo B Metodi Matematici per l Economia anno 2017/2018 Gruppo B Docente: Giacomo Dimarco Dipartimento di Matematica e Informatica Università di Ferrara https://sites.google.com/a/unife.it/giacomo-dimarco-home-page/

Dettagli

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p.

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p. Calcolo Differenziale Corsi di Laurea in Tecniche di Radiologia ecc... A.A. 2010-2011 - Analisi Matematica - Calcolo Differenziale - p. 1/33 Velocità istantanea Percorriamo il tratto di strada tra Udine

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Lezione 5 (9/10/2014)

Lezione 5 (9/10/2014) Lezione 5 (9/10/2014) Esercizi svolti a lezione Nota 1. La derivata di una funzione. Consideriamo una funzione f(x) : R R e definiamo il rapporto incrementale nel punto x 0 come r(h) = f(x 0 +h) f(x 0

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Il concetto di derivata e le regole di derivazione

Il concetto di derivata e le regole di derivazione Il concetto di derivata e le regole di derivazione Il concetto fondamentale del calcolo differenziale è quello di derivata formulato alla fine del XVII secolo da Pierre de Fermat che se ne servì per determinare

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico.

Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico. Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico. Introduzione In matematica la derivata di una funzione è uno dei cardini dellanalisi matematica

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Copyright c 2007 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Teoremi

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

24 IL RAPPORTO INCREMENTALE - DERIVATE

24 IL RAPPORTO INCREMENTALE - DERIVATE 24 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y 2 domf con x 6= y, sidefinisceilrapporto incrementale di f tra x e y come P f (x, y) =

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Derivate. Paola Mannucci e Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 12 novembre 2014

Derivate. Paola Mannucci e Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 12 novembre 2014 Derivate. Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 12 novembre 2014 Paola Mannucci e Alvise Sommariva Derivate. 1/ 106 Approssimazione Problema. Data

Dettagli

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m =

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m = DERIVATA DI UNA FUNZIONE IN UN PUNTO SIGNIFICATO GEOMETRICO. EQUAZIONE DELLA RETTA TANGENTE AL GRAFICO NEL PUNTO DI TANGENZA. REGOLE DI DERIVAZIONE. CONTINUITA E DERIVABILITA PUNTI DI NON DERIVABILITA

Dettagli

Derivate di funzioni

Derivate di funzioni Derivate di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 9 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

By Fabriziomax. Storia del concetto di derivata:

By Fabriziomax. Storia del concetto di derivata: By Fabriziomax Storia del concetto di derivata: Introduzione: La derivata fu inventata da Newton per risolvere il problema pratico di come definire una velocita e un accelerazione istantanea a partire

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

4. Derivata di una funzione

4. Derivata di una funzione 1 4 Derivata di una funzione La derivata in un punto Per studiare in maniera più dettagliata l'andamento di una funzione, ci serve un modo per descrivere la velocità con cui cambiano i valori della funzione

Dettagli

Integrali inde niti. F 2 (x) = x5 3x 2

Integrali inde niti. F 2 (x) = x5 3x 2 Integrali inde niti Abbiamo sinora studiato come ottenere la funzione derivata di una data funzione. Vogliamo ora chiederci, data una funzione f, come ottenerne una funzione, che derivata dia f. Esempio

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Equazioni differenziali. f(x, u, u,...,u (n) )=0,

Equazioni differenziali. f(x, u, u,...,u (n) )=0, Lezione Equazioni differenziali Un equazione differenziale è una relazione del tipo f(x, u, u,...,u (n) )=, che tiene conto del valori di una funzione (incognita) u e delle sue derivate fino ad un certo

Dettagli

Limiti di funzioni e loro applicazioni

Limiti di funzioni e loro applicazioni Limiti di funzioni e loro applicazioni Versione da non divulgare. Scritta per comodità degli studenti. Può contenere errori. 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Novembre 2013

Dettagli

Calcolo differenziale per funzioni di una variabile

Calcolo differenziale per funzioni di una variabile Capitolo 8 8. Definizione di derivata Sia y = f(x) definita nell intervallo A e sia fissato x 0 A. Diamo a x 0 un arbitrario incremento 0 su A, e indichiamo con y = f(x 0 + ) f(x 0 ) il corrispondente

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali

Dettagli

Derivate. Capitolo Cos è la derivata?

Derivate. Capitolo Cos è la derivata? Capitolo 8 Derivate 8.1 Cos è la derivata? Consideriamo una funzione y f(x) e disegnamo il suo grafico. Sia x 0 nel dominio di f e consideriamo il punto (x 0, f(x 0 )) del grafico. Vogliamo determinare

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si determini il campo di esistenza della funzione y = (x 2 3x) 1 x 4. Ricordiamo che il campo di esistenza di una funzione del

Dettagli

Soluzioni degli esercizi sulle Formule di Taylor

Soluzioni degli esercizi sulle Formule di Taylor Soluzioni degli esercizi sulle Formule di Taylor Formule di MacLaurin più usate (h, n numeri interi non negativi; a numero reale): e t =+t + t! + t3 tn +... + 3! n! + o(tn ) ln( + t) =t t + t3 3 t4 4 +...

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte Limiti e continuità Richiami sulle unzioni - parte II Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 Il simbolo o piccolo Siano f (x) e g(x) funzioni infinitesime per x x 0 e consideriamo f (x) il lim

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Limiti di funzioni di due variabili

Limiti di funzioni di due variabili Limiti di funzioni di due variabili Definizione 1 Sia f : A R 2 R e x 0 = (x 0, y 0 ) punto di accumulazione di A. Diciamo che se e solo se Diciamo che se e solo se f(x) = f(x, y) = L x x 0 (x,y) (x 0,y

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Variazione di una funzione

Variazione di una funzione a) Variazione di una funzione Variazione di : Δ= 2-1 Δf Variazione di f: Δf= 2-1 =f( 2 )-f( 1 ) b) 1 Δ 2 In questo caso a una variazione di, Δ, corrisponde una piccola variazione di f, Δf Δf In questo

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it ORDINAMENTO 7 - SESSIONE SUPPLETIVA QUESITO 1 Si calcoli il ite della funzione x cosx x sen x, quando x tende a. x cosx x x sen x = [F. I. ] x x cosx x (1 sen x x ) x cosx 1 sen x x =

Dettagli

SVILUPPI DI TAYLOR Esercizi risolti

SVILUPPI DI TAYLOR Esercizi risolti Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

origine asse delle ascisse unità di misura e orientamento sull asse delle ascisse

origine asse delle ascisse unità di misura e orientamento sull asse delle ascisse PIANO CARTESIANO Sia f: A R R, il grafico di f è un sottoinsieme del prodotto cartesiano RxR = R 2 Costruiamo una corrispondenza biunivoca tra i punti del piano euclideo e le coppie di numeri reali: 1-

Dettagli

17 LIMITI E COMPOSIZIONE

17 LIMITI E COMPOSIZIONE 17 LIMITI E COMPOSIZIONE L operazione di ite si comporta bene per composizione con funzioni continue. Teorema. Sia gx) = y 0 e sia f continua in y 0. Allora esiste fgx)) = fy 0 ). Questo teorema ci dice

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

Teoremi fondamentali dell'analisi Matematica versione 1

Teoremi fondamentali dell'analisi Matematica versione 1 Teoremi fondamentali dell'analisi Matematica versione 1 Roberto Boggiani 7 novembre 2012 1 Richiami di geometria analitica Dalla geometria analitica sulla retta sappiamo che dati due punti del piano A(x

Dettagli