ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012)"

Transcript

1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/01) Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche elettriche fisse. I principi dei campi elettrostatici possono essere applicati in differenti modi, in base ai dati iniialmente noti. La risoluione di tali problemi richiede la determinaione: del poteniale elettrico e quindi del campo: E Q C che è legato alla carica dalla relaione: E d s F/m e/o della distribuione delle cariche elettriche, noto. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 1 S

2 Se è nota la distribuione delle cariche elettriche Q o ρ possono essere determinati l intensità del campo elettrico E e quindi il poteniale elettrico, essendo E. Q E d s C In diversi problemi pratici non è nota l esatta distribuione delle cariche e le formule studiate per determinare queste grandee non possono essere applicate in maniera diretta. Esistono diversi metodi di risoluione per risolvere i problemi pratici elettrostatici, come: Il metodo delle immagini; Il metodo della separaione delle variabili; Metodi di trasformaione; Metodi numerici. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d S

3 Equaione di Laplace e di Poisson Le due equaioni fondamentali della elettrostatica valide per ogni meo sono: D ρ E 0 e per la irrotaionalità del vettore campo elettrico, si può definire un poteniale elettrico tale che: E In un meo isotropo e lineare: D εe D ρ Dalla relaione precedente si ottiene l espressione della equaione di Poisson: ρ ε dove è l operatore Laplaciano, che equivale alla divergena del gradiente di ε M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 3 -ρ

4 M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 4 La risoluione della equaione di Poisson comporta la risoluione di una equaione di secondo grado alle derivate pariali calcolabile in ogni punto dello spaio, dove esiste la derivata di secondo ordine della funione (x,y,). In coordinate cartesiane: che diventa: a y a x a a y a x a y x y x m ε ρ y x

5 M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 5 In coordinate cilindriche: In coordinate sferiche: r 1 r r r 1 sin R 1 sin sin R 1 R R R R 1

6 Nei punti di un meo semplice nei quali non è presente alcuna carica ossia: = 0, l Equaione di Poisson ρ ε si riduce alla Equaione di Laplace: 0 Con questa equaione è possibile risolvere problemi inerenti un insieme di conduttori mantenuti a poteniali diversi (condensatori). M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 6

7 Unicità delle soluioni elettrostatiche In molti casi semplici si ottiene la soluione dei problemi elettrostatici attraverso l integraione diretta delle equaioni di Laplace o di Poisson. Nei casi più complicati possono essere usati altri metodi di risoluione. Teorema della unicità La soluione della equaione di Poisson (o per il caso particolare di Laplace) che soddisfa le condiioni al contorno date, è unica. Su questa asserione si basano diversi metodi di risoluione dei problemi elettrostatici. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 7

8 Inoltre poiché le superfici equipoteniali sono perpendicolari alle superfici equiflusso, si può applicare ai campi il principio di dualità: Se un campo ha come superfici equipotenali le superfici che sono equiflusso per un secondo campo, come conseguena diretta le equipoteniali di questo secondo campo risultano le equiflusso del primo. Ciò consente di applicare direttamente i risultati ricavati per una certa configuraione ( per esempio con il contorno formato da equipoteniali), ad una configuarione duale (con lo stesso contorno formato da equiflusso). M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 8

9 In diversi problemi le condiioni al contorno da soddisfare per risolvere direttamente le equaioni di Poisson e o di Laplace sono difficili da definire. Ma è possibile che le condiioni sulle superfici di contorno possano essere stabilite attraverso delle opportune cariche immagine equivalenti e le distribuioni del poteniale possa possano essere determinate in maniera semplice. Questo metodo è il metodo delle immagini e può essere usato per ottenere soluioni di problemi facili, per lo studio di campi in regioni spaiali delimitate da contorni rettilinei o circolari. In particolare il metodo si presta bene nel caso di cariche isolate. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 9

10 Si consideri il caso di una carica positiva Q, posta alla distana d al di sopra di un piano conduttore collegato a terra (a poteniale ero): y Q(0,d,0) Piano conduttore collegato a terra a poteniale ero x Si voglia determinare il poteniale in ogni punto al di sopra del piano conduttore. Con la procedura formale occorre risolvere l equaione di Laplace in coordinate cartesiane: x y 0 M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 10

11 La soluione (x,y,) deve soddisfare le seguenti condiioni: In tutti i punti del piano collegato a terra il poteniale deve essere uguale a ero: (x,0,)=0. Nei punti prossimi a Q il poteniale tende a quello della sola carica puntiforme (R è la distana da Q ): Q, come R 0, 4π or Nel punto molto lontano da Q (x, y +, ) il poteniale tende a ero. La funione poteniale è pari rispetto alle coordinate x e, cioè: (x,y,)=(-x,y,) e (x,y,)=(x,y,-). Una soluione che soddisfi queste condiioni non è immediata. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 11

12 Per giungere alla soluione si può ragionare nel seguente modo: la carica +Q per y = d, indurrebbe cariche negative sulla superficie del conduttore piano, con una distribuione di carica superficiale S. Il poteniale nei punti che stanno al disopra del piano conduttore applicando il principio di sovrapposiione degli effetti sarà: (x, y,) 4π o x Q (y d) 1 4π o ρ R S S 1 ds dove il secondo addendo tiene conto della densità di carica superficiale sul piano conduttore, R 1 é la distana del punto in consideraione dalla superficie elementare ds. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 1

13 L integrale superficiale contenuto nella formula precedente può essere risolto solo se si conosce con esattea la distribuione della carica sulla superficie del piano conduttore. La condiione di poteniale nullo sul piano è soddisfatta se invece del piano conduttore si pone in y=-d una carica immagine uguale e opposta: y P(x,y,) R + +Q R - o d -d x -Q M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 13

14 Il poteniale in un punto P qualsiasi è così dato: (x, y, ) 4π o x Q (y d) 4π o x Q (y d) Questa relaione soddisfa la condiione di poteniale nullo lungo il piano y=0, e fornisce il poteniale in ogni punto al di sopra del piano. L espressione non è valida per y<0, poiché all interno del conduttore il poteniale deve essere ovunque ero. Se il piano è a poteniale diverso da ero, il valore di tale poteniale costante viene aggiunto a quello ottenuto con l immagine di Q e la relaione fornisce così l espressione del poteniale in ogni punto per y>0. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 14

15 Da questo esempio si vede come il metodo delle immagini consente di semplificare notevolmente questo tipo di problemi. Tale metodo facilita lo studio di campi prodotti in un meo con costanti dielettriche diverse, riconducendolo allo studio di campi in mei omogenei. Per applicarlo si definisce una configuraione di cariche che non è quella reale, ma tale da produrre lo stesso effetto relativo alla configuraione reale. L entità e la distribuione delle cariche virtuali devono soddisfare la legge della rifraione: tan g1 1 tan g in corrispondena delle superfici di separaione dei dielettrici. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 15

16 Per comprendere la potenialità di questo metodo si consideri il campo prodotto da una carica elettrica Q, posta nel punto P di un meo 1 a costante dielettrica 1, separato da una superficie piana, da un meo con permettività. Lo studio di questo caso elementare si potrà estendere a un numero di cariche n. P Q a 1 1 E 1 E Su tale superficie per la legge della rifraione si ha: tan g1 tan g 1 M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 16

17 Si possono verificare i seguenti casi: a) se 1 / 0 il campo è normale alla superficie dal lato del meo e questa è equipoteniale: b) se 1 / il campo è tangente (radente) alla superficie dal lato del meo 1 e questa è una superficie equiflusso. Il campo nel meo 1 risulta univocamente determinato da queste condiioni al contorno e non si altera se si sostituisce nel meo una disposiione di cariche, che conservi per la superficie di separaione la condiione di equipotenialità ( o equiflusso), ponendo in P, punto immagine del punto P rispetto alla superficie di separaione una carica: Q se la superficie deve risultare equipoteniale e + Q se deve risultare equiflusso. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 17

18 c) Nel caso generico in cui la superficie di separaione non è ne equipoteniale, ne equiflusso e si comporta nei riguardi della carica Q, come una superficie parialmente riflettente; ε1 /ε 0 e ε /ε si può dimostrare che la legge della rifraione risulta soddisfatta se il campo nel meo 1 è rappresentato dal campo, in un meo omogeneo comprendente tutto lo spaio, con costante dielettrica 1, dovuto: alla carica Q e 1 alla carica Q Q ε ε 1 1 ε ε posta nel punto P, immagine di P e M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 18

19 il campo nel meo è rappresentato dal campo in un meo omogeneo, comprendente tutto lo spaio, con costante dielettrica, dovuto ad una carica: Q" Q posta nel punto P. 1 +Q +Q +Q E 1 a P P a 4 Q1 r Q' r 1 P E Q" 4 r M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 19

20 Queste cariche sono infatti quelle che danno, per ogni punto della superficie di separaione, indipendentemente dalla sua posiione, i valori di D e di E che soddisfano alle leggi della rifraione. Dalle seguenti consideraioni si deduce inoltre come: il principio delle immagini consente quindi di ridurre lo studio di alcuni tipi di campi in mei con costante dielettrica diversa, allo studio di campi in mei omogenei. In tale modo si riconduce la soluione di un problema a quella relativa a un problema più semplice con risoluione nota. Questo metodo può essere applicato solo nel caso di cariche isolate. M. Usai Elettromagnetismo applicato all ingegneria Elettrica ed Energetica_3d 0

Ingegneria dei Sistemi Elettrici_3d

Ingegneria dei Sistemi Elettrici_3d Ingegneria dei Sistemi Elettrici_3d Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche elettriche fisse. I principi dei campi elettrostatici

Dettagli

Simmetria rispetto ad un piano. Un campo vettoriale V rispetto ad un piano (per esempio il piano z =0)può presentare i due seguenti tipi di simmetria:

Simmetria rispetto ad un piano. Un campo vettoriale V rispetto ad un piano (per esempio il piano z =0)può presentare i due seguenti tipi di simmetria: CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 2011-12 - MARCO BREAN 1 immetria rispetto ad un piano Un campo vettoriale rispetto ad un piano (per esempio il piano 0)può presentare i due seguenti tipi di

Dettagli

Esercizi di Analisi Matematica L-B

Esercizi di Analisi Matematica L-B Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................

Dettagli

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO Geometria III esonero pariale A.A. 6 Cognome Nome Matricola Codice

Dettagli

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria:

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria: INTEGRLI OPPI e TRIPLI Esercii risolti. Calcolare i seguenti integrali doppi: a b c d e f g h i j k y d dy,, y :, y }; d dy,, y :, y }; + y + y d dy,, y :, y }; y d dy,, y :, y }; y d dy,, y :, y + };

Dettagli

Prodotto Scalare e Prodotto Vettore I

Prodotto Scalare e Prodotto Vettore I Prodotto Scalare e Prodotto Vettore I Prodotto Scalare: pplicaione che va dallo spaio prodotto R 3 R 3 in R tale che: 3 B B B, = j = 1 j j Norma di un Vettore: pplicaione che va dallo spaio dei vettori

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Gauss 2. Legge di Ampere 3. Equazioni di Maxwell statiche V - 0 Legge di Gauss Campo elettrico Carica contenuta all interno della superficie A Flusso

Dettagli

FAM. 1. Determina la forza risultante sulla spira, cosa puoi dedurre sull equilibrio della spira?

FAM. 1. Determina la forza risultante sulla spira, cosa puoi dedurre sull equilibrio della spira? FAM Serie 33: Elettrodinamica VIII C. Ferrari Eserciio Momento meccanico su una spira: motore elettrico Una spira conduttrice quadrata di lato 0cm si trova nel piano. Una corrente di 0A la percorre nel

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

S.Barbarino - Appunti di Fisica II. Cap. 1. Il campo elettrostatico nel vuoto: I Legge sperimentale di Coulomb e definizione di campo elettrico

S.Barbarino - Appunti di Fisica II. Cap. 1. Il campo elettrostatico nel vuoto: I Legge sperimentale di Coulomb e definizione di campo elettrico Barbarino - Appunti di Fisica II Cap 1 Il campo elettrostatico nel vuoto: I 11 - Legge sperimentale di Coulomb e definiione di campo elettrico Tutte le leggi dell elettrostatica possono essere dedotte

Dettagli

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale:

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale: ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A Facoltà di Ingegneria a prova in itinere di Fisica II 5-Aprile-3 - Compito A Esercizio n. Un filo isolante di lunghezza è piegato ad arco di circonferenza di raggio (vedi figura). Su di esso è depositata

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Equazione d onda per il campo elettromagnetico

Equazione d onda per il campo elettromagnetico Equazione d onda per il campo elettromagnetico Leggi fondamentali dell elettromagnetismo. I campi elettrici sono prodotti da cariche elettriche e da campi magnetici variabili. Corrispondentemente l intensità

Dettagli

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009 Capitolo Ingegneria Meccanica; Algebra lineare e Geometria 8/9. Esercii svolti su rette e piani Eserciio. Stabilire se le due rette r e s sono coincidenti oppure no: ( ( ( ( ( ( 7 r : = + t ; s : = + t

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1 Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................

Dettagli

Lezione 19 Propagazione di onde EM in un plasma freddo in presenza di campo magnetico

Lezione 19 Propagazione di onde EM in un plasma freddo in presenza di campo magnetico Leione 19 Propagaione di onde M in un plasma freddo in presena di campo magnetico G. Bosia Universita di Torino 1 Derivaione della relaione di dispersione In questa leione studiamo la propagaione di un

Dettagli

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di

Dettagli

SUI SISTEMI LINEARI. 1. Richiami.Il metodo di Gauss. Un equazione nelle incognite. si dice lineare o di primo grado se si può ridurre. R.

SUI SISTEMI LINEARI. 1. Richiami.Il metodo di Gauss. Un equazione nelle incognite. si dice lineare o di primo grado se si può ridurre. R. SUI SISTEMI LINEARI. Richiami.Il metodo di Gauss Un equaione nelle incognite..., n si dice lineare o di primo grado se si può ridurre alla forma: a a... an n b con a, a... an, b R. I numeri a, a... an

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

2. FUNZIONI REALI DI n VARIABILI REALI

2. FUNZIONI REALI DI n VARIABILI REALI FUNZIONI REALI DI n VARIABILI REALI Determinaione del dominio Y Sia D un sottoinsieme dell insieme R R indicato anche con R Graficamente possiamo pensare a D come ad una ona del piano cartesiano secondo

Dettagli

Dario D Amore Corso di Elettrotecnica (AA 08 09)

Dario D Amore Corso di Elettrotecnica (AA 08 09) Dario D Amore Corso di Elettrotecnica (AA 08 09) Si dice campo scalare uno scalare funzione del punto, per es. la temperatura in una stanza, la densità della materia in una regione dello spazio Un campo

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

Esercitazioni 26/10/2016

Esercitazioni 26/10/2016 Esercitazioni 26/10/2016 Esercizio 1 Un anello sottile di raggio R = 12 cm disposto sul piano yz (asse x uscente dal foglio) è composto da due semicirconferenze uniformemente cariche con densità lineare

Dettagli

Dr. Stefano Sarti Dipartimento di Fisica

Dr. Stefano Sarti Dipartimento di Fisica UNIVERSITÀ DI ROMA LA SAPIENZA FACOLTÀ DI INGEGNERIA Corso di Laurea in Ingegneria per l Ambiente e il Territorio ESAME DI FISICA GENERALE II DM 270) Data: 8/9/202. In un disco uniformemente carico di

Dettagli

Sistemi lineari. 1. Generalità. a 1 x 1 + a 2 x 2 + a 3 x a n x n = k (matrice completa)

Sistemi lineari. 1. Generalità. a 1 x 1 + a 2 x 2 + a 3 x a n x n = k (matrice completa) Sistemi lineari. Generalità La teoria dei sistemi di equaioni lineari costituisce uno dei capitoli molto importanti della matematica pura e applicata. Infatti molte questioni teoriche o tecniche si traducono

Dettagli

6.4 j Flessione retta Stato di tensione. e ricavando s u dalla relazione precedente si ha: = pr s

6.4 j Flessione retta Stato di tensione. e ricavando s u dalla relazione precedente si ha: = pr s 6ttI_NUNZIANTE_1 /6/11 17:59 Pagina 455 6.4 j Flessione retta j 455 e ricavando s u dalla relaione precedente si ha: d pr s θ s che è anche nota come formula di ariotte per i tubi in parete sottile. In

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale:

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale: MOTO ROTOTRASLATORO D UN CORPO RGDO Equaioni cardinali Prima equaione cardinale: dv c M Fet Esprime il teorema del moto del centro di massa: il moto del centro di massa del corpo rigido è quello di un

Dettagli

Effetto delle Punte e problema dell elettrostatica

Effetto delle Punte e problema dell elettrostatica Effetto delle Punte e poblema dell elettostatica 4 4 R Q R Q πε πε / / R R R R E E Effetto delle punte E L effetto paafulmine E E E R R Nel caso del paafulmine, R 6 Km è il aggio di cuvatua della supeficie

Dettagli

Stato tensionale litostatico

Stato tensionale litostatico Stato tensionale litostatico Per stato tensionale litostatico (o geostatico) si intende quello un indefinito a piano limite oriontale (semispaio) soggetto al solo peso proprio (fora di massa W = peso unità

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

5,&+,$0, 68*/,23(5$725,9(7725,$/,

5,&+,$0, 68*/,23(5$725,9(7725,$/, 5,&+,$0, 8*/,23(5$725,9(7725,$/, Gradiente E un operatore differenziale del primo ordine che si applica ad una generica grandezza scalare ϕ, e genera un vettore secondo la seguente definizione: ϕ ϕ Q =

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Gradiente, divergenza e rotore

Gradiente, divergenza e rotore Gradiente, divergenza e rotore Gradiente di una funzione scalare della posizione Sia f(x,y,z) una funzione scalare continua e derivabile delle coordinate costruiamo in ogni punto dello spazio un vettore

Dettagli

Alcuni esercizi sulle equazioni di erenziali

Alcuni esercizi sulle equazioni di erenziali Alcuni esercizi sulle equazioni di erenziali Calcolo dell integrale generale Per ciascuna delle seguenti equazioni di erenziali calcolare l insieme di tutte le possibili soluzioni. SUGGERIMENTO: Ricordatevi

Dettagli

Equazioni di grado superiore al II

Equazioni di grado superiore al II Equaioni di grado superiore al II Equaioni binomie Un equaione binomia è un equaione che, ridotta a forma normale, è del tipo a n + b 0. Per risolvere una tale equaione, volendo cercare anche le soluioni

Dettagli

unità immaginaria, rappresentata dal simbolo i e che si definisce comeunnumeroilcuiquadratoèugualealnumeroreale 1, ossia:

unità immaginaria, rappresentata dal simbolo i e che si definisce comeunnumeroilcuiquadratoèugualealnumeroreale 1, ossia: I NUMERI COMPLESSI Perché i numeri complessi? Perché i numeri complessi? Risolviamo l equaione di Risolviamo l equaione di grado:. grado:. 0 3 + x x? 8 1 4 ± ± x? x unità immaginaria, rappresentata dal

Dettagli

ESERCIZI SUL CAMPO ELETTRICO 2

ESERCIZI SUL CAMPO ELETTRICO 2 ESERIZI SUL AMPO ELETTRIO 5. Una sfera di massa m possiede una carica q positiva. Essa è legata con un filo ad una lastra piana infinita uniformemente carica con densità superficiale σ, e forma un angolo

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

Data una carica puntiforme Q

Data una carica puntiforme Q Data una carica puntiforme Q Come posso descrivere in modo sintetico il possibile effetto che Q esercita su una qualsiasi carica posta nello spazio circostante? Uso la carica q - - Estendendo il procedimento

Dettagli

ELETTROMAGNETISMO APPLICATO LL'INGEGNERIA ELETTRICA ED ENERGETICA_4A (ultima modifica 16/10/2012) CAMPO DI CORRENTE

ELETTROMAGNETISMO APPLICATO LL'INGEGNERIA ELETTRICA ED ENERGETICA_4A (ultima modifica 16/10/2012) CAMPO DI CORRENTE LTTROMGNTISMO PPLICTO LL'INGGNRI LTTRIC D NRGTIC_4 (ultima modifica 6/0/0) CMPO DI CORRNT Si definisce campo di corrente la regione dello spazio nella quale ha sede una distribuzione continua di corrente

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 17.XI.17 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Domande da 6 punti. Prima parte del programma

Domande da 6 punti. Prima parte del programma Domande da 6 punti Prima parte del programma Domanda. Dare la definizione di arco di curva continua, di sostegno di una curva, di curva chiusa, di curva semplice e di curva piana fornendo qualche esempio.

Dettagli

Esercizi-Calcolo diretto di campo elettrico

Esercizi-Calcolo diretto di campo elettrico 1 CALCOLO DIRETTO CAMPO ELETTRICO Parte I Esercizi-Calcolo diretto di campo elettrico 1 Calcolo diretto campo elettrico Problema svolto 22.2 In figura vi sono due cariche q 1 = +8q e q 2 = 2q la prima

Dettagli

17. Elettromagnetismo

17. Elettromagnetismo 1 quaioni di Mawell 17. lettromagnetismo Nelle leioni precedenti abbiamo considerato i campi elettrico e magnetico statici, cioè abbiamo considerato fenomeni indipendenti dal tempo. I campi elettrico e

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore?

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore? 1 Cosa differenzia un conduttore da un dielettrico? A livello macroscopico A livello microscopico Come si comporta un conduttore? In elettrostatica In presenza di cariche in moto (correnti)... Come si

Dettagli

Applicazioni del metodo delle immagini

Applicazioni del metodo delle immagini Applicazioni del metodo delle immagini A. Pompili Esercitazioni Fisica II Anno Acc. 20102011 A.P.1 Applicazioni del metodo delle immagini Il metodo delle immagini e stato introdotto per trattare la situazione

Dettagli

APPENDICE B Ausili matematici

APPENDICE B Ausili matematici APPENDICE B Ausili matematici B Sistemi di coordinate In molteplici circostane non risulta efficace l impiego dei sistemi di coordinate cartesiani sia nel piano che nello spaio Ciò accade in particolare

Dettagli

Applicazioni del Teorema di Gauss

Applicazioni del Teorema di Gauss Applicazioni del Teorema di Gauss Simone Alghisi Liceo Scientifico Luzzago Ottobre 2011 Simone Alghisi Liceo Scientifico Luzzago Applicazioni del Teorema di Gauss Ottobre 2011 1 / 8 Definizione Dato un

Dettagli

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico LROSAICA Problemi di isica lettrostatica La Legge di Coulomb e il Campo elettrico LROSAICA ata la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta

Dettagli

Equazione di Laplace

Equazione di Laplace Equazione di Laplace. La funzione di Green Sia, indicati con x e y due punti di R 3 E(x, y) = x y Consideriamo la rappresentazione integrale di u(x) C 2 (), anche rinunciando all ipotesi che sia armonica

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Faraday 2. Estensione della legge di Ampere 3. Equazioni di Maxwell 4. Onde elettromagnetiche VI - 0 Legge di Faraday Campo elettrico Campo di induzione

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Piu interessante per le applicazioni: Elettrostatica nei mezzi materiali. Legata a proprieta elettriche dei materiali, in particolare solidi

Piu interessante per le applicazioni: Elettrostatica nei mezzi materiali. Legata a proprieta elettriche dei materiali, in particolare solidi Elettrostatica: Studio del campo elettrico costante nel tempo Piu interessante per le applicazioni: Elettrostatica nei mezzi materiali Legata a proprieta elettriche dei materiali, in particolare solidi

Dettagli

Lezione 8. Campo e potenziale elettrici

Lezione 8. Campo e potenziale elettrici Lezione 8. Campo e potenziale elettrici Legge di Coulomb: Unitá di misura: F = 1 q 1 q 2 4πɛ 0 r 2 1 4πɛ 0 = 8.99 10 9 Nm 2 /C 2 Campi elettrici E = F/q 1 F = qe Unitá di misura del campo elettrico: [E]

Dettagli

Descrizione vettoriale dell esperimento di risonanza magnetica

Descrizione vettoriale dell esperimento di risonanza magnetica Descriione vettoriale dell esperimento di risonana magnetica oto di un momento magnetico in campo magnetico. Un momento magnetico (associato ad un momento angolare) in un campo magnetico è soggetto ad

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori Legge di Gauss Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori La legge di Gauss mette in relazione i campi su una

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

I CAMPI VETTORIALI Antonio Meloni (Per gli studenti di Introduzione alla Fisica della Terra Solida di Roma Tre, AA 05/06)

I CAMPI VETTORIALI Antonio Meloni (Per gli studenti di Introduzione alla Fisica della Terra Solida di Roma Tre, AA 05/06) e engono I CMPI VTTORILI ntonio Meloni Per gli studenti di Introduione alla Fisica della Terra olida di Roma Tre, 05/06 1 Introduione In questa nota engono introdotti i campi ettoriali al solo scopo di

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Risoluzione delle Piastre Le piastre sottili in regime elastico

Risoluzione delle Piastre Le piastre sottili in regime elastico Corso di rogetto di Strutture OTENZA, a.a. 1 13 Risoluione delle iastre Le piastre sottili in regime elastico Dott. arco VONA DiSGG, Università di Basilicata marco.vona@unibas.it http://www.unibas.it/utenti/vona/

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

FORZE MAGNETICHE SU CORRENTI ELETTRICHE

FORZE MAGNETICHE SU CORRENTI ELETTRICHE Fisica generale, a.a. 013/014 SRCTAZON D: FORZ MAGNTCH SU FORZ MAGNTCH SU CORRNT LTTRCH D.1. Una spira rettangolare di dimensioni a 10 cm e b 5 cm, percorsa da una corrente s 5 A, è collocata in prossimità

Dettagli

Limiti di funzioni di due variabili

Limiti di funzioni di due variabili Limiti di funzioni di due variabili Definizione 1 Sia f : A R 2 R e x 0 = (x 0, y 0 ) punto di accumulazione di A. Diciamo che se e solo se Diciamo che se e solo se f(x) = f(x, y) = L x x 0 (x,y) (x 0,y

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

Test sull ellisse (vai alla soluzione) Quesiti

Test sull ellisse (vai alla soluzione) Quesiti Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate

Dettagli

I numeri complessi 1. Claudio CANCELLI (www.claudiocancelli.it)

I numeri complessi 1. Claudio CANCELLI (www.claudiocancelli.it) I numeri complessi Claudio CANCELLI (www.claudiocancelli.it) Ed..0 www.claudiocancelli.it April 0 I numeri complessi INDICE DEI CONTENUTI. l numero complesso, forma algebrica...3. Il piano complesso, rappresentaione

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa.

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa. Elettricità 1 ELETTRICITÀ Quando alcuni corpi (vetro, ambra, ecc.) sono strofinati con un panno di lana, acquistano una carica elettrica netta, cioè essi acquistano la proprietà di attrarre o di respingere

Dettagli

Equazione di Laplace

Equazione di Laplace Equazione di Laplace. Introduzione Si da il nome di operatore di Laplace o laplaciano all operatore differenziale u = u xx + u yy + u zz in tre dimensioni, o agli analoghi in dimensioni diverse. L operatore

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli