Successioni di variabili aleatorie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Successioni di variabili aleatorie"

Transcript

1 0

2 Caitolo 5 Successioi i variabili aleatorie 5. Covergeza i istribuzioe e teorema cetrale i covergeza Sia {X } = (X,..., X,... ua successioe ifiita i variabili aleatorie e X u ulteriore variabile aleatoria. Tutte queste varabili aleatorie siao efiite sullo stesso sazio i robabilità. Sia ioltre F X la fuzioe i riartizioe el geerico elemeto -esimo ella successioe i variabili aleatorie {X } e F X la fuzioe i riartizioe i X. Se vale l uguagliaza lim F X (x = F X (x (5. i ogi uto i cotiuità i F X, allora si ice che la successioe i variabili aleatorie {X } coverge i istribuzioe a X, ovvero X X. Si oti che questo tio i covergeza o attiee tato alla successioe elle variabili aleatorie {X }, ma iuttosto a quella elle loro fuzioi i riartizioe {F X }. Esemio 5. Sia la fuzioe i riartizioe ell elemeto geerico X ella successioe {X } ata all esressioe 0 x < F X (x = x si oti che i tal caso, oiché lim F X (x = 0 er x R, la fuzioe i riartizioe F X tee a ua costate (ossia o a ua fuzioe i riartizioe. Duque i tal caso o vi è covergeza i istribuzioe ella successioe i variabili aleatorie {X }.

3 2 A. Pollice - Auti i Probabilità Esemio 5.2 Sia l elemeto geerico X ella successioe {X } istribuito secoo ua esità uiforme ell itervallo (,. La sua fuzioe i riartizioe sia ertato ata all esressioe F X (x = 2 0 x < ( x + x < x si oti che i tal caso si ha lim F X (x = F X (x = 0 x < 0 x 0 ossia X X 0, la variabile aleatoria X a cui coverge i istribuzioe la successioe {X } è uguale a 0 co robabilità. Teorema 5. Se g è ua fuzioe cotiua e limitata allora X E [g (X]. X se e solo se E [g (X ] Nel caso articolare i cui el teorema receete si oe g (t = ex (iut, si ottiee il risultato seguete. Teorema 5.2 Teorema i Levy-Cramér. Sia ψ X la fuzioe caratteristica associata a ciascua variabile aleatoria X ella successioe {X }. Coizioe ecessaria e sufficiete affiché sia X X, ovvero lim F X (x = F X (x è che si abbia lim ψ X (u = ψ X (u, ove ψ X (u è la fuzioe caratteristica ella variabile casuale X. Esemio 5. (ct La fuzioe caratteristica associata all elemeto geerico ella successioe è ata a ψ X (u = E [ex (iux ] = ex (iu = ex (iu = cos u + i si u Si oti che i tal caso il limite lim ψ X (u o esiste, ertato o vi è covergeza i istribuzioe ella successioe i variabili aleatorie {X }. Esemio 5.2 (ct Utilizzao il teorema 3.5 e il risultato ell esemio 3.3 si ha Si oti che i tal caso si ha ψ X (u = si u u lim ψ si u X (u = lim u ove X è ua variabile aleatoria uguale a 0 co robabilità. = = e iu0 = ψ X (u

4 Ca.5: Successioi i variabili aleatorie 3 Esemio 5.3 Sia {X } ua successioe i variabili aleatorie aveti istribuzioe biomiale i arametri e = λ/. I tal caso la fuzioe caratteristica el geerico elemeto X ella successioe è ata a ( λ ψ X (u = eiu + λ a cui si ottiee lim ψ X (u = lim [ + λ ( e iu ] = e λ(eiu L ultima esressioe è rorio quella ella fuzioe caratteristica i ua variabile aleatoria co fuzioe i robabilità i Poisso i arametro λ. Teorema 5.3 Teorema Cetrale i Covergeza (o i Lieberg-Levy. Data ua successioe i variabili aleatorie {X }, iieeti e ugualmete istribuite co meia e variaza costati E (X = µ e Var (X = σ 2 <, etta X = i= X i la meia aritmetica ei rimi termii ella successioe {X }, la successioe { X } coverge i istribuzioe a ua variabile aleatoria X avete esità ormale co meia µ e variaza σ2 : X X N (µ, σ2 Di cosegueza se si cosiera la variabile aleatoria Z, efiita staarizzao la meia aritmetica: Z = X E ( X Var ( = X µ X σ la successioe { } Z coverge i istribuzioe a ua variabile aleatoria Z co esità ormale staarizzata: Z Z N (0,. Si oti ifatti che la variabile aleatoria Z i = (X i µ /σ è tale che E (Z i = 0 e E ( Zi 2 =, uque è ossibile arossimare la fuzioe caratteristica i Z i arrestaoe l esasioe i serie i Taylor al secoo termie: ψ Zi (u = + iue (Z i + i2 u 2 2 E ( Z 2 i + o ( u 2 = u2 2 + o ( u 2 ioltre oiché è i= Z i = σ i= (X i µ = Z er il teorema 3.5 si ha a cui [ ( ] u ( ] ψ Z (u = ψ Zi = [ u2 u o lim ψ Z (u = lim [ u2 2 + o ( u 2 ] = e u2 2 L ultima esressioe otteuta è quella ella fuzioe caratteristica i ua variabile aleatoria cotiua co fuzioe i esità ormale staarizzata, quii er il teorema i Levy-Cramér si ha Z Z N (0,. (5.2

5 4 A. Pollice - Auti i Probabilità Esemio 5.4 (Teorema i e Moivre-Lalace. U caso articolare el teorema cetrale i covergeza si ha cosierao ua successioe i variabili aleatorie iieeti e tutte istribuite secoo la meesima fuzioe i robabilità i Beroulli co robabilità i successo costate e ari a. I altri termii le variabili aleatorie ella successioe {X } soo iicatori i successo riferiti a eveti iieeti e equirobabili. I tal caso la somma j= X j coicie co la frequeza ei successi elle rime rove e ha fuzioe i robabilità biomiale i arametri e. Si ha uque che E ( ( X = E j= X j = e Var ( X = 2 Var ( j= X j = ( er =, 2,.... Quii X ( X N, ( Al ivergere el umero elle rove, la frequeza relativa ei successi i u rocesso beroulliao X coverge i istribuzioe a ua variabile aleatoria cotiua co fuzioe i esità ormale i arametri e (. (5.3 Esemio 5.5 Si cosieri ua successioe i variabili aleatorie iieeti e tutte istribuite secoo la meesima fuzioe i esità esoeziale i arametro λ. I tal caso la meia aritmetica X ha fuzioe i esità gamma i arametri e λ. Si ha uque che E ( ( ( X = /λ e Var X = / λ 2 er =, 2,.... Quii ( X X N λ, λ 2 La fuzioe i esità gamma i arametri e λ tee alla esità ormale i arametri /λ e /(λ 2 er. 5.2 Covergeza i robabilità e legge ebole ei grai umeri Per qualsiasi ɛ > 0, iccolo a iacere se vale lim P X,X { X X ɛ} = 0 (5.4 allora si ice che la successioe i variabili aleatorie {X } coverge i robabilità o ebolmete a X, ovvero X X o acora lim X = X. Teorema 5.4 La covergeza i robabilità i ua successioe i variabili aleatorie {X } a ua variabile aleatoria X imlica quella i istribuzioe Ifatti si oti che X X = X X (5.5 F X (x = P X (X x = P X,X [(X x ( X X ɛ] + P X,X [(X x ( X X > ɛ] (5.6 e ioltre [(X x ( X X ɛ] [(X x (X X ɛ] = (X x + ɛ [(X x ( X X > ɛ] ( X X > ɛ

6 Ca.5: Successioi i variabili aleatorie 5 quii la (5.6 iveta F X (x P X (X x + ɛ + P X,X ( X X > ɛ assao al limite e osservao che il secoo aeo tee a 0 er l iotesi i covergeza i robabilità i X a X, si ottiee lim F X (x F X (x + ɛ (5.7 D altra arte all aaloga scomosizioe F X (x ɛ = P X (X x ɛ e cosierao acora che = P X,X [(X x ɛ ( X X ɛ] + P X,X [(X x ɛ ( X X > ɛ] [(X x ɛ ( X X ɛ] [(X x ɛ (X X ɛ] = (X x [(X x ɛ ( X X > ɛ] ( X X > ɛ si ottiee lim F X (x F X (x ɛ (5.8 se x è u uto i cotiuità la cosierazioe elle (5.7 e (5.8 orta a cocluere che, i accoro co la (5.5 vale lim F X (x = F X (x Teorema 5.5 Le ue coizioi lim E (X = c e lim Var (X = 0, risultao ecessarie e sufficieti affiché la successioe i variabili aleatorie {X } coverga i robabilità alla costate c, ovvero affiché si abbia lim X = c. Ifatti i tal caso osso scrivere E (X = c + a co lim a = 0. Si oti che er la isuguagliaza i Cebicev si uò scrivere er qualsiasi ɛ > 0 P X ( X E (X ɛ Var (X ɛ 2 ovvero i questo caso a cui si ottiee er P X ( X c a ɛ Var (X ɛ 2 lim P X { X c ɛ} = 0 (5.9 Esemio 5.6 Siao X er =, 2,... variabili aleatorie aveti istribuzioe chi-quarato co grai i libertà. Detta Y = X / si ha che E (Y = E (X = = Var (Y = Var (X 2 = 2 2 = 2 quii la successioe {Y } coverge i robabilità a er.

7 6 A. Pollice - Auti i Probabilità Teorema 5.6 Se X X e Y c ove c 0 è ua costate, allora X + Y X Y X Y X /Y X + c (5.0 X c (5. Xc (5.2 X/c (5.3 Teorema 5.7 Legge Debole ei Grai Numeri. Sia ata ua successioe {X } i variabili aleatorie iieeti. Dette X = i= X i le meie arziali ei rimi elemeti ella successioe, la legge ebole ei grai umeri stabilisce che sotto etermiate coizioi vale X E ( X.. Teorema i Kitchie. Le variabili aleatorie X hao tutte la stessa istribuzioe co meia E (X = µ < er =, 2,... (la variaza otrebbe essere ache ifiita. I tal caso la successioe {X } soisfa la legge ebole ei grai umeri. 2. Le X soo tutte otate i mometi rimi e secoi fiiti co Var (X < σl 2 er =, 2,.... Si oti che i tal caso, esseo le X iieeti, Var ( X = 2 i= Var (X < σ2 L, ertato utilizzao la isuguagliaza i Cebicev si ottiee er qualsiasi ɛ > 0 a cui er P X ( X E ( X ɛ σ 2 L ɛ 2 X E ( X (5.4 Duque coizioe ecessaria e sufficiete affiché valga la legge ebole ei grai umeri è che le variabili ella successioe {X } abbiao meie fiite e variaze equilimitate. Esemio 5.7 Ua successioe {X } i variabili aleatorie aveti tutte la stessa fuzioe i robabilità biomiale i arametri m e soisfa ovviamete la legge ebole ei grai umeri er il teorema i Kitchie. Per l aitività ella fuzioe i robabilità biomiale j= X j Bi(m, e i cosegueza E ( X = m e X E ( X = m. Esemio 5.6 (ct La successioe {Y } i variabili aleatorie aveti tutte la stessa fuzioe i robabilità gamma i arametri 2 e 2, soisfa ( la legge ebole ei grai umeri, ifatti Var (Y = 2/ 2 er =, 2,.... Pertato, esseo E j= Y j = E (Y j =, vale Y E ( Y =.

8 Ca.5: Successioi i variabili aleatorie Covergeza quasi certa e legge forte ei grai umeri Se vale la coizioe P X,X { } lim X = X = (5.5 allora si ice che la successioe i variabili aleatorie {X } coverge quasi certamete o fortemete a X, ovvero X X. La coizioe (5.5 corrisoe a reteere che er qualsiasi valore i > ɛ, co ɛ refissato, sia uguale a la robabilità che X X < ɛ, co ɛ > 0 lim P X,X ( > ɛ X X < ɛ = (5.6 Teorema 5.8 La covergeza quasi certa i ua successioe i variabili aleatorie {X } a ua variabile aleatoria X imlica quella i robabilità X X = X X (5.7 Notao che l itersezioe i iù eveti è coteuta i ciascuo egli eveti e erciò ha robabilità iferiore o uguale a oguo i essi, si euce che la (5.6 imlica la (5.4. Teorema 5.9 Se g è ua fuzioe cotiua e X X, allora si ha g (X g (X. Ifatti, se g è ua fuzioe cotiua, si ha che i geerale X X imlica g (X g (X, ovvero, i termii i eveti, che {ϖ Ω : X (ϖ X (ϖ} {ϖ Ω : g (X (ϖ g (X (ϖ}, quii P X,X (g (X g (X P X,X (X X. Di cosegueza, se P X,X {lim X = X} =, a maggior ragioe vale { } P X,X lim g (X = g (X = (5.8 Teorema 5.0 Legge Forte ei Grai Numeri. Sia ata ua successioe {X } i variabili aleatorie iieeti. Dette acora X = i= X i le meie arziali ei rimi elemeti ella successioe, la legge forte ei grai umeri stabilisce che sotto etermiate coizioi vale X E ( X.. Teorema i Beroulli. Le variabili aleatorie X soo iicatori i eveti equirobabili, ovvero er =, 2,... x = X (x = x = 0 I tal caso la successioe {X } soisfa la legge forte ei grai umeri. Tale teorema afferma che la frequeza relativa ei successi i u rocesso beroulliao X coverge quasi certamete alla robabilità i successo = E ( X. 2. Teorema i Kolmogorov. Le variabili aleatorie X hao tutte la stessa istribuzioe co meia E (X = µ < er =, 2,.... I tal caso la successioe {X } soisfa la legge forte ei grai umeri. 3. Coizioe sufficiete i Kolmogorov. Le variabili aleatorie X hao tutte Var (X = σ 2 <, allora la coizioe σ 2 = 2 < è sufficiete er affermare la che la successioe {X } soisfa la legge forte ei grai umeri.

9 8 A. Pollice - Auti i Probabilità Esemio 5.7 Sia l elemeto geerico X ella successioe {X } istribuito secoo ua esità uiforme ell itervallo ( a, a. I tal caso E (X = 0 < er =, 2,..., ertato er il teorema i Kolmogorov la successioe {X } soisfa la legge forte ei grai umeri. Ciò sigifica che E ( X = 0. X Esemio 5.6 (ct L elemeto geerico Y ella successioe {Y } è istribuito secoo ua esità gamma i arametri /2 e /2, ertato Var (Y = 2/. Risulta eviete che la successioe {Y } soisfa la coizioe sufficiete i Kolmogorov, ovvero che er essa vale la legge forte ei grai umeri. Ciò sigifica che Y E ( Y =.

Esercitazione del 25/11/2011 Calcolo delle probabilità

Esercitazione del 25/11/2011 Calcolo delle probabilità Esercitazioe el 25//20 Calcolo elle robabilità Covergeza i istribuzioe. Sia {X } N ua successioe i variabili aleatorie reali. Sia X u ulteriore variabile aleatoria reale. Defiizioe. Diremo che la successioe

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica Da u mazzo di carte (3 carte er quattro semi di cui due eri e due rossi, co 3 figure er ogi seme si estragga ua carta. Calcolare la robabilità che a si estragga u re ero b si estragga ua figura rossa,

Dettagli

Convergenza di variabili aleatorie

Convergenza di variabili aleatorie Covergeza di variabili aleatorie 1 Covergeza quasi certa Ua successioe (X ) 1 di v.a. coverge quasi certamete alla v.a. X se: X X (P-q.c.), cioè P(X X) = 1, ove {X X} = {ω : X (ω) X(ω)} è l issieme di

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

CAPITOLO 10. Funzione Caratteristica, Normale multivariata, convergenze

CAPITOLO 10. Funzione Caratteristica, Normale multivariata, convergenze CAPITOLO 0 Fuzioe Caratteristica, Normale multivariata, covergeze 5 0. Fuzioe caratteristica 53 0.. Fuzioe caratteristica La fuzioe caratteristica è uo strumeto teorico utile sotto diversi aspetti per

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

1 Variabili aleatorie in casi più generali: indipendenza, LGN e TCL.

1 Variabili aleatorie in casi più generali: indipendenza, LGN e TCL. versioe 28-05-2004 0 Variabili aleatorie i casi più geerali: idipedeza, LGN e TCL.. Variabili aleatorie idipedeti Molte delle defiizioi e delle proprietà delle variabili aleatorie i spazi fiiti valgoo

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

Esempi di distribuzione binomiale.

Esempi di distribuzione binomiale. Esei i istribuzioe bioiale. Suoiaoi laciare 5 oete e i chieerci ual e la robabilita i otteere teste T e croci C. Ogi oeta uo are testa o croce co uguale robabilita. I casi ossibili soo 5 casi er la ria

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE CAPITOLO UNDICESIMO VARIABILI CASUALI SOMMARIO:. Itroduzioe. -. Variabili casuali discrete. - 3. La variabile casuale di Beroulli. - 4. La variabile casuale biomiale. -. La variabile casuale di Poisso.

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

****** FUNZIONI MISURABILI E INTEGRAZIONE ******

****** FUNZIONI MISURABILI E INTEGRAZIONE ****** ****** FUNZIONI MISURABILI E INTEGRAZIONE ****** 1 2 1. Fuzioi misurabili. I questo umero estediamo la ozioe di misurabilità alle fuzioi. Defiizioe 1. Siao u isieme o vuoto, Y uo spazio topologico e µ

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Studio matematico dei sistemi di controllo

Studio matematico dei sistemi di controllo Studio matematico dei sistemi di cotrollo Studio di u sistema fisico x(t segale di igresso (eccitazioe SISTEMA FISIO y(t segale di uscita (risosta y(t è legata a x(t da u equazioe differeziale che diede

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x CAPITOLO -FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE X DEFINIZIONE DI FUNZIONE CONTINUA DEF Siao: X ua parte o vuota i R, f ua fuzioe reale efiita i X e u elemeto i Si ice che la fuzioe f è cotiua

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

PROBLEMI DI INFERENZA SU PERCENTUALI

PROBLEMI DI INFERENZA SU PERCENTUALI ROBLEMI DI INFERENZA SU ERCENTUALI STIMA UNTUALE Il roblema della stima di ua ercetuale si oe allorchè si vuole cooscere, sulla base di osservazioi camioarie, la frazioe π di ua oolazioe N che ossiede

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche Corso di laurea i Matematica Corso di Aalisi Matematica -2 AA. 0809.. Cooscere. Dott.ssa Sadra Lucete. Successioi umeriche Defiizioe di successioe, isieme degli elemeti della successioe, successioe defiita

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

Proprietà asintotiche stimatori OLS e statistiche collegate

Proprietà asintotiche stimatori OLS e statistiche collegate Proprietà asitotiche stimatori OLS e statistiche collegate Eduardo Rossi 2 2 Uiversità di Pavia (Italy) Maggio 2014 Rossi Proprietà asitotiche Ecoometria - 2014 1 / 30 Sommario Risultati prelimiari Distribuzioe

Dettagli

Tema n. 3 Una data linea produttiva riceve in ingresso dei componenti grezzi in acciaio C10 ottenuti tramite un processo di fusione.

Tema n. 3 Una data linea produttiva riceve in ingresso dei componenti grezzi in acciaio C10 ottenuti tramite un processo di fusione. Tema. 3 Ua ata liea routtiva riceve i igresso ei comoeti grezzi i acciaio C10 otteuti tramite u rocesso i fusioe. 1) Descrivere le fasi i u ciclo i rouzioe i u getto meiate fusioe i terra: imesioameto

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06 PROVE SCRITTE DI MTEMTIC PPLICT, NNO 5/6 Esercizio 1 Prova scritta del 14/1/5 Sia X ua successioe I.I.D. di variabili aleatorie co distribuzioe uiforme cotiua, X U(, M), ove M = umero lettere del cogome.

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

ASSIOMI DELLA PROBABILITA

ASSIOMI DELLA PROBABILITA ASSIOMI DELLA PROBABILITA L assegazioe di ua misura di robabilità, qualuque sia la sua defiizioe, defiisce ua fuzioe, che ad ogi eveto associa u umero reale comreso tra 0 e. : E (E), co 0 (E) E ifatti

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

versione

versione versioe 3-06-2004 37 La seguete Lezioe 4 riguarda pricipalmete la legge dei gradi umeri ed il teorema cetrale del limite. Iclude ache la geeralizzazioe del cocetto di idipedeza completa per successioi

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

1 Successioni numeriche

1 Successioni numeriche Aalisi Matematica 2 Successioi umeriche CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 5 SERIE NUMERICHE Chiamiamo successioe di umeri reali ua fuzioe a valori reali defiita su N oppure

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli

CENNI DI PROBABILITÀ E VARIABILI CASUALI

CENNI DI PROBABILITÀ E VARIABILI CASUALI CI DI PROBABILITÀ VARIABILI CASUALI PROBABILITA VARIABILI CASUALI Frequeza relativa e robabilità Mediate le le robabilità si si descrivoo i i feomei che che ossoo essere essere esati come come u u eserimeto

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso ISTITUZIONI DI ANALISI SUPEIOE 2-2 Esercizi di metà corso Silvia Ghiassi 22 ovembre 2 Esercizio Diamo u esempio di fuzioe u: tale che u 6, u 6, u 6. se x

Dettagli

Analisi Funzionale 1 - a.a. 2012/2013

Analisi Funzionale 1 - a.a. 2012/2013 Secodo appello Esercizio Sia H spazio di Hilbert reale separabile. Aalisi Fuzioale - a.a. 202/203. Si euci il teorema di caratterizzazioe di ua base hilbertiaa per H. 2. Si provi che H ha ua base hilbertiaa

Dettagli

Istituzioni di Analisi Superiore Esercizi

Istituzioni di Analisi Superiore Esercizi Istituzioi di Aalisi Superiore Esercizi G.P.Leoardi 13 aprile 2010 Nota: gli esercizi delle sezioi 2 4 soo stati tratti i buoa parte da ua raccolta di esercizi di Aalisi Fuzioale ad opera di H.Brezis e

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

Semiconduttori Concentrazione dei portatori Drogaggio Ele-A-1

Semiconduttori Concentrazione dei portatori Drogaggio Ele-A-1 Semicoduttori Cocetrazioe dei ortatori rogaggio Ele-A-1 Elettroica I - A.A. 009/0010 CONCETTO I BARRIERA I ENERGIA POTENZIALE Ua carica uitaria i u camo elettrico E è soggetta ad ua forza f = E. Si defiisce

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Una raccolta di esercizi

Una raccolta di esercizi Corso di Aalisi matematica per Fisici (aa 007-08) (prof Alfoso Villai) Ua raccolta di esercizi (aggiorameto: maggio 008) Risolvere le segueti equazioi ell icogita : a) ( + ) = ( ); b) ( 8) = 9; c) 4 =

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

PORTATORI ALL EQUILIBRIO NEL SILICIO INTRINSECO.

PORTATORI ALL EQUILIBRIO NEL SILICIO INTRINSECO. PORTTORI EQUIIBRIO E SIICIO ITRISECO. e rorietà elettriche ei semicouttori ieoo i moo sostaziale alla cocetrazioe i cariche mobili egative e ositive reseti, ette ortatori i correte o semlicemete ortatori.

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

SERIE NUMERICHE. Test di autovalutazione. 1+a 2

SERIE NUMERICHE. Test di autovalutazione. 1+a 2 SERIE NUMERICHE Test di autovalutazioe. E data la serie: dove a R. Allora: ( ) 3a +a (a) se a = la serie coverge a (b) se a = 3 la somma della serie vale 5 (c) se a = 5 la serie diverge a (d) se a 0 la

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

1 Variabili Continue come limiti di variabili discrete

1 Variabili Continue come limiti di variabili discrete 8-maggio Variabili Cotiue come limiti di variabili discrete Suppoiamo che sia u umero itero grade, e di avere ua variabile aleatoria U uiforme sull isieme {x ( i = i, i =,,..., }, ossia P (U = i =, i {,,...,

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

2 Criteri di convergenza per serie a termini positivi

2 Criteri di convergenza per serie a termini positivi Uiversità Roma Tre L. Chierchia 65 (29//7) 2 Criteri di covergeza per serie a termii positivi I questo paragrafo cosideriamo serie a termii positivi ossia serie a co a > 0. Si ricordi che ua serie a termii

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Teoremi limite classici

Teoremi limite classici Capitolo 5 Teoremi limite classici I Teoremi limite classici, la legge dei gradi umeri e il teorema limite cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia teorica

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

Svolgimento degli esercizi del Capitolo 4

Svolgimento degli esercizi del Capitolo 4 4. Michiel Bertsch, Roberta Dal Passo, Lorezo Giacomelli Aalisi Matematica 2 a edizioe Svolgimeto degli esercizi del Capitolo 4 Il limite segue dal teorema del cofroto: e / 0 per. 4.2 0

Dettagli

Riassunto delle Esercitazioni di Analisi Matematica II

Riassunto delle Esercitazioni di Analisi Matematica II Riassuto delle Esercitazioi di Aalisi Matematica II C.d.L. i Matematica e Matematica per le Applicazioi - A. A. 2006-2007 Prof. Kevi R. Paye e Dott. Libor Vesely 1 Serie Numeriche - Mer. 28 marzo - due

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

APPUNTI SUL PROCESSO DI POISSON

APPUNTI SUL PROCESSO DI POISSON APPUNTI SUL PROCESSO DI POISSON Giovaa Nappo 9 maggio 27 1 Processi di coteggio i geerale DEFINIZIONE di PROCESSO DI CONTEGGIO. Sia data ua successioe di variabili aleatorie {T ; 1} a valori i R + { }

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n 98 Covergeza i probabilità Si dice che la successioe X coverge i probabilità alla v.a. X e si scrive: se, per qualsiasi ε > 0, si ha: X p X oppure plim X = X limp( X X < ε)= Covergeza i media quadratica

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli