Introduzione all Astrofisica AA 2012/2013. Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia Università di Firenze

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione all Astrofisica AA 2012/2013. Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia Università di Firenze"

Transcript

1 Introduzione all Astrofisica AA 2012/2013 Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia Università di Firenze

2 Contatti, Bibliografia e Lezioni Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia, stanza 254 (2 o piano) Via G. Sansone 1, 50019, Sesto Fiorentino (Firenze), Italia alessandro.marconi@unifi.it tel: Bibliografia Dan Maoz Astrophysics in a Nutshell Princeton University Press Dove trovare le lezioni Didattica 2

3 Programma del corso Introduzione ai processi astrofisici in Stelle Struttura stellare, evoluzione stellare ( LM: Astrofisica) Galassie Struttura e tipi di galassie, Materia Oscura, Nuclei Galattici Attivi e Buchi Neri, Ammassi di Galassie ( LM: Fisica delle Galassie) Cosmologia Il modello cosmologico standard, l energia oscura ( LM: Cosmologia) Fornendo una panoramica dei sistemi oggetto di ricerca moderna e dei processi fisici rilevanti delle metodologie d indagine Studio approfondito richiede familiarità con calcolo ed equazioni differenziali, meccanica classica e quantistica, relatività speciale e generale, elettromagnetismo, idrodinamica e magnetoidrodinamica, termodinamica e meccanica statistica in pratica con gran parte della fisica classica e moderna!

4 Il Corso A parte casi semplici, eviteremo lunghe trattazioni matematiche ( laurea magistrale) e ci limiteremo a stime di ordine di grandezza utilizzo relazioni di scala utilizzo dei risultati di una derivazione matematica accurata Approccio non comune per gli studenti! Calcoli rigorosi fondamentali per risultato finale, in Fisica come in Astrofisica (es. fattore 2π non importante per capire la fisica ma per risultato finale!). Ma la maggioranza fisici ed astrofisici non affronta un nuovo problema partendo da modelli e calcoli rigorosi. 4

5 Notazione, convenzioni, unità di misura Per tradizione, astronomi utilizzano strane unità di misura unità cgs, Å, km, parsec, anni luce, masse e luminosità solari (M, L ), ecc. Convenzioni per la notazione = relazioni matematiche esatte (o più accurate del 10%); talvolta per risultati numerici con incertezze superiori al %; relazioni matematiche approssimate o risultati numerici meno accurati del 10%; proporzionalità stretta ~ dipendenza funzionale approssimata 5

6 Costanti ed unità di misura (2 cifre signif.) Costante gravitazionale G = erg cm g 2 Velocità della luce c = cm s 1 Costante di Planck h = erg s h = h/2 = erg s 1 Costante di Boltzmann k = erg K 1 = ev K 1 Costante di Stefan-Boltzmann = erg cm 2 s 1 K 4 Costante di radiazione a =4 /c = erg cm 3 K 4 Massa del protone m p = g Massa dell elettrone m e = g Carica dell elettrone e = esu Elettron-Volt 1 ev = erg Sezione d urto Thomson T = cm 2 Legge di Wien max =2900Å(T/10 4 K) 1 h max =2.4eV (T/10 4 K) Angstrom 1 Å=10 8 cm Massa solare M = g Luminosità solare L = erg s 1 Raggio solare R = cm Distanza Terra-Sole d =1AU= cm Massa di Giove M X = g Raggio di Giove R X = cm Distanza Giove-Sole d X =5.2AU= cm Massa della Terra M = g Raggio della Terra R = cm Massa della Luna M$ = g Raggio della Luna R$ = cm Distanza Terra-Luna d$ = cm Unità astronomica 1 AU = cm Parsec 1 pc = cm = 3.3ly Anno 1 yr = s 6

7 Astronomia ed Astrofisica Astronomia viene dal greco αστρονομία (άστρον, stella + νόμος, legge), riflette scoperta degli antichi greci che i moti delle stelle in cielo non sono arbitrari ma seguono leggi definite. Nei tempi moderni indica lo studio degli oggetti oltre l atmosfera della Terra (dai grani di polvere interstellare, ai superammassi di galassie). Il campo della Cosmologia si occupa della struttura e dell evoluzione globale dell universo. Nel tardo 800 è stato inventato il termine Astrofisica per descrivere il campo che studiava proprietà oggetti celesti con le leggi della fisica. Oggi la fisica è cruciale per ogni campo dell astronomia per cui Astronomia e Astrofisica sono usati indifferentemente. I giornali più importanti si chiamano infatti: The Astrophysical Journal (ApJ); Astronomy & Astrophysics (A&A); Monthly Notices of the Royal Astronomical Society (MNRAS); The Astronomical Journal (AJ); ma il loro contenuto è equivalente. 7

8 L Astrofisica Ramo della Fisica che studia fenomeni in sistemi fisici estesi su grande scala come Sole, pianeti, stelle, galassie o universo nella sua interezza. Definizione incompleta: astrofisica studia anche fenomeni a livello atomico e molecolare. Astrofisica è quella scienza che utilizza la fisica per studiare oggetti distanti e Universo nel suo insieme, ma include anche la formazione della Terra e l effetto di eventi astronomici sulla formazione ed evoluzione della vita sulla Terra. Enorme varietà di fenomeni studiati difficoltà di trovare una definizione. Tutti gli argomenti di fisica nella laurea triennale e magistrale hanno ruolo importante per lo studio dei fenomeni astrofisici. Astrofisica permette di studiare fenomeni non osservabili in laboratorio ma predetti da teorie fisiche (es. Relatività Generale); esempio processi di emissione delle nebulose astrofisiche (densità inferiori ai migliori vuoti di laboratorio) o processi in condizioni di gravità estrema come vicino ad un buco nero. 8

9 Astrofisica e Fisica Astrofisica è un ramo della Fisica, ed è pertanto scienza sperimentale con stretta interazione tra teoria e sperimentazione. Segue gli stessi metodi ed utilizza gli stessi strumenti degli altri rami della fisica. Principali differenze tra Astrofisica ed altri rami della Fisica: Scienza osservativa, no esperimenti di laboratorio (ovvio...) Informazione da onde elettromagnetiche (ed in piccola parte neutrini, raggi cosmici, onde gravitazionali) viaggiano a velocità finita c = km/s Tempi scala evolutivi vita umana Sorgenti osservate nel passato Sistemi complessi in condizioni fisiche estreme 9

10 Astrofisica e Fisica Tempi scala evolutivi vita umana: es. tempi scala evolutivi stelle massicce yr, stelle tipo Sole 1-10 Gyr. Non evoluzione del singolo sistema, ma studio statistico di popolazione (con problemi per selezione dei campioni) Sorgenti osservate nel passato : sorgente a distanza D, la radiazione e.m. impiega tempo Δt = D / c a raggiungerci. Osserviamo sorgente non adesso ma un tempo Δt nel passato (look-back time). c costante, Δt spesso utilizzato come misura di distanza: stella a D = 10 l-yr (light-years = anni luce) significa che la luce ha impiegato Δt = 10 yr a raggiungerci, ovvero D = c Δt = cm guardare indietro nel tempo: si osservano galassie a vari 10 9 l-yr di distanza, tempi significativi rispetto ai tempi evolutivi possibile confronto tra galassie lontane e vicine per studi evolutivi. 10

11 Astrofisica e Fisica Sistemi complessi in condizioni fisiche estreme molto spesso (quasi sempre) non ricreabili in laboratorio; complicazioni esterne (atmosfera terrestre, ecc.); sorgenti dello stesso tipo (stessi processi fisici) si originano da condizioni iniziali (molto) diverse; Le incertezze sulla stima di grandezze fisiche possono essere molto grandi: una misura accurata può avere incertezze dell ordine del 10-20%, altre misure possono fornire solo ordini di grandezza. 11

12 Sistemi Astrofisici: Stelle Il nostro Sole è una stella abbastanza tipica. In generale le stelle variano molto in: Età (oss yr) Massa ( M ) Luminosità ( L ) Raggio ( R ) Temperatura superficiale (3000 K K) legata al colore della stella (Rosso Blu) A. Marconi Introduzione all Astrofisica 2012/2013 Ammasso aperto M25 12

13 Sistemi Astrofisici: La Via Lattea Galileo fu il primo a rendersi conto che la Via Lattea è fatta da stelle! Sole Via Lattea: ~ stelle Distanza Sole-centro: ly Diametro disco: ~ ly Spessore disco: ~ ly Massa totale: ~ M Massa visibile : ~20% MTOT Luminosità totale: ~ L

14 Sistemi Astrofisici: Galassie Galassie a Spirale es. M83 Galassie Irregolari es. Grande Nube di Magellano Galassie Ellittiche es. Messier 87 (M87) Dimensioni tipiche: ly Masse tipiche: M Luminosità tipiche: L Età delle pop. stellari: < 1 Gyr fino a ~14 Gyr A. Marconi Introduzione all Astrofisica 2012/

15 Sistemi Astrofisici: AGN Radiosorgente Cigno A galassia ospite 500,000 ly Circa il 10% di tutte le galassie presentano un Nucleo Galattico Attivo (Active Galactic Nucleus - AGN). Sorgenti compatte ( < 1 ly) e luminose ( L ) di radiazione al centro delle galassie. In alcuni casi noti come Quasar, l AGN è così luminoso da nascondere la galassia stessa (LAGN ~100 Lgalassia da un volume VAGN~10-10 Vgalassia). A. Marconi Introduzione all Astrofisica 2012/

16 Sistemi Astrofisici: Ammassi di Galassie Una parte dell ammasso della Vergine La maggioranza delle galassie vive in ammassi. Il Gruppo Locale è un ammasso povero. Ammassi ricchi contengono ~1000 galassie. M87, galassia centrale dell ammasso della Vergine A. Marconi L ammasso della Vergine contiene 2500 galassie Diametro: ~107 ly Distanza: ~ ly Introduzione all Astrofisica 2012/

17 Sistemi Astrofisici: Super-Ammassi ly Gerarchia di strutture (simulazione) A. Marconi Gli ammassi di galassie sono raggruppati in superammassi Diametro: ~6 108 ly I superammassi formano filamenti e muri attorno a vuoti. Queste sono le strutture più grandi note nell universo. Hanno dimensioni tipiche dell ordine di ~ ~6 108 ly. Introduzione all Astrofisica 2012/

18 Dimensioni tipiche 1.5 m cm Dimensione tipica dell uomo km cm Diametro della Terra km cm Diametro del Sole 1 AU cm Distanza Terra-Sole 60 AU cm Diametro dell orbita di Nettuno AU cm Distanza di Proxima Centauri dal Sole ly cm Distanza del Sole dal centro della Via Lattea 10 5 ly cm Diametro della Via Lattea ly cm Distanza della Galassia di Andromeda 10 7 ly cm Diametro dell Ammasso della Vergine ly cm Distanza dell Ammasso della Vergine ly cm Diametro tipico di un Superammasso ly cm Oggetto più distante noto al 2009 (Quasar) 18

19 hubblesite.org APOD: antwrp.gsfc.nasa.gov eso.org

20 Fondamenti di Trasporto Radiativo Lezione 1

21 Luminosità e Flusso della radiazione Sorgente astrofisica che emette energia de in tempo dt. La luminosità è la quantità di energia irraggiata nell unità di tempo: L = de dt [ergs 1, oppure L ] la luminosità, e non l energia irraggiata, è la quantità che meglio caratterizza una sorgente astrofisica. Dato un elemento di superficie da, attraversato da una quantità di energia de nel tempo dt posso definire il flusso della radiazione come F = de dadt [ergs 1 cm 2 ] ovviamente bisogna considerare con segno opposto la radiazione che entra o esce dalla superficie. da 21

22 Relazione flusso - luminosità Sorgente puntiforme che emette radiazione in modo isotropo (es. una stella); è sorgente di onde sferiche, con luminosità L. Nel tempo Δt irraggia energia ΔE = L Δt. Dopo un certo tempo, questa energia attraversa una superficie sferica di raggio r centrata sulla sorgente, per cui il flusso attraverso quella superficie è r F (r) = E 4 r 2 t = L 4 r 2 questa relazione è valida per ogni r, per la conservazione dell energia (ovvero se non ci sono processi di emissione o assorbimento della radiazione oltre a quelli nella sorgente). F dipende dall inverso del quadrato della distanza dalla sorgente. 22

23 Luminosità e flusso specifici L e F così definite sono quantità bolometriche ovvero integrate su tutto lo spettro e.m. E utile considerare le quantità specifiche, ovvero per unità di banda di frequenza (o lunghezza d onda): L = de dt d [ergs 1 Hz 1 ] L = Z +1 0 L d F = de da dt d [ergcm 2 s 1 Hz 1 ] F = Z +1 0 F d ovviamente risulta F (r) = L 4 r 2 23

24 Luminosità e flusso specifici Relazioni analoghe valgono per unità di banda di lunghezza d onda ovvero L = de dt d F = de da dt d L d F d = L d = F d dove le relazioni con le quantità per unità di banda di frequenza si ottengono banalmente dalla conservazione dell energia. Ad esempio nel caso del flusso si ha F = F d d = F (c/ ) c 2 F = F dato che d d = c 2 = 24

25 Intensità (brillanza) della radiazione Il flusso è una misura dell energia trasportata da tutti i raggi che attraversano la superficie da indipendentemente dalla direzione da cui provengono. Come si caratterizza l energia trasportata lungo un raggio ovvero lungo una direzione definita? Consideriamo tutti i raggi che attraversano da attorno alla normale alla superficie. L intensità specifica o brillanza è l'energia per unità di tempo, superficie, angolo solido e banda di frequenza, ovvero I,perp = de da dt d [ergcm 2 s 1 Hz 1 sterad 1 ] [ergcm 2 s 1 Hz 1 arcsec 2 ] d raggio normale da dω dove perp ricorda che si considera solo la radiazione lungo la perpendicolare alla superficie. 25

26 Intensità (brillanza) della radiazione In generale se da non è perpendicolare alla direzione di propagazione la definizione di intensità si generalizza come I = de cos da dt d d dove θ è l angolo tra la direzione di propagazione e la normale alla superficie. Questa definizione si spiega col voler considerare la superficie vista dalla radiazione nella sua propagazione. normale θ dω cosθ da è proprio la superficie proiettata perpendicolarmente alla direzione di propagazione. da Nel caso in cui cosθ = π/2, l energia de che attraversa una superficie vista di taglio è ovviamente 0. 26

27 Relazione tra intensità e flusso In base alle definizioni de = I cos da dt d d = F da dt d F = I cos d dove δfν è il contributo al flusso dato dalla radiazione lungo la direzione considerata per Iν. Per ottenere Fν occorre integrare su tutto l angolo solido F = Z 4 I ( ) cos d I = I ( ) per evidenziare la dipendenza dalla direzione di propagazione dω angolo solido e, rispetto a coordinate sferiche, vale d =sin d d 27

28 Relazione tra intensità e flusso Esempi: Campo radiazione isotropo I ( )=cost. F = I Z cos d = Z 2 0 d Z 0 d cos sin =0 I ( )=cost. Se ma la radiazione proviene da un solo lato della superficie da (ad esempio, sulla superficie di una stella) allora F = I Z cos d = Z 2 0 d Z /2 0 d cos sin = I 28

29 Relazione tra intensità e densità energia La densità di energia della radiazione elettromagnetica è de = u d dv u = de d dv [ergcm 3 Hz 1 ] Ω da c dt P Il contributo alla densità di energia in P dalla radiazione trasportata lungo la direzione Ω è dato dall energia contenuta nel cilindro di altezza c dt I = c du ( ) de( ) =du ( ) d da c dt = I da dt d d d Considerando intensità media su angolo solido J = 1 Z I ( ) d 4 J = I per radiazione isotropa Si ottiene: J = c 4 u 29

30 Conservazione della Brillanza 1 2 dω1 R dω2 s da1 da2 Perché la brillanza è utile? Perché si conserva lungo la linea di vista (in assenza di processi di emissione o assorbimento). Lungo la direzione di propagazione, le superfici 1 e 2 sono attraversate dalle quantità di energia de 1 = I 1 da 1 dt d 1 d de 2 = I 2 da 2 dt d 2 d 30

31 Conservazione della Brillanza Consideriamo solo i raggi che attraversano 1 e 2: l energia si conserva ovvero de1 = de2 i raggi passanti per 1 che attraversano 2 sono quelli entro l angolo solido d 1 = da 2 /R 2 i raggi passanti per 2 che attraversano 1 sono quelli entro l angolo solido d 2 = da 1 /R 2 combinando queste tre relazioni con le espressioni per de1 e de2 si ottiene I 1 = I 2 ovvero la conservazione della brillanza (in assenza di processi di emissione o assorbimento lungo la direzione di propagazione). La brillanza osservata è la stessa di quella emessa dalla sorgente. 31

32 Equazione del trasporto radiativo La conservazione della brillanza lungo la direzione di propagazione si può esprimere come: s di ds =0 Se lungo la direzione di propagazione avvengono fenomeni di emissione s di = j ds di ds = j de = j dv d dt d jν Coefficiente di emissione [ergcm 3 s 1 Hz 1 sterad 1 ] 32

33 Equazione del trasporto radiativo Se lungo la direzione di propagazione avvengono fenomeni di assorbimento s di = I ds di ds = I αν Coefficiente di assorbimento Se l assorbimento è dovuto all interazione con n atomi (elettroni, ecc.) per unità di volume ed il processo ha sezione d urto σν = n In presenza sia di processi di emissione che di assorbimento si ottiene: di l Equazione del trasporto radiativo di ds ds = = I + I + 33

34 Equazione del trasporto radiativo Posso definire la profondità ottica d = ds di d = I + In caso di solo assorbimento posso facilmente ottenere la soluzione Iν(0) Iν(s) s di d = I di I di= d = d I I = I (0) I e= I (0) e Posso riuscire a vedere sorgenti solo attraverso una profondità 1 34

Introduzione all Astrofisica AA 2015/2016

Introduzione all Astrofisica AA 2015/2016 Introduzione all Astrofisica AA 2015/2016 Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia Università di Firenze INAF - Osservatorio Astrofisico di Arcetri Contatti, Bibliografia e Lezioni

Dettagli

Introduzione all Astrofisica AA 2013/2014

Introduzione all Astrofisica AA 2013/2014 Introduzione all Astrofisica AA 2013/2014 Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia Università di Firenze INAF - Osservatorio Astrofisico di Arcetri Contatti, Bibliografia e Lezioni

Dettagli

Introduzione all Astrofisica AA 2014/2015

Introduzione all Astrofisica AA 2014/2015 Introduzione all Astrofisica AA 2014/2015 Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia Università di Firenze INAF - Osservatorio Astrofisico di Arcetri Contatti, Bibliografia e Lezioni

Dettagli

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica CURRICULUM ASTROFISICA E FISICA DELLO SPAZIO Anno Accademico 2011-2012 PROGRAMMA

Dettagli

Anno Accademico 2008/2009. Astronomia. Corso di Laurea in Scienze Naturali. Alessandro Marconi

Anno Accademico 2008/2009. Astronomia. Corso di Laurea in Scienze Naturali. Alessandro Marconi Anno Accademico 2008/2009 Astronomia Corso di Laurea in Scienze Naturali Alessandro Marconi Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze Informazioni Importanti Prof. Alessandro

Dettagli

Astronomia Extragalattica

Astronomia Extragalattica Astronomia Extragalattica Alessandro Marconi Dipartimento di Astronomia e Scienza dello Spazio, Università degli Studi di Firenze Anno Accademico 2007/2008 Contatti, Bibliografia e Lezioni Contatti email:

Dettagli

Astronomia INTRODUZIONE

Astronomia INTRODUZIONE Astronomia 2015-16 INTRODUZIONE Contenuti: Corso di Astronomia 2015-2016 Prof. Marco Bersanelli Fondamenti Struttura stellare Evoluzione stellare Strumentazione per astrofisica Astrofisica galattica Astrofisica

Dettagli

Fondamenti di Astrofisica

Fondamenti di Astrofisica Fondamenti di Astrofisica Lezione 12 AA 2010/2011 Alessandro Marconi Dipartimento di Fisica e Astronomia Hubble Ultra-Deep Field (HUDF) Come visto nella prima lezione l HUDF è l esposizione più profonda

Dettagli

Scuola di Storia della Fisica

Scuola di Storia della Fisica Scuola di Storia della Fisica Sulla Storia dell Astronomia: il Novecento. Gli strumenti, le scoperte, le teorie. Asiago 22-26 Febbraio 2016 GLOSSARIO : Introduzione Biagio Buonaura GdSF & Liceo Scientifico

Dettagli

Galassie, Quasar e Buchi neri

Galassie, Quasar e Buchi neri Galassie, Quasar e Buchi neri Stefano Ciroi Università degli Studi di Padova Asiago, 25 Febbraio 2016 La Via Lattea Nord Sud Scheda tecnica della Via Lattea Galassia a spirale barrata Diametro circa 30

Dettagli

Astronomia Lezione 23/1/2012

Astronomia Lezione 23/1/2012 Astronomia Lezione 23/1/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Fondamenti di Astrofisica

Fondamenti di Astrofisica Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Fisica e Astrofisica A.A. 2009/2010 Fondamenti di Astrofisica Prof. Alessandro Marconi Dipartimento di Astronomia e Scienza

Dettagli

La struttura stellare ( II ) Lezione 4

La struttura stellare ( II ) Lezione 4 La struttura stellare ( II ) Lezione 4 Il trasporto radiativo dell energia Il gradiente di pressione P(r) che sostiene una stella è prodotto da un gradiente in ρ(r) e T(r) e quindi L(r), ovvero l energia

Dettagli

Astronomia Lezione 17/10/2011

Astronomia Lezione 17/10/2011 Astronomia Lezione 17/10/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Libri di testo: - An introduction to modern astrophysics B. W. Carroll, D. A. Ostlie, Addison Wesley

Dettagli

CARATTERISTICHE DELLE STELLE

CARATTERISTICHE DELLE STELLE CARATTERISTICHE DELLE STELLE Lezioni d'autore di Claudio Censori VIDEO Introduzione I parametri stellari più importanti sono: la le la la luminosità, dimensioni, temperatura e massa. Una stella è inoltre

Dettagli

Nuclei Galattici Attivi e Buchi Neri. Lezione 15

Nuclei Galattici Attivi e Buchi Neri. Lezione 15 Nuclei Galattici Attivi e Buchi Neri Lezione 15 Buchi neri nei nuclei galattici Nell ipotesi che gli AGN siano alimentati da accrescimento di massa su un buco nero l attività AGN deva lasciare un resto

Dettagli

Illuminotecnica - Grandezze Fotometriche

Illuminotecnica - Grandezze Fotometriche Massimo Garai - Università di Bologna Illuminotecnica - Grandezze Fotometriche Massimo Garai DIN - Università di Bologna http://acustica.ing.unibo.it Massimo Garai - Università di Bologna 1 Radiazione

Dettagli

ESERCIZI SCIENZE: SISTEMA SOLARE

ESERCIZI SCIENZE: SISTEMA SOLARE ESERCIZI SCIENZE: SISTEMA SOLARE 1. Scrivi i nomi dei pianti del Sistema Solare che compaiono nell immagine Sole= 2. Dai le seguenti definizioni Pianeta terrestre= Satelliti galileiani= Pianeta nano= Stella=

Dettagli

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la 1 E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la lunghezza d onda ( ), definita come la distanza fra due

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

Spettro della galassia di Seyfert NGC 4151

Spettro della galassia di Seyfert NGC 4151 Spettro della galassia di Seyfert NGC 4151 Misura del redshift e della larghezza delle righe di emissione Enrico Ferrari & Michele Previatello Istituto Tecnico Industriale Severi - Padova (22 Aprile 2005)

Dettagli

13 ottobre Prof. Manlio Bellesi

13 ottobre Prof. Manlio Bellesi XV OLIMPIADI ITALIANE DI ASTRONOMIA MODENA 2015 13 ottobre 2014 Prof. Manlio Bellesi Fin dalle origini gli esseri umani hanno osservato il cielo. Cosmologie, miti, religioni, aspirazioni e sogni hanno

Dettagli

Le nebulose. Le nebulose sono agglomerati di idrogeno, polveri e plasma.

Le nebulose. Le nebulose sono agglomerati di idrogeno, polveri e plasma. Le nebulose Le nebulose sono agglomerati di idrogeno, polveri e plasma. Esistono vari tipi di nebulosa: nebulosa oscura all interno della quale avvengono i fenomeni di nascita e formazione di stelle; nebulosa

Dettagli

Cosmologia. AA 2011/2012 Alessandro Marconi Dipartimento di Fisica e Astronomia

Cosmologia. AA 2011/2012 Alessandro Marconi Dipartimento di Fisica e Astronomia Cosmologia AA 2011/2012 Alessandro Marconi Dipartimento di Fisica e Astronomia Contatti e Materiale Didattico Alessandro Marconi alessandro.marconi@unifi.it tel: 055 2055227 Largo Fermi 2 Porta Osservatorio

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

Cosmologia AA 2016/2017 Prof. Alessandro Marconi

Cosmologia AA 2016/2017 Prof. Alessandro Marconi Cosmologia AA 2016/2017 Prof. Alessandro Marconi Dipartimento di Fisica e Astronomia Università di Firenze INAF - Osservatorio Astrofisico di Arcetri Contatti, Bibliografia e Lezioni Prof. Alessandro Marconi

Dettagli

LEZIONE 6. L Universo al telescopio

LEZIONE 6. L Universo al telescopio L Universo al telescopio LEZIONE 6 1: La velocità della luce Come abbiamo già accennato, la luce viaggia nel vuoto ad una velocità pari a 300'000 km/s. Per fare un paragone, la luce ci impiega circa 1

Dettagli

07b - Principi di Astrofisica Buchi Neri nei nuclei galattici

07b - Principi di Astrofisica Buchi Neri nei nuclei galattici 07b - Principi di Astrofisica Buchi Neri nei nuclei galattici Metodi diretti per misurare MBH Moto di singole particelle test! Moti propri delle stelle e velocità radiali Via Lattea Velocità radiali di

Dettagli

Generalità delle onde elettromagnetiche

Generalità delle onde elettromagnetiche Generalità delle onde elettromagnetiche Ampiezza massima: E max (B max ) Lunghezza d onda: (m) E max (B max ) Periodo: (s) Frequenza: = 1 (s-1 ) Numero d onda: = 1 (m-1 ) = v Velocità della luce nel vuoto

Dettagli

Unità di misura di lunghezza usate in astronomia

Unità di misura di lunghezza usate in astronomia Unità di misura di lunghezza usate in astronomia In astronomia si usano unità di lunghezza un po diverse da quelle che abbiamo finora utilizzato; ciò è dovuto alle enormi distanze che separano gli oggetti

Dettagli

Astrofisica e Particelle

Astrofisica e Particelle Astrofisica e Particelle Programma di massima o LʼUniverso o Espansione dellʼuniverso o Radiazione e materia o Nucleosintesi o Bariogenesi o I raggi cosmici: scoperta, spettro, accelerazione, misure o

Dettagli

AMMASSI DI GALASSIE. Marco Castellano.

AMMASSI DI GALASSIE. Marco Castellano. AMMASSI DI GALASSIE Marco Castellano castellano@oa-roma.inaf.it AMMASSI DI GALASSIE Gli oggetti più grandi dell Universo: 1) Un breve viaggio verso l Ammasso più vicino a noi 2) Quanto sono grandi: la

Dettagli

Unità 2 - L ambiente celeste

Unità 2 - L ambiente celeste Unità 2 - L ambiente celeste 1 1. La Sfera celeste Stelle in rotazione 2 1. La Sfera celeste Punti di riferimento sulla Sfera celeste 3 1. La Sfera celeste Individuare la Stella polare sulla Sfera celeste

Dettagli

Oltre il Sistema Solare

Oltre il Sistema Solare Corso di astronomia pratica Oltre il Sistema Solare Gruppo Astrofili Astigiani Andromedae LE STELLE Nascita di una stella Una nube di gas (soprattutto idrogeno) Inizia a collassare sotto l azione della

Dettagli

quando la vita di una stella sta per giungere al termine l'idrogeno diminuisce limitando le fusione nucleare all interno

quando la vita di una stella sta per giungere al termine l'idrogeno diminuisce limitando le fusione nucleare all interno le stelle sono corpi celesti che brillano di luce propria hanno la forma di sfere luminose ed emettono radiazioni elettromagnetiche causate dalle reazioni nucleari che avvengono al loro interno (atomi

Dettagli

4 CORSO DI ASTRONOMIA

4 CORSO DI ASTRONOMIA 4 CORSO DI ASTRONOMIA Ammassi di stelle, Nebulose e Galassie 16 gennaio 2016 spiegazioni di Giuseppe Conzo Parrocchia SS. Filippo e Giacomo Oratorio Salvo D Acquisto SOMMARIO Dalle stelle agli ammassi

Dettagli

Le Galassie I mattoni dell Universo

Le Galassie I mattoni dell Universo Le Galassie I mattoni dell Universo Stefano Covino INAF / Osservatorio Astronomico di Brera Da Terra vediamo solo una grande fascia di stelle, gas e polveri Questa ad esempio è la zona della costellazione

Dettagli

Stelle. - emette un flusso continuo di onde elettromagnetiche, che noi osserviamo in parte sotto forma di luce

Stelle. - emette un flusso continuo di onde elettromagnetiche, che noi osserviamo in parte sotto forma di luce Stelle - corpo celeste di forma più o meno sferica - emette un flusso continuo di onde elettromagnetiche, che noi osserviamo in parte sotto forma di luce - il Sole è una stella - Quasi tutto ciò che sappiamo

Dettagli

L Universo Invisibile. Dr. Massimo Teodorani, Ph.D. astrofisico

L Universo Invisibile. Dr. Massimo Teodorani, Ph.D. astrofisico L Universo Invisibile Dr. Massimo Teodorani, Ph.D. astrofisico CONTENUTO DELLA PRESENTAZIONE 1. Onde elettromagnetiche e le varie frequenze 2. Fotografia nell infrarosso e nell ultravioletto 3. Intensificazione

Dettagli

L Universo secondo la Fisica moderna

L Universo secondo la Fisica moderna Jesi 16 aprile 2005 L Universo secondo la Fisica moderna Cesare Bini Universita La Sapienza Roma Come la Fisica del XX secolo ha affrontato il problema dell origine dell Universo e quali sono i problemi

Dettagli

TEORIA DELLA RELATIVITA

TEORIA DELLA RELATIVITA Cenni sulle teorie cosmologiche TEORIA DELLA RELATIVITA Nasce dalla constatazione che il movimento è relativo, e dipende dal sistema di riferimento. La teoria è formulata da Einstein che coniuga la precedente

Dettagli

Ciao! Ma ricorda la cosa più importante:

Ciao! Ma ricorda la cosa più importante: Ciao! La volta scorsa abbiamo parlato della radiazione che ci arriva dalla nostra galassia e a come possiamo raccoglierla per studiarla con sensori diversi che permettono di vedere aspetti diversi dello

Dettagli

Sfera Celeste e Coordinate Astronomiche. A. Stabile Dipartimento di Ingegneria Università degli Studi del Sannio Benevento Atripalda, 9 Maggio 2011

Sfera Celeste e Coordinate Astronomiche. A. Stabile Dipartimento di Ingegneria Università degli Studi del Sannio Benevento Atripalda, 9 Maggio 2011 Astronomiche A. Stabile Dipartimento di Ingegneria Università degli Studi del Sannio Benevento Atripalda, 9 Maggio 2011 Unità di lunghezza e distanze tipiche 1. Sistema Solare: 1 UA = 149,5 milioni di

Dettagli

Astronomia Strumenti di analisi

Astronomia Strumenti di analisi Corso facoltativo Astronomia Strumenti di analisi Christian Ferrari & Gianni Boffa Liceo di Locarno Parte E: Strumenti di analisi Radiazione elettromagnetica Interazione radiazione - materia Redshift Misura

Dettagli

LE STELLE. LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole ( km)

LE STELLE. LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole ( km) LE STELLE LE DISTANZE ASTRONOMICHE Unità astronomica = distanza media Terra-Sole (149 600 000 km) Anno luce = distanza percorsa in un anno dalla luce, che viaggia ad una velocità di 300 000 km/sec. (9

Dettagli

I buchi ne!: piccoli. e gran" cannibali

I buchi ne!: piccoli. e gran cannibali I buchi ne!: piccoli e gran" cannibali insaziabili Tomaso Belloni (Osservatorio Astronomico di Brera) I mostri del cielo I buchi ne!: piccoli e gran" cannibali insaziabili Tomaso Belloni (Osservatorio

Dettagli

1. La luce delle stelle

1. La luce delle stelle 1. La luce delle stelle 2. La scala delle magnitudini La luminosità delle stelle appare diversa a occhio nudo. Ipparco di Nicea creò, intorno al 120 a.c., una scala di luminosità che assegnava il valore

Dettagli

Il contenuto dell Universo. Lezioni d'autore di Claudio Censori

Il contenuto dell Universo. Lezioni d'autore di Claudio Censori Il contenuto dell Universo Lezioni d'autore di Claudio Censori INTRODUZIONE (I) VIDEO INTRODUZIONE (II) L Universo ha un età di circa 13,7 miliardi di anni e si sta attualmente espandendo con una velocità

Dettagli

Meccanica quantistica Mathesis 2016 Prof. S. Savarino

Meccanica quantistica Mathesis 2016 Prof. S. Savarino Meccanica quantistica Mathesis 2016 Prof. S. Savarino Quanti Corpo nero: è un oggetto che assorbe tutta la radiazione senza rifletterla. Come una corda legata agli estremi può produrre onde stazionarie

Dettagli

Misteri nell Universo

Misteri nell Universo Misteri nell Universo Quali sono le forme di materia ed energia nell universo osservabile? Quale e la ricetta (ingredienti e proporzioni) del nostro universo? 1 L eredità di Copernico Quale è la relazione

Dettagli

INAF - OSSERVATORIO ASTROFISICO DI CATANIA

INAF - OSSERVATORIO ASTROFISICO DI CATANIA INAF - OSSERVATORIO ASTROFISICO DI CATANIA Dove ci troviamo? Il Sole si trova in un braccio spirale della nostra Galassia (Via Lattea), a circa 30000 anni-luce dal centro E una dei 100 miliardi di stelle

Dettagli

Fondamenti di Astrofisica

Fondamenti di Astrofisica Fondamenti di Astrofisica Lezione 13 AA 2010/2011 Alessandro Marconi Dipartimento di Fisica e Astronomia Le curve di rotazione delle spirali Consideriamo una galassia a spirale (a disco) e misuriamo le

Dettagli

valori di alcune costanti calcolate teoricamente

valori di alcune costanti calcolate teoricamente valori di alcune costanti calcolate teoricamente pag. 33 raggio dell universo osservabile attuale R ua 4,475 0 9 al 33 età dell universo attuale T ua 3,88 0 9 a 33 valore massimo della velocità di espansione

Dettagli

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo. Seconda lezione. Antonio Maggio. INAF Osservatorio Astronomico di Palermo

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo. Seconda lezione. Antonio Maggio. INAF Osservatorio Astronomico di Palermo Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Seconda lezione Antonio Maggio INAF Osservatorio Astronomico di Palermo Argomenti e concetti già introdotti Astrometria: posizione

Dettagli

Le distanze in Astronomia

Le distanze in Astronomia Le distanze in Astronomia Argomenti trattati Distanze astronomiche: alcuni metodi di misura Le galassie: morfologia e classificazione Cosmologia: accenni DISTANZE ASTRONOMICHE DISTANZA E TEMPO La Luna

Dettagli

Quasar e Buchi Neri. Maria Massi (Max Planck Institut für Radioastronomie)

Quasar e Buchi Neri. Maria Massi (Max Planck Institut für Radioastronomie) Quasar e Buchi Neri Maria Massi (Max Planck Institut für Radioastronomie) I Quasar sono gli oggetti piu' luminosi dell' Universo I. Come sono stati scoperti i Quasar? II. Cosa e' un Quasar? III. Cosa resta

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità

Dettagli

LA MISURA DELLE GRANDEZZE FISICHE. Prof Giovanni Ianne

LA MISURA DELLE GRANDEZZE FISICHE. Prof Giovanni Ianne LA MISURA DELLE GRANDEZZE FISICHE Prof Giovanni Ianne Il metodo scientifico La Fisica studia i fenomeni naturali per: fornire una descrizione accurata di tali fenomeni interpretare le relazioni fra di

Dettagli

VELOCITA' DI FUGA E RAGGIO DELL'ORIZZONTE DEGLI EVENTI SECONDO LA FISICA CLASSICA

VELOCITA' DI FUGA E RAGGIO DELL'ORIZZONTE DEGLI EVENTI SECONDO LA FISICA CLASSICA VELOCITA' DI FUGA E RAGGIO DELL'ORIZZONTE DEGLI EVENTI SECONDO LA FISICA CLASSICA Per sfuggire all'attrazione gravitazionale di un corpo celeste ( come una stella o un pianeta) occorre possedere una velocità

Dettagli

La nostra galassia: la Via Lattea. Lezione 13

La nostra galassia: la Via Lattea. Lezione 13 La nostra galassia: la Via Lattea Lezione 13 Sommario La struttura della Galassia. Osservazioni in ottico, infrarosso e radio. Disco, sferoide (bulge) e alone. Popolazioni stellari. Braccia a spirale.

Dettagli

Unità 2 - L ambiente celeste

Unità 2 - L ambiente celeste Unità 2 - L ambiente celeste 1 1. La Sfera celeste Stelle in rotazione 2 1. La Sfera celeste Punti di riferimento sulla Sfera celeste 3 1. La Sfera celeste Individuare la Stella polare sulla Sfera celeste

Dettagli

Principali risultati degli studi di esopianeti

Principali risultati degli studi di esopianeti Principali risultati degli studi di esopianeti Lezione SP 6 G. Vladilo 1 Principali risultati degli studi di esopianeti Proprietà statistiche Proprietà fisiche 2 Proprietà statistiche degli esopianeti

Dettagli

Come si forma il nocciolo di una galassia?

Come si forma il nocciolo di una galassia? Roma, 22 giugno 2015 COMUNICATO STAMPA Come si forma il nocciolo di una galassia? Una ricerca, cui partecipa la Sapienza, prende in esame il rapporto tra buchi neri super massicci e ammassi stellari al

Dettagli

Sull Espansione dell Universo. Silvano Massaglia Dipartimento di Fisica Università di Torino

Sull Espansione dell Universo. Silvano Massaglia Dipartimento di Fisica Università di Torino Sull Espansione dell Universo Silvano Massaglia Dipartimento di Fisica Università di Torino Seminario Didattico 2014 1 Sommario Il quadro osservativo in cosmologia Il Big Bang, l inflazione e L Universo

Dettagli

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizi di acustica Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizio 1 La velocità del suono nell aria dipende dalla sua temperatura. Calcolare la velocità di propagazione

Dettagli

LE GRANDEZZE FISICHE. Misura di una grandezza

LE GRANDEZZE FISICHE. Misura di una grandezza LE GRANDEZZE FISICHE 1. 2. Grandezze fondamentali e derivate 3. Sistemi di unità di misura 4. Multipli e sottomultipli 5. Ordini di grandezza pag.2 Misura di una grandezza Definizione operativa: Grandezza

Dettagli

INSEGNAMENTI/ ATTIVITÀ FORMATIVE CFU SEMESTRE SSD

INSEGNAMENTI/ ATTIVITÀ FORMATIVE CFU SEMESTRE SSD Scienze Laurea magistrale in Fisica 75 PIANI DI STUDIO (A) FISICA DELLA MATERIA Fisica Atomica e Molecolare 6 1 FIS/03 Fisica della Materia Condensata I 6 1 FIS/03 Laboratorio di Fisica Sperimentale 6

Dettagli

Trasmissione di calore per radiazione

Trasmissione di calore per radiazione Trasmissione di calore per radiazione Sia la conduzione che la convezione, per poter avvenire, presuppongono l esistenza di un mezzo materiale. Esiste una terza modalità di trasmissione del calore: la

Dettagli

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Il presente documento individua le conoscenze, abilità e competenze che lo studente dovrà aver acquisito al termine

Dettagli

Le Galassie. Lezione 8

Le Galassie. Lezione 8 Le Galassie Lezione 8 Proprietà di una galassia E possibile ottenere spettri ed immagini di una galassia a tutte le lunghezze d onda (dal radio ai raggi X). Si possono quindi avere due tipi di osservazioni

Dettagli

ESERCITAZIONI ASTROFISICA STELLARE

ESERCITAZIONI ASTROFISICA STELLARE ESERCITAZIONI per ASTROFISICA STELLARE (AA 2011-2012) (ultimo aggiornamento: 23/03/2012) Esercizio 1: Una stella con gravita` superficiale pari a 3.42 10 4 cm -2 e luminosita` pari a 562 L ha il massimo

Dettagli

CURRICULUM ASTRONOMIA E ASTROFISICA

CURRICULUM ASTRONOMIA E ASTROFISICA CURRICULUM ASTRONOMIA E ASTROFISICA Il/la sottoscritto/a...matricola nº e-mail..tel. laureato nella Laurea Triennale in Fisica in data iscritto alla Laurea Magistrale in Fisica classe LM 17 in data...

Dettagli

Nuclei Galattici Attivi e Buchi Neri

Nuclei Galattici Attivi e Buchi Neri Nuclei Galattici Attivi e Buchi Neri Il centro galattico: ottico vs IR Piano del Disco Galattico Ammasso di Stelle nel centro galattico Centro Galattico A. Marconi Introduzione all Astrofisica 2013/2014

Dettagli

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati 4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi Accanto allo spettro continuo che i corpi emettono in ragione del loro stato termico, si osservano spettri discreti che sono caratteristici

Dettagli

ASTROFISICA (3 moduli da 3 ore)

ASTROFISICA (3 moduli da 3 ore) ASTROFISICA (3 moduli da 3 ore) Argomenti trattati: Struttura stellare Equazioni di equilibrio Evoluzione stellare Testo di riferimento: Appunti modellati sul libro di Vittorio Castellani ASTROFISICA STELLARE

Dettagli

I molti volti dell'universo

I molti volti dell'universo I molti volti dell'universo L astronomia infrarossa Paolo Saracco INAF - Osservatorio Astronomico di Brera / DVWURQRPLDLQIUDURVVD 2OWUHLOLPLWL /DVFRSHUWD GHOOD UDGLD]LRQH,5 3URSULHWDC ILVLFKH GHOO,5 /

Dettagli

m s m s. 3, K g

m s m s. 3, K g Le osservazioni hanno permesso una stima della massa pari a : Grande Nube : 0 0 9 m s Piccola Nube : assumendo i valori : m PM 6 0 9 m s, 978 0 0 K g R GM 60 6800 al 5060 al, il punto neutro della Grande

Dettagli

Con la parola Universo possiamo intendere tutto ciò che ci circonda: le stelle, i pianeti e tutti gli altri oggetti che vediamo nel cielo (insieme ad

Con la parola Universo possiamo intendere tutto ciò che ci circonda: le stelle, i pianeti e tutti gli altri oggetti che vediamo nel cielo (insieme ad Con la parola Universo possiamo intendere tutto ciò che ci circonda: le stelle, i pianeti e tutti gli altri oggetti che vediamo nel cielo (insieme ad una enorme quantità di altre cose che non vediamo)

Dettagli

BUCHI NERI: un biglietto di sola andata

BUCHI NERI: un biglietto di sola andata BUCHI NERI: un biglietto di sola andata Andrea Comastri INAF-Osservatorio Astronomico di Bologna Syllabus Introduzione e un po di storia Il Buco Nero del Matematico Il Buco Nero dell Astrofisico Il Buco

Dettagli

Si fuit aliquod tempus antequam faceres caelum et terram

Si fuit aliquod tempus antequam faceres caelum et terram Si fuit aliquod tempus antequam faceres caelum et terram Alessandro De Angelis Dipartimento di Fisica dell Universita di Udine e INFN Trieste Giornate Scientifiche di Udine e Pordenone, Marzo 2002 Time

Dettagli

Tutti i colori dell Universo. Roberto Battiston INFN e Universita di Perugia Laboratori di Frascati 6 ottobre 2004

Tutti i colori dell Universo. Roberto Battiston INFN e Universita di Perugia Laboratori di Frascati 6 ottobre 2004 Tutti i colori dell Universo Roberto Battiston INFN e Universita di Perugia Laboratori di Frascati 6 ottobre 2004 1 2 3 L universo si studia osservando le informazioni = particelle che esso ci invia 4

Dettagli

Programma Incontri Luce Dalle Stelle 2016/17 Lunedi h il 14/,21,28/11-5/12/2016-9,16/1/2017

Programma Incontri Luce Dalle Stelle 2016/17 Lunedi h il 14/,21,28/11-5/12/2016-9,16/1/2017 Programma Incontri Luce Dalle Stelle 2016/17 Lunedi h 15-17 il 14/,21,28/11-5/12/2016-9,16/1/2017 1. A come Astronomo: i corpi celesti, i telescopi, i computers (Corbelli-Romoli) 2. Osservare le stelle:

Dettagli

Un immagine. Dimensioni finite (X,Y) No profondità inerente Rappresentazione numerica energia luminosa. B(x,y) = intensità luminosa in (x,y)

Un immagine. Dimensioni finite (X,Y) No profondità inerente Rappresentazione numerica energia luminosa. B(x,y) = intensità luminosa in (x,y) Un immagine Dimensioni finite (X,Y) No profondità inerente Rappresentazione numerica energia luminosa Y X x y B(x,y) = intensità luminosa in (x,y) Il fenomeno luminoso Fisica della luce e grandezze fotometriche

Dettagli

Dalla Gravitazione ai Buchi Neri

Dalla Gravitazione ai Buchi Neri Dalla Gravitazione ai Buchi Neri Francesco Tombesi Universita di Roma Tor Vergata NASA - Goddard Space Flight Center, USA University of Maryland, College Park, USA Gravitazione Universale? Galileo (1590):

Dettagli

5 CORSO DI ASTRONOMIA

5 CORSO DI ASTRONOMIA 5 CORSO DI ASTRONOMIA Evoluzione dell Universo e Pianeti Extrasolari 13 febbraio 2016 spiegazioni di Giuseppe Conzo Parrocchia SS. Filippo e Giacomo Oratorio Salvo D Acquisto SOMMARIO Parte Prima La Teoria

Dettagli

PROGRAMMA DI SCIENZE DELLA TERRA CLASSE 1^ H. a. s Prof.ssa RUBINO ALESSANDRA

PROGRAMMA DI SCIENZE DELLA TERRA CLASSE 1^ H. a. s Prof.ssa RUBINO ALESSANDRA ISTITUTO TECNICO INDUSTRIALE DI STATO "ENRICO FERMI" Via Luosi n. 23-41124 Modena Tel. 059211092 059236398 - (Fax): 059226478 E-mail: info@fermi.mo.it Pagina web: www.fermi.mo.it PROGRAMMA DI SCIENZE DELLA

Dettagli

Astrofisica delle Galassie I

Astrofisica delle Galassie I Astrofisica delle Galassie I parte V Le galassie dell universo vicino Laurea Specialistica in Astronomia AA 2006/07 Alessandro Pizzella Sommario 1) Il gruppo locale. 2) L ammasso della Vergine 3) Piano

Dettagli

DEFINIZIONI (D.Lgs. 81/08)

DEFINIZIONI (D.Lgs. 81/08) Radiazioni Ottiche Artificiali -ROA- Cosa sono Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Fonte ISPESL 1 DEFINIZIONI (D.Lgs. 81/08) si intendono per radiazioni ottiche:

Dettagli

Stelle: magnitudini e Diagramma H-R. Olimpiadi di Astronomia edizione 2016

Stelle: magnitudini e Diagramma H-R. Olimpiadi di Astronomia edizione 2016 Stelle: magnitudini e Diagramma H-R Olimpiadi di Astronomia edizione 2016 Astrolimpiadi.lazio@iaps.inaf.it Terra Distanze stellari Sole a d π Terra Per misurare le distanze stellari, possiamo utilizzare

Dettagli

La Via Lattea. Lezione 5

La Via Lattea. Lezione 5 Lezione 5 La struttura della Galassia La Galassia ha 3 componenti principali: disco (stelle, gas, polvere); sferoide (bulge; stelle); alone (stelle, materia oscura). Il Sole si trova nel disco ad una distanza

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior 1. Vero o falso? Quale delle seguenti affermazioni può essere vera? Giustificate in dettaglio la vostra

Dettagli

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata LASER Light Amplification by Stimulated Emission of Radiation Introduzione. Assorbimento, emissione spontanea, emissione stimolata Cenni storici 1900 Max Planck introduce la teoria dei quanti (la versione

Dettagli

GALASSIE. Sono i "mattoni" che compongono l'universo, il quale ne contiene miliardi.

GALASSIE. Sono i mattoni che compongono l'universo, il quale ne contiene miliardi. L UNIVERSO: l insieme di tutta la materia e l energia esistente dell immenso spazio in cui sono immerse. Contiene miliardi di GALASSIE L Universo ebbe origine, circa 12-15 miliardi di anni fa (ovviamente

Dettagli

LASER PRINCIPI FISICI

LASER PRINCIPI FISICI Corso di Tecnologie Speciali I LASER PRINCIPI FISICI Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale LASER Light Amplification

Dettagli

MA DIO GIOCA A DADI CON IL MONDO?

MA DIO GIOCA A DADI CON IL MONDO? MA DIO GIOCA A DADI CON IL MONDO? Le basi delle teorie della RELATIVITA e della MECCANICA QUANTISTICA A cura di Giorgio PALAZZI e Alberto RENIERI EINSTEIN E LA RELATIVITA SIAMO ALL INIZIO DEL XX SECOLO

Dettagli

Il metodo scientifico

Il metodo scientifico Il metodo scientifico n La Fisica studia i fenomeni naturali per: n fornire una descrizione accurata di tali fenomeni n interpretare le relazioni fra di essi n Il metodo scientifico: n osservazione sperimentale

Dettagli

Il modello cosmologico standard e l enigma dell espansione

Il modello cosmologico standard e l enigma dell espansione Istituto Nazionale di Astrofisica Osservatorio astronomico di Brera Universo in fiore Il modello cosmologico standard e l enigma dell espansione Luigi Guzzo Luigi.guzzo@brera.inaf.it INAF-Osservatorio

Dettagli

Il metodo scientifico

Il metodo scientifico La Fisica è una scienza grazie a Galileo che a suo fondamento pose il metodo scientifico 1 Il metodo scientifico La Natura è complessa: non basta osservarla per capirla Intuizione di Galileo: bisogna porre

Dettagli

Fotoni ed atomi: un breve viaggio nel mondo quantistico

Fotoni ed atomi: un breve viaggio nel mondo quantistico UNIVERSITÀ DEGLI STUDI DI MILANO Fotoni ed atomi: un breve viaggio nel mondo quantistico Stefano Olivares Applied Quantum Mechanics Group Dipartimento di Fisica, Università degli Studi di Milano, Italy

Dettagli

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo Università degli Studi di Milano Dipartimento di Fisica Corso di laurea triennale in FISICA Anno accademico 2013/14 Figure utili da libri di testo Onde & Oscillazioni Corso A Studenti con il cognome che

Dettagli