CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO"

Transcript

1 LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

2 GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA GRANDEZZE SCALARI GRANDEZZE VETTORIALI

3 GRANDEZZE SCALARI E VETTORIALI: RICHIAMI GRANDEZZE SCALARI RISULTANO COMPLETAMENTE DESCRITTE DA UN NUMERO, CHE NE RAPPRESENTA IL VALORE ESEMPIO: TEMPERATURA, TEMPO GRANDEZZE VETTORIALI PER DEFINIRLE OCCORRE DEFINIRE MODULO, DIREZIONE, VERSO E PUNTO DI APPLICAZIONE ESEMPIO: VELOCITA, FORZA

4 I VETTORI : RICHIAMI VETTORI UGUALI SI DICONO UGUALI DUE VETTORI CHE HANNO LO STESSO MODULO, LA STESSA DIREZIONE E LO STESSO VERSO VETTORI OPPOSTI SI DICONO OPPOSTI DUE VETTORI CHE HANNO LO STESSO MODULO, LA STESSA DIREZIONE MA VERSO OPPOSTO OPERAZIONI CON I VETTORI SOMMA, DIFFERENZA, PRODOTTO DI UN VETTORE PER UNO SCALARE, PRODOTTO TRA VETTORI

5 I VETTORI: COMPONENTI E MODULO NEL PIANO BIDIMENSIONALE, UN VETTORE E UNIVOCAMENTE DESCRITTO DALLE SUE DUE COMPONENTI: COMPONENTI: MODULO:

6 OPERAZIONI CON I VETTORI SOMMA TRA DUE VETTORI: METODO GRAFICO: DIAGONALE DEL PARALLELOGRAMMA COSTRUITO SUI VETTORI DI PARTENZA METODO DELLE COMPONENTI:

7 OPERAZIONI CON I VETTORI DIFFERENZA TRA DUE VETTORI: METODO GRAFICO: ALTRA DIAGONALE DEL PARALLELOGRAMMA COSTRUITO SUI VETTORI DI PARTENZA METODO DELLE COMPONENTI:

8 OPERAZIONI CON I VETTORI PRODOTTO TRA UN VETTORE E UNO SCALARE: PRODOTTO SCALARE PRODOTTO TRA DUE VETTORI PRODOTTO VETTORIALE

9 OPERAZIONI CON I VETTORI PRODOTTO TRA UN VETTORE E UNO SCALARE: IL PRODOTTO TRA UN VETTORE v E UNO SCALARE a (cioè un numero a) E ANCORA UN VETTORE, AVENTE COME MODULO IL PRODOTTO TRA IL MODULO DI v ED IL NUMERO a, E AVENTE LO STESSO VERSO E LA STESSA DIREZIONE DEL VETTORE v.

10 OPERAZIONI CON I VETTORI PRODOTTO SCALARE TRA DUE VETTORI: IL PRODOTTO SCALARE TRA DUE VETTORI DA COME RISULTATO UNO SCALARE (cioè un numero) IL CUI MODULO E DATO DA UNA DELLE SEGUENTI FORMULE: USANDO I MODULI: OPPURE, USANDO LE COMPONENTI:

11 OPERAZIONI CON I VETTORI PRODOTTO VETTORIALE TRA DUE VETTORI IL PRODOTTO VETTORIALE TRA DUE VETTORI DA COME RISULTATO UN VETTORE CHE HA PER MODULO DIREZIONE: ORTOGONALE AL PIANO FORMATO DAI DUE VETTORI VERSO: DI AVANZAMENTO DI UNA VITE, SOVRAPPONENDO v 1 A v 2 (POLLICE DELLA MANO DESTRA

12 CORPO RIGIDO UN CORPO RIGIDO E UN OGGETTO O MEGLIO UN SISTEMA DI PUNTI MATERIALI IN CUI LE DISTANZE RELATIVE NON CAMBIANO UN CORPO RIGIDO CONSERVA DUNQUE LA SUA FORMA E NON SUBISCE ALCUNA DEFORMAZIONE ANCHE SE SOTTOPOSTO A SOLLECITAZIONE ESTREMAMENTE ELEVATE UN CORPO RIGIDO DIVENTA QUINDI LA DEFINIZIONE DI UN OGGETTO REALE ESTESO: I CORPI SOLIDI POSSONO ESSERE IN PRIMA APPROSSIMAZIONE CONSIDERATI COME CORPI RIGIDI

13 CORPO RIGIDO IL CORPO RIGIDO E UN ASTRAZIONE IN NATURA NON CI SARANNO MAI CORPI PERFETTAMENTE RIGIDI CI SARANNO CORPI IL CUI COMPORTAMENTO, IN PARTICOLARI CONDIZIONI, PUO ESSERE DESCRITTO COME QUELLO DI UN CORPO RIGIDO

14 CORPO RIGIDO UN CORPO RIGIDO NON PUO AVERE MOTI CARATTERIZZATI DA UNA VARIAZIONE DELLE DIMENSIONI DEL CORPO STESSO IN UN CORPO RIGIDO, LE FORZE INTERNE, CIOE LE FORZE DI COESIONE CHE MANTENGONO INVARIATE LE DISTANZE TRA I PUNTI, HANNO LE SEGUENTI CARATTERISTICHE

15 CORPO RIGIDO LE FORZE INTERNE.. NON hanno risultante R ( I ) = 0 ( I ) NON fanno momento M = 0 NON fanno lavoro W ( I ) = 0 HANNO UN RUOLO SOLO LE FORZE ESTERNE!!!!!!

16 MOMENTO DI UNA FORZA SI DICE MOMENTO DELLA FORZA F (DI PUNTO DI APPLICAZIONE A), RISPETTO AL POLO O, IL SEGUENTE VETTORE M = OA F = r F IL MOMENTO DELLA FORZA F RISPETTO AL POLO O, E DUNQUE UN VETTORE DI modulo F r sen φ = F b direzione r, F verso avanzamento vite che ruota sovrapponendo r su F

17 MOMENTO DI UNA FORZA M = OA F = r F dimensioni [M] = [forza][l] unità di misura: S.I. newton xm (Nm)

18 MOTI DI UN CORPO RIGIDO I MOTI DI UN CORPO RIGIDO POSSONO ESSERE DI TIPO: TRASLATORIO TUTTI I PUNTI DEL CORPO RIGIDO SUBISCONO LO STESSO SPOSTAMENTO NELLO STESSO INTERVALLO DI TEMPO

19 MOTI DI UN CORPO RIGIDO ROTATORIO TUTTI I PUNTI SI MUOVONO SU TRAIETTORIE CIRCOLARI ATTORNO ALL ASSE DI ROTAZIONE TUTTI I PUNTI SUBISCONO LO STESSO SPOSTAMENTO ANGOLARE NELLO STESSO INTERVALLO DI TEMPO

20 MOTI DI UN CORPO RIGIDO ROTOTRASLATOTORIO CIOE UN MOTO DATO DALLA COMPOSIZIONE DI UN MOTO TRASLATORIO E DI UN MOTO ROTATORIO

21 EQUILIBRIO DI UN CORPO RIGIDO EQUILIBRIO TRASLAZIONALE CONDIZIONE PER L EQUILIBRIO TRASLAZIONALE: LA RISULTANTE DELLE FORZE ESTERNE AGENTI SUL CORPO DEVE ESSERE NULLA F 1 + F 2 + F = i F i R = 0

22 EQUILIBRIO DI UN CORPO RIGIDO CONSIDERIAMO PERO ORA UN CORPO IN ROTAZIONE LA CONDIZIONE PER L EQUILIBRIO TRASLAZIONALE E ORA INSUFFICIENTE PERCHE DOBBIAMO CONSIDERARE ANCHE IL MOTO DI ROTAZIONE F F corpo in rotazione F 1 + F 2 = 0 F + ( F ) = 0 CONDIZIONE INSUFFICIENTE!!!!!!

23 EQUILIBRIO DI UN CORPO RIGIDO EQUILIBRIO ROTAZIONALE CONDIZIONE PER L EQUILIBRIO ROTAZIONALE: LA RISULTANTE DEI MOMENTI DELLE FORZE ESTERNE AGENTI SUL CORPO DEVE ESSERE NULLA M 1 + M 2 + M = i M i M T = 0

24 EQUILIBRIO DI UN CORPO RIGIDO EQUILIBRIO ROTAZIONALE O x z r 1 r 2 y M 1 A F 1 F 2 M 2 B esempio equilibrio rotazionale : M = M 1 2

25 EQUILIBRIO DI UN CORPO RIGIDO CONDIZIONI DI EQUILIBRIO DI UN CORPO RIGIDO i i F i R = 0 M i M T = 0 CONDIZIONI DI EQUILIBRIO CONDIZIONE PER L EQUILIBRIO DI UN CORPO RIGIDO E CHE SIANO NULLE SIA LA RISULTANTE DELLE FORZE ESTERNE CHE LA RISULTANTE DEI MOMENTI DELLE FORZE ESTERNE

26 CENTRO DI MASSA IL CENTRO DI MASSA DI UN SISTEMA DISCRETO DI N PUNTI MATERIALI E IL PUNTO GEOMETRICO LE CUI COORDINATE, IN UN DATO SISTEMA DI RIFERIMENTO, SONO DATE DA: = = DOVE M=m 1 +m 2 + +m N E LA MASSA TOTALE DEL SISTEMA E LE QUANTITA r i SONO I RAGGI VETTORI DEI PUNTI MATERIALI RISPETTO AL SISTEMA DI RIFERIMENTO USATO Centro di massa di un sistema di quattro sfere di massa diversa

27 BARICENTRO IL BARICENTRO DI UN CORPO E QUEL PUNTO DOVE SI DEVE PENSARE APPLICATA LA FORZA PESO PER CORPI NON MOLTO ESTESI, BARICENTRO E CENTRO DI MASSA COINCIDONO

28 SUL BARICENTRO: DUE ESEMPI.. ESEMPIO QUALI FORZE F d ED F s IL SUOLO ESERCITA SUI PIEDI DESTRO E SINISTRO DI UN UOMO CHE PESA 800 N E CHE STA IN POSIZIONE ERETTA? IL SUO BARICENTRO GIACE SULLA VERTICALE PASSANTE PER IL PUNTO MEDIO TRA I DUE PIEDI, DISTANTI 30 cm L UNO DALL ALTRO.

29 SUL BARICENTRO: DUE ESEMPI.. Consideriamo le forze in gioco F g : forza peso F g : applicata in G F p F d : forza che il suolo esercita sul piede destro F d : applicata in O F s : forza che il suolo esercita sul piede sinistro O G O F s : applicata in O F d F s 30 cm

30 SUL BARICENTRO: DUE ESEMPI.. Condizioni di equilibrio i i F i R = 0 M i M T = 0 Eq.Traslazionale F p Eq.Rotazionale O F d G O F s 30 cm

31 SUL BARICENTRO: DUE ESEMPI.. La prima condizione ci dice che F g + F d + F s = 0 F p Poiché le forze sono parallele, la relazione precedente è equivalente alla seguente relazione tra i loro moduli: F d + F s = 800 N O F d G O F s 30 cm

32 SUL BARICENTRO: DUE ESEMPI.. Per trovare la intensità di ciascuna delle due forze, utilizziamo la condizione sui momenti F p M g + M d + M s = 0 I momenti, devono essere calcolati rispetto ad un polo. O G O Scegliamo come polo il punto O F d 30 cm F s

33 MOMENTO DI UNA FORZA SI DICE MOMENTO DELLA FORZA F (DI PUNTO DI APPLICAZIONE A), RISPETTO AL POLO O, IL SEGUENTE VETTORE M = OA F = r F IL MOMENTO DELLA FORZA F RISPETTO AL POLO O, E DUNQUE UN VETTORE DI modulo F r sen φ = F b direzione r, F verso avanzamento vite che ruota sovrapponendo r su F

34 MOMENTO DI UNA FORZA MOMENTO M DELLA FORZA F (DI PUNTO DI APPLICAZIONE A), RISPETTO AL POLO O, M = OA F = r F M è perpendicolare al piano (in azzurro) determinato da r (segmento OA) ed F.

35 MOMENTO DI UNA FORZA MOMENTO M DELLA FORZA F (DI PUNTO DI APPLICAZIONE A), RISPETTO AL POLO O, M = OA F = r F il momento è nullo ogni volta che il segmento OA e la forza F sono paralleli (perché in tal caso senα =0) il momento è massimo ogni volta che il segmento OA e la forza F sono perpendicolari (perché in tal caso senα =1)

36 SUL BARICENTRO: DUE ESEMPI.. M s = F s * OO *senφ = 0 F p F s O O il segmento OO ha lunghezza zero e dunque M s è nullo O F d G O F s 30 cm

37 SUL BARICENTRO: DUE ESEMPI.. M d = F d * OO senφ F d O O il segmento OO e la forza F d sono perpendicolari e dunque senφ =1 F d Per calcolare il verso si nota che segmento O O OO si sovrappone al segmento F d in senso orario e dunque il verso del momento sarà negativo M d = -F d * OO = = - F d * 0.3 m

38 SUL BARICENTRO: DUE ESEMPI.. G M g = F g * OG senφ O F g O il segmento OG e la forza F g sono G O perpendicolari e dunque senφ =1 F g Per calcolare il verso si nota che segmento OG si sovrappone al segmento F g in senso antiorario e dunque il verso del momento sarà positivo M g = F g * OG = 800 N * 0.15 m= 120 N*m

39 SUL BARICENTRO: DUE ESEMPI.. Quindi F d + F s = 800 N M g + M d + M s = 0 F p 120 N*m (F d * 0.3 m ) = 0 F d = 400 N F s = 400 N O F d G O F s 30 cm

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag.

I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag. I VETTORI Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori pag.1 Grandezze scalari e vettoriali Per una descrizione completa del fenomeno

Dettagli

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale Le forze (2 a parte) Massa, temperatura, volume, densità sono grandezze scalari La forza è una grandezza vettoriale Scalari e vettori Si definiscono SCALARI le grandezze fisiche che sono del tutto caratterizzate

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture Introduzione La meccanica è quella parte delle scienze applicate che studia le forze ed il moto. In questo campo è fondamentale la nozione di equilibrio, ovvero la condizione che si instaura quando le

Dettagli

Coppia di forze LEZIONE N 10. Corso di fisica I Prof. Giuseppe Ciancio

Coppia di forze LEZIONE N 10. Corso di fisica I Prof. Giuseppe Ciancio Coppia di forze LEZIONE N 10 1 Definizione delle coppia di forze: È un sistema di due forze () uguali e opposte agenti su rette d azione parallele distinte. La distanza minima tra le rette d azione delle

Dettagli

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare.

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare. 2ª lezione (21 ottobre 2006): Che cos è una forza? Idea intuitiva: forza legata al concetto di sforzo muscolare. L idea intuitiva è corretta, ma limitata ; le forze non sono esercitate solo dai muscoli!

Dettagli

L EQUILIBRIO DEL PUNTO MATERIALE

L EQUILIBRIO DEL PUNTO MATERIALE 1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione

Dettagli

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI Dinamica Prof. Paolo Biondi Dipartimento GEMINI Dinamica: studio delle cause che determinano il moto dei corpi Forza = massa per accelerazione Unità di misura Newton (N): forza che applicata al chilogrammo

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

Il segno del momento è positivo perché il corpo ruota in senso antiorario.

Il segno del momento è positivo perché il corpo ruota in senso antiorario. MOMENTO DI UNA FORZA E DI UNA COPPIA DI FORZE Esercizi Esempio 1 Calcola il momento della forza con cui si apre una porta, ruotando in verso antiorario, nell'ipotesi che l'intensità della forza applicata

Dettagli

Le grandezze vettoriali e le Forze

Le grandezze vettoriali e le Forze Fisica: lezioni e problemi Le grandezze vettoriali e le Forze 1. Gli spostamenti e i vettori 2. La scomposizione di un vettore 3. Le forze 4. Gli allungamenti elastici 5. Le operazioni sulle forze 6. Le

Dettagli

LA FORZA...SIA CON TE!

LA FORZA...SIA CON TE! LA FORZA...SIA CON TE! CHE COS'E' LA FORZA? E' UNA GRANDEZZA FISICA VETTORIALE. L'UNITA' DI MISURA NEL S.I. E' IL "NEWTON" ( N ), DAL CELEBRE SCIENZIATO INGLESE ISAAC NEWTON, CHE NE HA STUDIATO LE LEGGI,

Dettagli

Modulo B Unità 2 L'equilibrio dei sistemi rigidi. Equilibrio di un punto materiale

Modulo B Unità 2 L'equilibrio dei sistemi rigidi. Equilibrio di un punto materiale 1 Equilirio di un punto materiale Per punto materiale intendiamo un qualsiasi corpo dotato di massa le cui dimensioni sono trascuraili rispetto a quelle dello spazio circostante. Il corpo rigido è un oggetto

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Lezione 18: la meccanica dei corpi rigidi

Lezione 18: la meccanica dei corpi rigidi Lezione 18 - pag.1 Lezione 18: la meccanica dei corpi rigidi 18.1. Corpi estesi e punti materiali Pur senza mai dirlo apertamente, fin qui abbiamo parlato di corpi puntiformi, ovvero, come si dice abitualmente,

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

I vettori. I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche.

I vettori. I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche. Vettori I vettori I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche. Le grandezze fisiche si distinguono essenzialmente in due grandi classi. Quelle che risultano

Dettagli

COMPOSIZIONE DELLE FORZE

COMPOSIZIONE DELLE FORZE Andrea Ferrari e Stefano Mazzotta 1 G Sabato 5-02-2011, Laboratorio di fisica del liceo scientifico Leonardo da Vinci. Viale dei tigli. Gallarate. COMPOSIZIONE DELLE FORZE Materiale utilizzato: Telaio,

Dettagli

Lezione 1

Lezione 1 Lezione 1 Ordini di grandezza Dimensioni fisiche Grandezze scalari e vettoriali Algebra dei vettori Coordinate Cartesiane e rappresentazioni grafiche Verifica Cenno sulle dimensioni delle grandezze fisiche

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

MOTO DI PURO ROTOLAMENTO

MOTO DI PURO ROTOLAMENTO MOTO DI PURO ROTOLAMENTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOTO DI PURO ROTOLAMENTO

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali VETTORI Grandezze scalari e vettoriali Tra le grandezze misurabili alcune sono completamente definite da un numero e da un unità di misura, altre invece sono completamente definite solo quando, oltre ad

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Corso di Fisica I per Matematica

Corso di Fisica I per Matematica Corso di Fisica I per Matematica DOCENTE: Marina COBAL: marina.cobal@cern.ch Tel. 339-2326287 TESTO di RIFERIMENTO: Mazzoldi, Nigro, Voci: Elementi d fisica,meccanica e Termodinamica Ed. EdiSES FONDAMENTI

Dettagli

MOMENTO DI UNA FORZA RISPETTO A UN PUNTO. Obiettivi

MOMENTO DI UNA FORZA RISPETTO A UN PUNTO. Obiettivi MOMENTO DI UNA FORZA RISPETTO A UN PUNTO Obiettivi 1. Richiamare il concetto di momento e mostrare come calcolarlo operativamente in 2 e 3 dimensioni. 2. Mostrare metodi semplificati per calcolare il momento

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Lezione 5. L equilibrio dei corpi. Lavoro ed energia. Lezione 5 L equilibrio dei corpi. Lavoro ed energia. Statica E la parte della Meccanica che studia l equilibrio dei corpi. Dai principi della dinamica sappiamo che se su un corpo agiscono delle forze allora

Dettagli

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

Angoli e loro misure

Angoli e loro misure Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π

Dettagli

Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizione di equilbrio Leve

Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizione di equilbrio Leve Statica Equilibrio dei corpi Corpo rigido Momento di una forza Condizione di equilbrio Leve Statica La statica è la parte della meccanica che studia l equilibrio di un corpo materiale, ovvero le condizioni

Dettagli

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze LE FORZE Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze Le forze possono agire: Per contatto a distanza Effetto delle forze Le

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo.

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. C Si consideri il veicolo rappresentato in figura per il quale valgono le seguenti

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

Compito ) Cognome Nome Data Classe

Compito ) Cognome Nome Data Classe Compito 999568 1 ) Cognome Nome Data Classe Scegliere le risposte corrette e poi scriverle nella riga in fondo al foglio 2) Con riferimento alla figura seguente, calcola il momento della forza di modulo

Dettagli

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizioni di equilibrio Leve

Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizioni di equilibrio Leve Statica Equilibrio dei corpi Corpo rigido Momento di una forza Condizioni di equilibrio Leve Statica La statica è la parte della meccanica che studia l equilibrio di un corpo materiale, ovvero le condizioni

Dettagli

ELEMENTI DI CALCOLO VETTORIALE

ELEMENTI DI CALCOLO VETTORIALE ELEMENTI DI CALCOLO VETTORIALE Vettori liberi e vettori applicati o Vettore libero: - individuato da una direzione orientata ed una lunghezza - non ha un'ubicazione fissa nello spazio: - puo' essere traslato

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

, c di modulo uguale sono disposti in modo da formare un triangolo equilatero come mostrato in fig. 15. Si chiarisca quanto vale l angolo formato da

, c di modulo uguale sono disposti in modo da formare un triangolo equilatero come mostrato in fig. 15. Si chiarisca quanto vale l angolo formato da 22 Tonzig Fondamenti di Meccanica classica ta) Un esempio di terna destra è la terna cartesiana x, y, z [34] Per il prodotto vettoriale vale la proprietà distributiva: a ( b c) = a b a c, ma non vale la

Dettagli

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.

Dettagli

L Equilibrio dei Corpi Solidi

L Equilibrio dei Corpi Solidi L Equilibrio dei Corpi Solidi 1 L Equilibrio dei Corpi Solidi Punto Materiale Le reazioni vincolari Corpo igido Baricentro Momento di una forza Momento di una coppia Equilibrio e Stabilità Le Macchine

Dettagli

COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO. CLASSE 1 BL3 Anno scolastico

COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO. CLASSE 1 BL3 Anno scolastico COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO DOCENTE: Galizia Rocco MATERIA: Fisica CONTENUTI Teoria CLASSE 1 BL3 Anno scolastico 2015-2016 INTRODUZIONE

Dettagli

I vettori e forze. Prof. Roma Carmelo

I vettori e forze. Prof. Roma Carmelo I vettori e forze 1. Grandezze scalari e grandezze vettoriali 2. La massa 3. Relazione tra massa e forza-peso 4. Gli spostamenti e i vettori 5. La scomposizione di un vettore 6. Le forze 7. Gli allungamenti

Dettagli

Equilibrio statico sul piano inclinato

Equilibrio statico sul piano inclinato Esperienza 3 Equilibrio statico sul piano inclinato Obiettivi - Comprendere la differenza tra grandezze vettoriali e grandezze scalari attraverso lo studio delle condizioni di equilibrio statico di un

Dettagli

LE GRANDEZZE FISICHE. Misura di una grandezza

LE GRANDEZZE FISICHE. Misura di una grandezza LE GRANDEZZE FISICHE 1. 2. Grandezze fondamentali e derivate 3. Sistemi di unità di misura 4. Multipli e sottomultipli 5. Ordini di grandezza pag.2 Misura di una grandezza Definizione operativa: Grandezza

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ Equilibrio dei corpi Leggi di Newton e momento della forza, τ Corpi in equilibrio 1. Supponiamo di avere due forze di modulo uguale che agiscono lungo la stessa direzione, ma che siano rivolte in versi

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Quesiti dell Indirizzo Tecnologico

Quesiti dell Indirizzo Tecnologico Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella

Dettagli

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A I vettori 1) Cosa si intende per grandezza scalare e per grandezza vettoriale? 2) Somma graficamente due vettori A, B. 3) Come è definito

Dettagli

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE 1 LA FISICA COME SCIENZA SPERIMENTALE OSSERVAZIONI SPERIMENTALI Studio di un fenomeno MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE Relazioni

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

L equilibrio dei corpi solidi

L equilibrio dei corpi solidi 1 L equilibrio dei corpi Quando un corpo è fermo e rimane fermo al trascorrere del tempo, diciamo che quel corpo è in equilibrio. Si definisce corpo rigido un corpo che non si deforma nonostante su di

Dettagli

LEZIONE DEL 23 SETTEMBRE

LEZIONE DEL 23 SETTEMBRE INGEGNERI GESTIONLE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 23 SETTEMRE 2008 Introduzione Sistemi di coordinate y y (x,y) Q( 3,4) (x,y) r P (7,2) O x Coordinate cartesiane. Ogni punto è individuato

Dettagli

PERCORSO DIDATTICO : FORZE, EQUILIBRIO, MACCHINE SEMPLICI

PERCORSO DIDATTICO : FORZE, EQUILIBRIO, MACCHINE SEMPLICI PERCORSO DIDATTICO : FORZE, EQUILIBRIO, MACCHINE SEMPLICI PREREQUISITI parte 1 forze ed equilibrio statico essere capaci di riferire su osservazioni e di riferire con descrizioni. Saper operare nel piano

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

VETTORI GEOMETRICI / RICHIAMI

VETTORI GEOMETRICI / RICHIAMI M.GUIDA, S.ROLANDO, 2016 1 VETTORI GEOMETRICI / RICHIAMI Chiamiamo vettore un qualsiasi segmento orientato del piano o dello spazio. Orientare un segmento significa scegliere un verso per percorrerlo,

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda.

figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda. Martinelli Sara 1A Lab. Di fisica del Liceo Scopo: verificare la regola del parallelogramma. Materiale utilizzato: Telaio 5 morse Asta orizzontale Base metallica 2 piantane verticali Pesi Goniometro stampato

Dettagli

Equilibrio di un punto materiale su un piano

Equilibrio di un punto materiale su un piano 1 Equilirio di un punto materiale su un piano no inclinato Se un corpo si trova su un piano inclinato, possiamo scomporre il suo peso in due componenti: una parallela al piano, l'altra perpendicolare.

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI

CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI A.S. 2012-2013 Casi particolari di sistemi di forze Nel caso di un sistema composto da n forze tutte parallele tra loro, la ricerca del risultante R del sistema

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Per caratterizzare completamente una grandezza fisica, a volte è sufficiente dare soltanto un numero (scalare), mentre altre volte questo non è sufficiente. Massa, lunghezza,

Dettagli

FORZE MAGNETICHE SU CORRENTI ELETTRICHE

FORZE MAGNETICHE SU CORRENTI ELETTRICHE Fisica generale, a.a. 013/014 SRCTAZON D: FORZ MAGNTCH SU FORZ MAGNTCH SU CORRNT LTTRCH D.1. Una spira rettangolare di dimensioni a 10 cm e b 5 cm, percorsa da una corrente s 5 A, è collocata in prossimità

Dettagli

Lezione Analisi Statica di Travi Rigide

Lezione Analisi Statica di Travi Rigide Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

La Statica. La statica è una parte della meccanica che studia l equilibrio dei corpi. Prof Giovanni Ianne

La Statica. La statica è una parte della meccanica che studia l equilibrio dei corpi. Prof Giovanni Ianne La Statica La statica è una parte della meccanica che studia l equilibrio dei corpi. Sistemi rigidi ed equilibrio Un corpo è in equilibrio quando è fermo e continua a restare fermo. Il punto materiale

Dettagli

EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO

EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO Equilibrio di un Punto Materiale Definizione 1 Un punto materiale è in una posizione di equilibrio quando posto in quella posizione

Dettagli

Geometria delle masse

Geometria delle masse Geometria delle masse BA. Baricentri Per la trattazione riguardante i baricentri non ci è più sufficiente considerare i corpi come insiemi di punti geometrici, ma abbiamo bisogno di introdurre una nuova

Dettagli

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari

Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.

Dettagli

Equilibrio dei corpi rigidi e dei fluidi 1

Equilibrio dei corpi rigidi e dei fluidi 1 Equilibrio dei corpi rigidi e dei fluidi 1 2 Modulo 4 Modulo 4 Equilibrio dei corpi rigidi e dei fluidi 4.1. Momento di una forza 4.2. Equilibrio dei corpi rigidi 4.3. La pressione 4.4. Equilibrio dei

Dettagli

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori :

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori : NOTA 1 VETTOI LIBEI e VETTOI APPLICATI Negli esempi visti sono stati considerati due tipi di vettori : 1) Vettori liberi, quando non è specificato il punto di applicazione. Di conseguenza ad uno stesso

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

FISICA GENERALE Ingegneria edile/architettura

FISICA GENERALE Ingegneria edile/architettura FISICA GENERALE Ingegneria edile/architettura Tutor: Enrico Arnone Dipartimento di Chimica Fisica e Inorganica arnone@fci.unibo.it http://www2.fci.unibo.it/~arnone/teaching/teaching.html Bologna 3 Giugno

Dettagli

Vettori paralleli e complanari

Vettori paralleli e complanari Vettori paralleli e complanari Lezione n 9 1 (Composizione di vettori paralleli e complanari) Continuando lo studio delle grandezze vettoriali in questa lezione ci interesseremo ancora di vettori. In particolare

Dettagli

Meccanica dei solidi. 3 distinte sezioni: Cinematica Statica Dinamica

Meccanica dei solidi. 3 distinte sezioni: Cinematica Statica Dinamica Meccanica dei solidi 3 distinte sezioni: Cinematica Statica Dinamica Cinematica:la geometria del movimento Descrive il movimento che un corpo può compiere indipendentemente dalle cause che determinano

Dettagli

Esercizi da fare a casa

Esercizi da fare a casa apitolo 1 Esercizi da fare a casa 1.1 Premesse I seguenti esercizi sono risolubili nella seconda settimana di corso. Per quelli del primo gruppo le soluzioni si possono estrarre dal mio libro di Esercizi

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc)

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 4: Idrostatica (parte III - equazione globale - legge

Dettagli

Collegio di Merito Bernardo Clesio Università di Trento

Collegio di Merito Bernardo Clesio Università di Trento Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli

LAVORO, POTENZA ED ENERGIA

LAVORO, POTENZA ED ENERGIA LAVORO, POTENZA ED ENERGIA Giuseppe Frangiamore con la collaborazione di Leonardo Zaffuto Solitamente si dice di compiere un lavoro ogni volta che si esegue un attività di tipo fisico o mentale. Quando

Dettagli

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura.

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura. UNITÀ 3 LE GRANDEZZE FISICHE VETTORIALI E I VETTORI 1. Grandezze fisiche scalari e vettoriali. 2. I vettori. 3. Le operazioni con i vettori. 4. Addizione e sottrazione di vettori. 5. Prodotto di un numero

Dettagli

Verifica sommativa di Fisica Cognome...Nome... Data

Verifica sommativa di Fisica Cognome...Nome... Data ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede Associata Liceo "B.Russell" Verifica sommativa di Fisica Cognome........Nome..... Data Classe 4B Questionario a risposta multipla Prova di uscita di

Dettagli

Meccanica. 10. Pseudo-Forze. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 10. Pseudo-Forze.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 10. Pseudo-Forze http://campus.cib.unibo.it/2429/ Domenico Galli Dipartimento di Fisica e Astronomia 17 febbraio 2017 Traccia 1. Le Pseudo-Forze 2. Esempi 3. Pseudo-Forze nel Riferimento Terrestre

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Composizione di stati cinetici Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli