= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)"

Transcript

1 ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa X la varable casuale l prossmo clente acqusta un PC con processore Celeron. 1. Defnrne la dstrbuzone d probabltà. Calcolare l valore atteso d X. 3. Calcolare la varanza d X. b) Sa Y la varable casuale l numero d PC Celeron vendut ne prossm quattro acqust onlne. 4. Defnre gl event elementar assocat all espermento n questone 5. Calcolare per cascun evento d cu al punto 1 le probabltà assocate 6. Defnre la dstrbuzone d probabltà per la varable casuale Y. 7. Calcolare valore atteso e varanza d Y 8. Utlzzando quanto noto sulla dstrbuzone bnomale calcolare la dstrbuzone d probabltà d Y 9. Utlzzando quanto noto sulla dstrbuzone bnomale calcolare valore atteso e varanza d Y c) Calcolare noltre: PY 10. ( ) 11. PY> ( ) 1. P( 1 Y 3) SVOLGIMENTO 1) La varable X s dstrbusce come una v.c. bernoull. La dstrbuzone d probabltà è rportata sotto sa n forma tabellare che n forma grafca. X Evento Acqusto PC Intel 1 0. Acqusto PC Celeron ) E X 3) ( ) = x p( x ) = = 0. ( ) ( ) ( ) ( ) ( ) σ E X µ x µ p x = = = = = 0.16 NOTA: 1

2 La varable casuale è una varable bernoullna. Il valore atteso e la varanza potevano essere calcolat pù velocemente come segue: E X = p= ( ) 0. p ( p) σ = 1 = = ) S ndch con C l acqusto d un pc con processore Celeron e con I l acqusto d un pc con processore Intel. Gl event elementar sono 4 =16 e sono elencat nella seguente tabella: Acqusto 1 Acqusto Acqusto 3 Acqusto 4 Numero d Testa 1 I I I I 0 C I I I 1 3 I C I I 1 4 I I C I 1 5 I I I C 1 6 C C I I 7 C I C I 8 C I I C 9 I C C I 10 I C I C 11 I I C C 1 C C C I 3 13 C C I C 3 14 C I C C 3 15 I C C C 3 16 C C C C 4 5) S ndch con C e con I rspettvamente l acqusto del processore Celeron e del processore Intel da parte dell -esmo acqurente (=1,,4). Il calcolo delle probabltà assocate a cascuno degl event elementar sfrutta l potes che v sa ndpendenza tra acqust successv. P( I ) ( ) ( ) ( ) ( ) ( ) 4 1 I I3 I4 = P I1 P I P I3 P I4 = 0.8 = ( ) ( ) ( ) ( ) ( ) ( ) = = = ( ) = ( ) = ( ) = ( ) = ( 1 3 4) = ( 1) ( ) ( 3) ( 4) = ( 0.) ( 0.8) = ( 1 3 4) = ( 1 3 4) = ( 1 3 4) = ( 1 3 4) = P( I1 C I3 C4) = P( I1 I C3 C4) = ( ) ( ) ( ) ( ) ( ) ( ) = = = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) ( ) ( ) ( ) = ( ) 4 = P C I I I P C P I P I P I P C I I I P I C I I P I I C I P I I I C P C C I I P C P C P I P I P C C I I P C I C I P C I I C P I C C I P C C C I P C P C P C P I PC C C I PC C I C PC I C C PI C C C P C1 C C3 C4 P C1 P C P C3 P C )

3 Tenendo conto che la probabltà che v sano 1,, e 3 acqust d PC-celeron è par all unone delle probabltà d rspettvamente 4, 6 e 4 event elementar che danno vta a rspettv event compost s ha: X (Numero d Celeron) (0.104 x 4) (0.056 x 6) ( x 4) SOMMA ) E X ( ) = x p( x ) = = 0.8 σ = E X µ ( ) ( x µ ) p( x ) = ( ) ( ) ( ) ( ) ( ) = = ) E possble sfruttare quanto noto sulla bnomale nvece d rcorrere all elenco esaustvo degl event elementar. In partcolare, se s calcola la formula: n x n x n! x n x p( X= x) = pq = pq x x! ( n x)! per x=0,,4 s ottene la dstrbuzone d probabltà rcavata n precedenza. 9) X (Numero d Celeron) (0.104 x 4) (0.056 x 6) ( x 4) SOMMA 1 3

4 Il valore atteso e la varanza possono essere calcolat usando le rspettve defnzon, come al punto 7, ma rsulta pù veloce usare quanto noto sulla dstrbuzone bnomale. E X = x p x = n p= = ( ) ( ) ( ) ( µ ) ( ) Var X = x p x = n p q = = ) PY = PY= 0 + PY= 1 + PY= = = ( ) ( ) ( ) ( ) 11) PY ( > ) = PY ( = 3) + PY ( = 4) = = 0.07 o, n manera analoga, s poteva sfruttare quanto calcolato al punto 11: PY> = 1 PY = = 0.07 ( ) ( ) 1) P1 Y 3 = PY= 1 + PY= + PY= 3 = = ( ) ( ) ( ) ( ) 4

5 ESERCIZIO 3. Il Rettore dell Unverstà è nteressato a valutare l gradmento della rforma degl stud ntrodotta. Un ndagne svolta su tutt gl student negl scors ann ha dato l seguente rsultato: l 60% degl student prefersce l nuovo ordnamento d stud rspetto al precedente. a) S estrae uno studente a caso e s è nteressat a valutare l gradmento dello stesso rspetto al nuovo ordnamento d stud. 1. Defnre la varable casuale X assocata all espermento e la relatva dstrbuzone d probabltà. Calcolarne valore atteso e varanza b) S estraggono a caso 0 student e su quest s è nteressat a valutare l gradmento rspetto al nuovo ordnamento d stud 1. Defnre la varable casuale Y assocata all espermento e la relatva dstrbuzone d probabltà. Calcolarne valore atteso e varanza PY 5 3. Calcoare ( ) 4. Calcolare PY> ( 5) 5. Calcoare PY= ( 11) 6. Calcolare P( 10 < Y < 15) SVOLGIMENTO 1) La varable X s dstrbusce come una v.c. bernoull. La dstrbuzone d probabltà è sotto rportata sa n forma tabellare che n forma grafca. X Evento Gradmento veccho ordnamento Gradmento nuovo ordnamento ) E X ( ) = x p( x ) = = 0.6 ( ) ( ) ( ) ( ) ( ) σ E X µ x µ p x = = = = = 0.4 NOTA: La varable casuale è una varable bernoullna. Il valore atteso e la varanza potevano essere calcolat pù velocemente come segue: E X = p= ( ) 0.6 p ( p) σ = 1 = = 0.4 3) 5

6 La varable casuale Y= nr. d student favorevol al nuovo ordnamento su un gruppo d 0 segue una dstrbuzone bnomale (ved analoga con l numero d success n n prove). E possble specfcare le dstrbuzon d probabltà sa calcolando la formula: n x n x n! x n x p( X= x) = pq = pq x x! ( n x)! per x=0,,0. La dstrbuzone d probabltà della v.c. Y è rportata d seguto n forma tabulare e n forma grafca. X ) Il valore atteso e la varanza possono essere calcolat usando le rspettve defnzon ma rsulta pù veloce usare quanto noto sulla dstrbuzone bnomale. E X = x p x = n p= = ( ) ( ) ( ) ( µ ) ( ) Var X = x p x = n p q = = 4.8 5) PY 5 = PY= 1 + PY= + PY= 3 + PY= 4 + PY= 5 = = ) PY> 5 = 1 PY 5 = = ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 6

7 PY= ( 11) = ) P10 < Y< 15 = PY= 11 + PY= 1 + PY= 13 + PY= 14 = = ( ) ( ) ( ) ( ) ( ) 7

8 ESERCIZIO 3.3 S è nteressat all acqusto d un autovettura e un produttore d automobl sta promuovendo un nuovo modello facendo leva su bass consum: la pubblctà afferma che la macchna è n grado d asscurare un consumo medo d 0 km per ltro su percors cttadn. S ha la fortuna d conoscere uno de responsabl del settore marketng d tale azenda dal quale s resce ad ottenere anche un nformazone sulla varabltà d quest test d consumo, ovvero che la devazone standard è par a 3 km per ltro. Sa X la varable casuale km percors per ltro d tale modello, che s potzza approssmable da una dstrbuzone normale. 1. Acqustando tale modello d autovettura qual è la probabltà che la macchna n questone resca a percorrere meno d 0 km al ltro su percorso cttadno?. Qual è la probabltà che la macchna resca a percorrere pù d 30 km per ltro? 3. Qual è la probabltà che la macchna percorra n meda tra 4 e 30 km per ltro? 4. Qual è la probabltà che la macchna percorra meno d 18m o pù d 4m per ltro? 5. Calcolare l numero mnmo d km per ltro che la macchna è n grado d asscurare nel 90% de cas? 6. Calcolare l numero d km per ltro che la macchna è n grado d superare solo nel 0% de cas? 7. Calcolare l prmo quartle, la medana e l terzo quartle della varable casuale. SVOLGIMENTO X = km percors per ltro X N 0 km,3 km 1) ( ) P( X < 0) = 0.5 Usando le tavole della normale s ha X µ 0 0 Z = = = 0 σ 3 8

9 Area tra la meda e l valore z Le tavole utlzzate danno l area dalla meda all ascssa cercata. In questo caso bsogna sommare l area a snstra della meda che è par a 0.5, da cu s ha: X µ P( X < 0) = P Z < = P( Z < 0) = 0.5 σ NOTA BENE: Alcune tavole rportano l area da - al valore z (s consgla d controllare con attenzone la relatva legenda) ) Dalle tavole ottenamo l area compresa tra la meda e l valore z, vale a dre: Area tra la meda e l valore z Da questo valore dobbamo sottrarre 0.5 per ottenere l ara a destra del valore z: X µ 30 0 P( X > 30) = P Z > = P Z > = P( Z > 3.33) = = σ 3 3) 9

10 X1 µ X µ P X P Z P Z P Z σ σ 3 3 P 0< Z < 1.33 : ( 4 < < 30) = < < = < < = ( 1.33 < < 3.33) Dalle tavole ottenamo la ( ) Dalle tavole ottenamo la P( 0 Z 3.33) < < : Area tra la meda e l valore z Sottraendo l prmo valore dal secondo s ottene la probabltà d nteresse: P( 4 < X < 30) = P( 0 < Z < 3.33) P( 0 < Z < 1.33) = = ) Area tra la meda e l valore z ( < 18 > 4) = ( < 18) + ( > 4) P X X P X P X Possamo rcavare due addend passando alla varable casuale standardzzata: 10

11 X µ 18 0 P( X < 18) = P Z < = P Z < = P( Z < 0.67) σ 3 Sfruttando la smmetra della dstrbuzone possamo cercare l valore 0.67 sulle tavole: Area tra la meda e l valore z L area tra la meda e l valore 0.67 è par a Per trovare l area d nteresse dobbamo sottrarre questo valore da 0.5: P Z < 0.67 = P Z > 0.67 = = ( ) ( ) Per l secondo addendo s ha: X µ 4 0 P( X > 4) = P Z > = P Z > = P( Z > 1.33) σ Area tra la meda e l valore z Il valore trovato sulle tavole corrsponde all area tra la meda e l ascssa 1.33; per ottenere la probabltà consderata dobbamo sottrarre tale valore da 0.5: P Z > 1.33 = = ( ) Sommando due valor s ottene la probabltà desderata: P X < 18 X > 4 = P X < 18 + P X > 4 = = ( ) ( ) ( ) 5) Per rspondere al questo bsogna cercare l valore dell ascssa che lasca a destra l 90% dell area. Le tavole utlzzate c danno l valore dell area tra la meda e l ascssa; nel nostro caso qund possamo scomporre l 90% n due zone: 50% (area a snstra della meda) e 40%; dobbamo qund cercare nella tabella un area vcna a 0.4: X µ P( Z < 1.8) = P < 1.8 = = σ Da questa possamo rcavare l valore corrspondente della X: X µ Z = X = µ + Zσ = = 3.84 σ 6) L area pù vcna a 0.4 corrsponde ad un ascssa d

12 In questo caso dobbamo cercare l valore dell ascssa che lasca a destra l 0% de cas, ovvero a snstra l 80% de cas. Per utlzzare le tavole bsogna scomporre quest area nel 50% (area a snstra della meda) a cu va aggunto l restante 30% (area a partre dalla meda). Bsogna qund cercare l valore dell ascssa corrspondente ad un area d 0.3: X µ P( Z < 0.84) = P < 0.84 = = σ Da questa possamo rcavare l valore corrspondente della X: X µ Z = X = µ + Zσ = =.5 σ 7) Data la smmetra della dstrbuzone normale la medana è par alla meda (e ad ogn altro ndce d tendenza centrale). Per l calcolo del prmo e terzo quartle s può cercare l valore dell ascssa corrspondente ad un area d 0.5: Z Q µ Q µ σ σ 3 1 = = Q1 = µ Zσ = = Q3 = µ + Zσ = =.01 L area pù vcna a 0.3 corrsponde ad un ascssa d 0.84 L area pù vcna a 0.5 corrsponde ad un ascssa d

13 ESERCIZIO 3.4 La statura delle reclute alla vsta d leva segue una dstrbuzone normale con meda 170 cm e scarto quadratco medo 10 cm. S consder una recluta scelta a caso; s è nteressat a calcolare: 1. la probabltà che sa alto pù d 190 cm. la probabltà che sa alto 190 cm o pù d 190 cm 3. la probabltà che sa alto meno d 150 cm 4. la probabltà che sa alto tra 160 e 180 cm 5. la probabltà che sa alto meno d 160 cm o pù d 180 cm S calcol noltre: 6. l altezza medana 7. l prmo quartle 8. l terzo quartle 9. l altezza n cm che è superata solo dal 10% delle reclute 10. l altezza n cm che è superata dal 90% delle reclute SVOLGIMENTO X = altezza n cm reclute alla vsta d leva X N 170 km,10 km ( ) ) P X X µ P Z P Z σ 10 P Z ( > 190) = > = > = ( > ) Per rcavare la probabltà d nteresse dobbamo sottrarre l valore trovato da 0.5: P X > 190 = P Z > = = 0.08 ( ) ( ) ) P X 190 = P X > P X = 190 = = 0.08 ( ) ( ) ( ) Area tra la meda e l valore z 13

14 3) X µ P( X < 150) = P Z < = P Z < = P( Z < ) σ 10 Anche n questo caso, sfruttando la smmetra della dstrbuzone, cerchamo sulla tabella l area corrspondente all ascssa : Dobbamo sottrarre da 0.5 l valore trovato per avere l area che c nteressa: P X < 150 = P Z < = P Z > = = 0.08 ( ) ( ) ( ) 4) P X X1 µ X µ P Z P Z σ σ P Z ( 160 < < 180) = < < = < < = ( 1 < <+ 1) ( ) ( ) ( ) P 160 < X < 180 = P 1< Z <+ 1 = P 0 < Z <+ 1 = = ) La probabltà d nteresse può essere calcolata sfruttando quanto calcolato al punto precedente: P ( X < 160) ( X > 180) = 1 P( 160 < X < 180) = 1 P( 1 < Z <+ 1) = = ) Data la smmestra della dstrbuzone normale la medana è par alla meda (e ad ogn altro ndce d tendenza centrale). Per l calcolo del prmo e terzo quartle s può cercare l valore dell ascssa corrspondente ad un area d 0.5: Z Q µ Q µ σ σ 3 1 = = Q1 = µ Zσ = = Q3 = µ + Zσ = = Area tra la meda e l valore z Area tra la meda e l valore z L area pù vcna a 0.5 corrsponde ad un ascssa d ) In questo caso dobbamo cercare l valore dell ascssa che lasca a destra l 10% de cas, ovvero a snstra l 90% de cas. Per utlzzare le tavole bsogna scomporre quest area nel 50% (area a snstra della meda) a cu va aggunto l 14

15 restante 40% (area a partre dalla meda). Bsogna qund cercare l valore dell ascssa corrspondente ad un area d 0.4: Da questa possamo rcavare l valore corrspondente della X: X µ P( Z < 1.8) = P < 1.8 = = σ Da questa possamo rcavare l valore corrspondente della X: X µ Z = X = µ + Zσ = = 18.8 σ 10) In questo caso dobbamo cercare l valore dell ascssa che lasca a snstra l 10% de cas, ovvero a destra l 90% de cas. Per utlzzare le tavole bsogna trovare l ascssa corrspondente ad un area d 0.4 a partre dalla meda, ovvero lo stesso valore che s è cercato per l punto precedente L area pù vcna a 0.4 corrsponde ad un ascssa d 1.8 L area pù vcna a 0.4 corrsponde ad un ascssa d 1.8 Da questa possamo rcavare l valore corrspondente della X, consderando questa volta l valore con l segno negatvo: X µ Z = X = µ Zσ = = 157. σ 15

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

LA VARIABILITA. IV lezione di Statistica Medica

LA VARIABILITA. IV lezione di Statistica Medica LA VARIABILITA IV lezone d Statstca Medca Sntes della lezone Il concetto d varabltà Campo d varazone Dfferenza nterquartle La varanza La devazone standard Scostament med Il concetto d varabltà S defnsce

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Lezione 2 le misure di sintesi: le medie

Lezione 2 le misure di sintesi: le medie Lezone le msure d sntes: le mede Cattedra d Bostatstca Dpartmento d Scenze spermental e clnche, Unverstà degl Stud G. d Annunzo d Chet-Pescara Prof. Enzo Ballone Lezone a- Statstca descrttva per varabl

Dettagli

C.I. di Metodologia clinica

C.I. di Metodologia clinica C.I. d Metodologa clnca I metod per la sntes e la comuncazone delle nformazon sulla salute Come possamo trarre concluson attendbl su parametr a partre dalle stme camponare? I metod per la produzone delle

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Esercizi di econometria: serie 1

Esercizi di econometria: serie 1 Esercz d econometra: sere Eserczo E data la popolazone dell Abruzzo classcata n se categore d reddto ed n tre class d età come segue: Reddto: () L... 4.. () L. 4.. 8.. () L. 8.... (4) L..... () L.....

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

ESERCIZI SULLE VARIABILI CASUALI DISCRETE

ESERCIZI SULLE VARIABILI CASUALI DISCRETE ESERCIZI SULLE VARIABILI CASUALI DISCRETE 1) S lanca un dado. Rappresentare la varable casuale: X = " facca mnore d tre ". 2) S lancano due dad. Rappresentare la varable casuale: X = "somma delle facce

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

Il diagramma cartesiano

Il diagramma cartesiano Il dagramma cartesano Il pano cartesano Il dagramma cartesano è costtuto da due ass: uno orzzontale, l asse delle ascsse o della varable X, e uno vertcale, l asse delle ordnate o della varable Y. I due

Dettagli

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100 Dstrbuzon d frequenza Varable x Frequenze Frequenze Frequenze Frequenze % cumulate relatve x 1 n 1 n 1 n 1 / n 1 /*100 x n n 1 +n n / n /*100 x k n k n 1 +.+n k = n k / n k /*100 totale 1 100 Indc sntetc

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

Capitolo 3. Cap. 3-1

Capitolo 3. Cap. 3-1 Statstca Captolo 3 Descrzone Numerca de Dat Cap. 3-1 Obettv del Captolo Dopo aver completato l captolo, sarete n grado d: Calcolare ed nterpretare la meda, la medana e la moda d un set tdd dat Trovare

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Statistica per le ricerche di mercato

Statistica per le ricerche di mercato Statstca per le rcerche d mercato a.a. 00/ Prof.ssa Tzana Lauret Prof. Luca Second Introduzone al concetto d probabltà nelle stratege azendal L azenda che vende artcol d abbglamento per govan può essere

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Analisi della Varianza

Analisi della Varianza Anals della Varanza Esempo: Una ndustra d carta usata per buste per salumere vuole mglorare la resstenza alla trazone del propro prodotto. S rtene che resstenza alla trazone = f(concentrazone d legno nella

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

Esercizio statistica applicata all ingegneria stradale pag. 1

Esercizio statistica applicata all ingegneria stradale pag. 1 ESERCIZIO STATISTICA APPLICATA ALLA PROGETTAZIONE STRADALE SINTESI S supponga d avere eseguto 70 sure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal sure

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Modello del Gruppo d Acquisto

Modello del Gruppo d Acquisto InVMall - Intellgent Vrtual Mall Modello del Gruppo d Acqusto Survey L attvtà svolta per la realzzazone dell attvtà B7 Defnzone del Gruppo d Acqusto e de Relatv Algortm d Inferenza, prevsta dal captolato

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA Notazone: x = -esma modaltà della varable X Nel caso d dstrbuzon n class: x = Lmte superore della classe -esma x -1 = Lmte nferore della classe

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema B Corso d Laurea n Economa Prof.ssa Gordano Appello del 15/07/011 Cognome Nome Matr. Teora Dmostrare la propretà assocatva della meda artmetca. Eserczo 1 L accesso al credto è sempre

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

I percentili e i quartili

I percentili e i quartili I percetl e quartl I percetl soo quelle modaltà che dvdoo la dstrbuzoe ceto part d uguale umerostà. I quartl soo quelle modaltà che dvdoo la dstrbuzoe quattro part d uguale umerostà. Il prmo quartle Q

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl Le Inferenze sul modello d regressone PREVEDONO: Assunzone d normaltà degl error e nferenza su parametr Anals della Varanza Inferenza per la rsposta meda e la prevsone Anals de resdu Valor anomal Captolo

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso d Economa Applcata a.a. 2007-08 II modulo 16 Lezone Programma 16 lezone Democraza rappresentatva e nformazone Rcaptolando L agenza e l mercato (Arrow, 1986) Lezone 16 2 Introduzone Governo e Parlamento

Dettagli

UNIVERSITA DEGLI STUDI DI CATANIA. Dipartimento di Scienze MM FF NN. Corso di Laurea di primo livello in Fisica QUINCONCE DI GALTON

UNIVERSITA DEGLI STUDI DI CATANIA. Dipartimento di Scienze MM FF NN. Corso di Laurea di primo livello in Fisica QUINCONCE DI GALTON UNIVERSITA DEGLI STUDI DI CATANIA Dpartmento d Scenze MM FF NN Corso d Laurea d prmo lvello n Fsca QUINCONCE DI GALTON Dstrbuzon spermental a confronto con dstrbuzon teorche Laboratoro d Fsca I Anno Accademco

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

Unità n La concentrazione

Unità n La concentrazione 01 La concentrazone Corso d Laurea: Economa Azendale Docente: M.Msuraca (aula1)/ D.Costanzo(aula2) Untà n 05 Nello studo de fenomen economc e socal descrtt attraverso caratter quanttatv d tpo trasferblepuò

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S Esercz del corso d Statstca A.A 00-0 a cura d : Gulana Satta Eserczo E stato estratto un campone d 5 student tra frequentant l secondo semestre e s sono osservate le seguent caratterstche: esam sostenut

Dettagli

CPM: Calcolo del Cammino Critico

CPM: Calcolo del Cammino Critico Supponamo d conoscere per ogn attvtà A = (,j) la sua durata t j t j j Calcolamo l tempo al pù presto n cu può nzare o fnre una attvtà. Supponamo d dover calcolare l tempo al pù presto n cu s possono nzare

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

Esercitazioni del corso di relazioni tra variabili

Esercitazioni del corso di relazioni tra variabili Eserctazon del corso d relazon tra varabl Gancarlo anz Facoltà d Socologa Unverstà degl Stud d lano Bcocca gancarlomanz@statstcaunmbt Eserctazone n lano, ebbrao 7 Sommaro seconda eserctazone sure dell

Dettagli

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000 Gennao 006 classe A VERIFICA DI STATISTICA fla A )Nel Lceo scentfco G.Bruno c sono 5 class seconde, cu alunn sono dstrbut per sezone e per sesso n base alla seconda tabella: Sesso\ A B D E F sezone Calcola

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Anals de dat 6 Y Rcaptolo generale Dato un nsee d sure sperental d una varable dpendente al varare d una varable ndpendente è possble edante l crtero de

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Gli errori nelle misure

Gli errori nelle misure Appunt d Msure Elettrche Gl error nelle msure Classfcazone degl error... Error sstematc...4 Accuratezza e precsone...5 Errore stmato...7 Meda, devazone meda, devazone standard e varanza d un campone d

Dettagli