SISTEMI ALGEBRICI DI SECONDO GRADO 1 PROPRIETA' DELLE SOLUZIONI ED EQUAZIONE IN FORMA DI PRODOTTO., x 2. = b+ Δ 2 a

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SISTEMI ALGEBRICI DI SECONDO GRADO 1 PROPRIETA' DELLE SOLUZIONI ED EQUAZIONE IN FORMA DI PRODOTTO., x 2. = b+ Δ 2 a"

Transcript

1 SISTEMI ALGEBRICI DI SECONDO GRADO 1 PROPRIETA' DELLE SOLUZIONI ED EQUAZIONE IN FORMA DI PRODOTTO Data una generica equazione di secondo grado a x +b x+c=0 con discriminante non negativo ( Δ=b 4 a c 0 ) esistono sempre soluzioni date dalle equazioni: = b Δ a, x = b+ Δ a La somma ed il prodotto tra le due soluzioni danno, come risultato, i rapporti tra i coefficienti dell'equazione di secondo grado, come sotto riportato: x = b Δ a + x = b Δ a + b+ Δ a = b Δ b+ Δ = b a a = b a b+ Δ = ( b Δ) ( b+ Δ) = b Δ b +4 a c a 4 a 4 a =b = 4 a c 4 a 4 a = c a Nel secondo passaggio della proprietà del prodotto si è usato il prodotto notevole differenza tra due quadrati: (A B)(A+B)=A B. Inoltre l'equazione di secondo grado a x +b x+c=0 si può anche scrivere, al primo membro, con il trinomio scomposto nel prodotto di due binomi: a x +b x+c=0 a (x )(x x )=0 a 0 (x )(x x )=0 Infatti mostriamo ora, basandoci sulle due proprietà delle soluzioni dimostate sopra, che l'equazione in forma di prodotto equivale alla forma normale a x +b x+c=0 : a (x )(x x )=0 a [ x ( +x ) x+ x ] =0 a [x ( b a ) x+ c a ]=0 a x +a b a x+a c a =0 a x +b x+c=0. Esempio. 3 x 10 x+3=0 L'equazione ammette le due soluzioni: = = 1 3, x = =3. 6 Di conseguenza possiamo equivalentemente scrivere: 3 (x 1 3 )(x 3)=0. Prof. I. Savoia Sistemi algebrici di secondo grado P. 1

2 SISTEMI SOMMA-PRODOTTO I passaggi algebrici mostrano che, ad ogni equazione di secondo grado, scritta in forma normale come a x +b x+c=0, resta associato un unico sistema di due equazioni : a x +b x+c =0 +x = b a x = c a } Viceversa, ad ogni sistema in due incognite (x, y) tali che la loro somma (s) e il loro prodotto (p) siano due numeri conosciuti, resta associata una unica equazione di secondo grado tale le sue soluzioni corrispondano all'insieme delle soluzioni del sistema S=( x=, y= x ), (x=x, y = )}. Cambiano la lettera all'incognita dell'equazione associata (per evitare confusione con le altre due lettere la possiamo chiamare z) possiamo dunque scrivere: x+ y =s x y=p } z s z+p=0 equazione associata Il tipo di sistema somma-prodotto prende il nome di simmetrico in quanto le coppie di valori che costituiscono il suo insieme soluzione hanno i valori scambiati di posto poichè, per la proprietà commutativa, scambiando l'ordine degli addendi o dei fattori la somma ed il prodotto non cambiano: z 1 + z =z +z 1 =s, z 1 z 1 =z z 1 =p. Il discriminante dell'equazione associata al sistema simmetrico vale Δ=s 4p e, nel solo caso che esso non sia negativo, vi sono delle soluzioni: z 1 = s Δ, z = s+ Δ S =(x=z 1, y =z ), (x=z, y=z 1 )} Esempio. Risolvere il sistema simmetrico x+ y =11 x y=7 }. Scriviamo e poi risolviamo l'equazione di secondo grado associata al sistema: z 11 z+7=0 Δ=( 11 ) 4 7= = 9 4 >0 z= 11 ± 9 4 = 11±3 4 = z 1= z =7/ : S=(, 7 ); (7, )} Prof. I. Savoia Sistemi algebrici di secondo grado P.

3 SISTEMI SIMMETRICI I sistemi di secondo grado che equivalgono a due equazioni delle quali una riguarda la somma delle loro potenze ad esponenti interi, si possono ricondurre, mediante opportuni passaggi algebrici, a sistemi somma-prodotto, sono detti simmetrici. Per risolvere questi tipi di sistemi occorre considerare le formule dei prodotti notevoli delle somme di potenze (formule di Waring ): (x+ y ) =x + y + x y x + y =(x+ y) x y (x y ) =x + y x y x + y =(x y) + x y (x+ y ) 3 = x 3 + y 3 +3 x y+3 x y x 3 + y 3 =(x+ y) 3 3 x y (x+ y) (x y ) 3 = x 3 y 3 3 x y+3 x y x 3 + y 3 =(x y) 3 +3 x y (x y ) Esempi. x+ y=5 1] x + y =13} x+ y=5 (x+ y ) x y=13} x+ y=5 5 x y=13} x+ y=5 x y =6 } Soluzione del sistema: S=(,3) ; (3,)}. } x y=8 (x+ y) x y=65} x y=8 (x+ y ) =65+ 8=11 ] x + y =65 x y=8 } Il primo membro della prima equazione è dato dal quadrato di due numeri di segno opposto, (±11) =11, per cui il sistema equivale all'unione di due sistemi separati: x+ y =11 S1: x y=8 } S 1 (3, 4); (4,3)} x+ y= 11 S: x y=8 } S ( 3, 4) ; ( 4, 3)} Di conseguenza la soluzione del sistema è data dall'unione delle due soluzioni, ovvero è l'insieme di tutte le coppie di valori: S=(3, 4) ; (4, 3); ( 3, 4) ; ( 4, 3)}. x+ y=7 3] x 3 + y =91} x+ y=7 3 (x+ y ) 3 3 x y (x+ y )=91} x+ y = x y=91} x+ y=7 x y=1} La soluzione è pertanto : S=(3, 4) ; (4, 3)} Prof. I. Savoia Sistemi algebrici di secondo grado P. 3

4 4] x3 + y 3 =9 x y= } Per risolvere questo sistema possiamo, invece di usare la formula di Waring che imporrebbe passaggi più lunghi, semplicemente eleviamo al cubo la seconda delle due equazioni e, dopo avere rinominato le due incognite, risolviamo: x3 + y 3 =9} x 3 =u, y 3 =v x 3 y 3 =8 u+v=9 u v=8 } u=1, v=8 x=3 1=1, y= 3 8= Di conseguenza l'insieme soluzione è S=(1, ) ; (, 1)}. 4 SISTEMI RICONDUCIBILI A SISTEMI SIMMETRICI Sono sistemi che possono essere trasformati in sistemi simmetrici mediante delle opportune sostituzioni. Esempi. x y =3 1] x y=4 } x+( y)=3 x ( y )= 4}. Scriviamo l'equazione associata nella incogniota intermedia (z) da cui troviamo i valori delle due incognite (x) e (-y) con la formula risolutiva: z 3 z 4=0 z= 3± 5 = z = 1 1 z =4 Pertanto l'insieme delle soluzioni è S[(x=-1, (-y)=4) ; (x=4, (-y)=-1], ovvero l'insieme delle coppie di valori S[(-1,-4); (4,1)]. 3 x+ y =4 ] x y =18 } (3 x)+( y)=4 (3 x) ( y )=6 18=108} avendo moltiplicato per il fattore 6 la seconda equazione. Considerando ora i termini (3x) e (y) come due nuove incognite di un sistema sommprodotto possiamo scriverne e risolvere la sua equazione associata: z 4 z+108=0 z= 4± = 4±1 = z 1=6 z =18 Da cui la soluzione: S[(3x=6, y=18); (3x=18, y=6)] ovvero: S[(, 9); (6, 3)] Prof. I. Savoia Sistemi algebrici di secondo grado P. 4

5 5 SISTEMI RISOLUBILI PER SOSTITUZIONE In generale, quando i sistemi sono formati da due equazioni delle quali una di esse è di primo grado e l'altra è di secondo grado, il grado del sistema vale due poichè esso è dato dal prodotto dei due gradi. Quando il sistema non è simmetrico e non si può ricondurre ad un sistema simmetrico si può ricorrere alla tecnica della sostituzione di una delle due lettere di una delle due equazioni nell'altra equazione: la scelta di quale delle due incognite sia da sostituire dipende, caso per caso, da criteri di convenienza nei calcoli: in genere si considera una delle incognite dell'equazione di primo grado, ad esempio l'espressione della y in funzione della x. L'equazione risolvente di secondo grado che così si ottiene contiene solo una delle due incognite, ad esempio la x, i cui valori (ammesso che ve ne siano nei casi in cui è Δ 0) i cui valori vanno sostituiti nell'altra equazione in modo da ottenere anche i valori dell'altra incognita. Esempi. 1] Risolvere passo a passo il sistema di secondo grado x x y= 1 x+ y=3 }. Passo 1. Risolviamo l'incognita y nell'equazione di primo grado: x x y= 1 y=3 x }. Passo. Sostituiamo l'espressione isolata della x al posto dell'incognita y nella prima equazione ed otteniamo l'equazione risolvente di secondo grado al suo posto: x x (3 x)= 1 } y=3 x x 6 x+4 x = 1 y=3 x } 5x 6 x+1=0 y =3 x }. Δ=16>0 6± 16 = Passo 3. Risoluzione dell'equazione: 0 ==1/5 } x =1 y=3 x Passo 4. Sostituiamo i valori ottenuti nella seconda equazione ottenendo le soluzioni: =1/5, x =1 y 1 = (1/5) 3= 13/5, y = 1 3= 1} L'insieme soluzione del sistema è quindi: S=( 1 5, 13 5 ) ; (1, 1)}. Prof. I. Savoia Sistemi algebrici di secondo grado P. 5

6 ] y= x +4 x+1 x y+1=0 } y= x +4 x+1 y= x+1 } x+1= x +4 x+1 x x=0 y= x+1} x (x )=0 y= x+1 } =0, x = y= x+1 } y 1 = 0+1=1, y = +1=5} S[(0, 1); (, 5)] 3] (x+) =1+ y } y =x+1 x +4 x+4=1+ y y= x+ } x +4 x+4=1+ x+ x + x+1=0 y= x+ } ( x+1) =0 y= x+ } y= x+} x= 1 y= ( 1)+=0} S(-1;0) soluzione doppia. x y = 4 4] y=x 4} x (x 4)= 4 y=x 4 S(, -) soluzione doppia. } x 4 x+4=0 y=x 4 } (x ) =0 y= x 4 } x= y = } x x y 9=0 5] y=3 x 4 } x x (3 x 4) 9=0 y =3 x 4 } x 3 x +4 x 9=0 y =3 x 4 } x +4 x 9 y=3 x 4 } Δ=4 4( )( 9)=16 7= 56<0 S= } Sistema impossibile. 6] x x y y =0 x+ y=0 } x x y y =0 y= x } x x ( x) ( x) =0} y= x y= x} 0=0 Sistema indeterminato con infinite soluzioni tutte le coppie di numeri opposti: S(x, -x) Prof. I. Savoia Sistemi algebrici di secondo grado P. 6

PROBLEMI DI SECONDO GRADO: ESEMPI

PROBLEMI DI SECONDO GRADO: ESEMPI PROBLEMI DI SECONDO GRADO: ESEMPI Problema 1 Sommando al triplo di un numero intero il quadrato del suo consecutivo si ottiene il numero 9. Qual è il numero? Il campo di accettabilità delle soluzioni è,

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

Prof. I. Savoia. SISTEMI LINEARI E RETTA (VERSIONE PROVVISORIA NON ULTIMATA)

Prof. I. Savoia. SISTEMI LINEARI E RETTA (VERSIONE PROVVISORIA NON ULTIMATA) SISTEMI LINEARI E RETTA 1 Proprietà e rappresentazione grafica dei sistemi lineari. I sistemi lineari in due incognite sono insiemi di due equazioni di primo grado, nei qualiciascuna di esse rappresenta

Dettagli

EQUAZIONI ESPONENZIALI

EQUAZIONI ESPONENZIALI Equazioni esponenziali elementari EQUAZIONI ESPONENZIALI Le equazioni esponenziali del tipo (o riconducibili ad esso) a =b, dove a>0 è la base e b>0 un qualunque numero positivo, sono dette elementari.

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli

Equazioni di Primo grado

Equazioni di Primo grado Equazioni di Primo grado Definizioni Si dice equazione di primo grado un uguaglianza tra due espressioni algebriche verificata solo per un determinato valore della variabile x, detta incognita. Si chiama

Dettagli

EQUAZIONI E SISTEMI DI 2 GRADO

EQUAZIONI E SISTEMI DI 2 GRADO EQUAZIONI E SISTEMI DI GRADO Prof. Domenico RUGGIERO In questa breve trattazione vengono esposti la formula risolutiva di equazioni di secondo grado ed il procedimento risolutivo, per sotituzione, di sistemi

Dettagli

+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato

+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato Sistemi di equazioni SISTEMI LINEARI Un sistema di equazioni è un insieme di equazioni per le quali si cercano eventuali soluzioni comuni. +=7 =1 Ognuna delle due equazioni ha infinite soluzioni. La coppia

Dettagli

Equazione irrazionale

Equazione irrazionale Equazione irrazionale In matematica, un'equazione irrazionale in una incognita è un'equazione algebrica in cui l'incognita compare all'interno del radicando di uno o più radicali. Ad esempio: Non sono

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

Equazioni di secondo grado.

Equazioni di secondo grado. Equazioni di secondo grado. Definizioni Ricordiamo che un'equazione è una uguaglianza tra due espressioni algebriche che risulta vera solo per alcuni particolari valori delle variabili (in questo caso

Dettagli

Anno 2. Sistemi di grado superiore al primo in tre incognite

Anno 2. Sistemi di grado superiore al primo in tre incognite Anno 2 Sistemi di grado superiore al primo in tre incognite 1 Introduzione In questa lezione verranno illustrati i metodi principali per la risoluzione di sistemi di grado superiore al primo in tre incognite.

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono

Dettagli

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni:

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: LS Fila A Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: NB Ciascun procedimento risolutivo si deve concludere con la frase L'insieme delle soluzioni è a) Trasformando

Dettagli

Anno 2. Risoluzione di sistemi di primo grado in due incognite

Anno 2. Risoluzione di sistemi di primo grado in due incognite Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

Anno 3. Equazioni esponenziali e logaritmiche

Anno 3. Equazioni esponenziali e logaritmiche Anno 3 Equazioni esponenziali e logaritmiche 1 Introduzione Lo scopo delle pagine che seguono è quello di passare in rassegna le strategie risolutive per le equazioni esponenziali e logaritmiche. Al termine

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però

Dettagli

Dicesi equazione irrazionale un equazione nella quale l incognita compare sotto il segno di radice

Dicesi equazione irrazionale un equazione nella quale l incognita compare sotto il segno di radice Equazioni Irrazionali pag Easy matematica Equazioni irrazionali Dicesi equazione irrazionale un equazione nella quale l incognita compare sotto il segno di radice Per risolvere un equazione irrazionale

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado

Dettagli

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Disequazioni 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Date due espressioni algebriche A e B contenenti numeri e lettere

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

Sistemi di equazioni di secondo grado

Sistemi di equazioni di secondo grado 1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI

Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI Affrontare un problema richiede spesso l'uso di alcuni strumenti algebrici: fra essi vi sono i sistemi di equazioni. Infatti,

Dettagli

EQUAZIONI E PROBLEMI: GUIDA D'USO

EQUAZIONI E PROBLEMI: GUIDA D'USO P.1\5- EQUAZIONI E PROBLEMI: GUIDA D'USO - Prof. I.Savoia, Maggio 2011 EQUAZIONI E PROBLEMI: GUIDA D'USO EQUAZIONI LINEARI INTERE: PROCEDURA RISOLUTIVA Per risolvere le equazioni numeriche intere, si può

Dettagli

Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco Classe 1G Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. Bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978-88-08-53467-5 Capitolo 1 Insiemi

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

CONTENUTI. Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti. I grado II grado

CONTENUTI. Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti. I grado II grado CONTENUTI Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti EQUAZIONI I grado II grado intere fratte intere fratte EQUAZIONI ALGEBRICHE generalità Dicesi

Dettagli

Anno 2. Equazioni di secondo grado

Anno 2. Equazioni di secondo grado Anno Equazioni di secondo grado 1 Introduzione In questa lezione impareremo a utilizzare le equazioni di secondo grado. Al termine di questa lezione sarai in grado di: descrivere le equazioni di secondo

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

Identità ed equazioni

Identità ed equazioni Identità ed equazioni Un'identità è un'uguaglianza tra due espressioni letterali che è vera per qualsiasi valore numerico che si può attribuire alle lettere. (x + 2x = 3x è un'identità, perché sempre vera)

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli

Equazioni di secondo grado parametriche

Equazioni di secondo grado parametriche Equazioni di secondo grado parametriche Data un equazione parametrica di secondo grado, determinare per quali valori di k:. l equazione ha due soluzioni reali; Porre 0. da ora in poi, nei punti seguenti,

Dettagli

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio: Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico

Dettagli

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa):

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa): P. \ Disequazioni di secondo grado Maggio 0 Copyright-I.S. DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI INTERE DI SECONDO GRADO Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono

Dettagli

Risolvere le seguenti disequazioni

Risolvere le seguenti disequazioni Risolvere le seguenti disequazioni 1. x 4x x 4 > 0 Innanzi tutto il denominatore deve essere non nullo, quindi l insieme di definizione (o campo d esistenza) è x ±. Se decomponiamo sia numeratore che denominatore,

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili.

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili. I POLINOMI Un polinomio è una somma algebrica tra monomi Sono polinomi le seguenti espressioni 2ab + 4bc -5a 2 b + 2ab - 5c 5x + 2y + 8x in esse infatti troviamo somme o differenze tra monomi La forma

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Y = ax 2 + bx + c LA PARABOLA

Y = ax 2 + bx + c LA PARABOLA LA PARABOLA La parabola è una figura curva che, come la retta, è associata ad un polinomio che ne definisce l'equazione. A differenza della retta, però, il polinomio non è di primo grado, ma è di secondo

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Antonino Leonardis Introduzione Solitamente per trovare la formula risolutiva delle equazioni di secondo grado si utilizza il completamento del quadrato Adesso vedremo un modo leggermente

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

Anno 2. Sistemi di equazioni di secondo grado

Anno 2. Sistemi di equazioni di secondo grado Anno 2 Sistemi di equazioni di secondo grado 1 Introduzione In questa lezione verrà data una definizione di sistema di equazioni di secondo grado, verrà illustrata la loro risoluzione e le applicazioni.

Dettagli

Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente:

Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente: Definizione di potenza Si definisce potenza ennesima di A, con n intero maggiore di 1, il prodotto di A per se stesso eseguito n volte A n =(AxAxAx A) n volte 2 5 = 2 2 2 2 2=32 Se la base è 10, il risultato

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 60 equazioni di secondo grado Esercizio 7. Scomponi + +. Soluzione. Poiché = = = < 0, l equazione associata è impossibile e il trinomio è irriducibile (tabella )..5 esercizi hi non risolve esercizi non

Dettagli

Le eguaglianze algebriche: Identità ed Equazioni

Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche possono essere di due tipi 1 - Identità - Equazioni L eguaglianza è verificata da qualsiasi valore attribuito alle lettere L eguaglianza

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b,

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b, Matematica II 161110 1 Equazioni lineari in una incognita Per equazione lineare nell incognita x intendo un equazione del tipo ax = b dove a b sono due costanti reali a e il coefficiente e b e il termine

Dettagli

Prodotti notevoli Quadrato di un binomio

Prodotti notevoli Quadrato di un binomio Prodotti notevoli Con l espressione prodotti notevoli si indicano alcune identità che si ottengono in seguito alla moltiplicazione di polinomi aventi caratteristiche particolari facili da ricordare.. Quadrato

Dettagli

Le disequazioni di primo grado. Prof. Walter Pugliese

Le disequazioni di primo grado. Prof. Walter Pugliese Le disequazioni di primo grado Prof. Walter Pugliese Concetto di disequazione Consideriamo la seguente disuguaglianza: 2x 3 < 5 + x Procedendo per tentativi, attribuiamo alla lettera x alcuni valori e

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

Le equazioni e i sistemi di primo grado

Le equazioni e i sistemi di primo grado Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle

Dettagli

EQUAZIONI MATRICIALI

EQUAZIONI MATRICIALI EQUAZIONI MATRICIALI a cura di Gioella Lorenzon, Edoardo Sech, Lorenzo Spina, Jing Jing Xu Realizzato nell'ambito del progetto Archimede con la supervisione del Prof. Fabio Breda I.S.I.S.S. M.Casagrande,

Dettagli

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3.

UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3. UNITÀ. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI. Generalità e definizioni sulle diquazioni.. I principi di equivalenza delle diquazioni.. Diquazioni di primo grado.. Diquazioni con più fattori di primo grado..

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Sistema di due equazioni di primo grado in due incognite

Sistema di due equazioni di primo grado in due incognite Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore

Dettagli

Equazioni di grado superiore al secondo

Equazioni di grado superiore al secondo Equazioni di grado superiore al secondo 5 51 L equazione di terzo grado, un po di storia Trovare un numero il cui cubo, insieme con due suoi quadrati e dieci volte il numero stesso, dia come somma 0 Il

Dettagli

La moltiplicazione di numeri naturali: esercizi svolti

La moltiplicazione di numeri naturali: esercizi svolti La moltiplicazione di numeri naturali: esercizi svolti La moltiplicazione è una delle quattro operazioni fondamentali dell'aritmetica. È un modo sintetico per rappresentare la somma di numeri uguali. Il

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

B8. Equazioni di secondo grado - Esercizi

B8. Equazioni di secondo grado - Esercizi B8. Equazioni di secondo grado - Esercizi Risolvere le seguenti equazioni di secondo grado utilizzando la legge di annullamento del prodotto o la formula risolvente (solo se necessario): 1) -8=0 [ 1= ;

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo Algebra Lineare (Matematica C.I.), 12.11.13 Sistemi di equazioni lineari 1. Un equazione lineare in una incognita reale x e un equazione del tipo ax = b, dove a e b sono numeri reali dati; a e il coefficiente

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

1.3.POLINOMI ED OPERAZIONI CON ESSI

1.3.POLINOMI ED OPERAZIONI CON ESSI 1POLINOMI ED OPERAZIONI CON ESSI 11 Definizioni fondamentali Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi Sono polinomi: 6a+ b; 5ab+ b ; 6x 5yx 1 ; 7ab

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

1.4 PRODOTTI NOTEVOLI

1.4 PRODOTTI NOTEVOLI Matematica C Algebra. Le basi del calcolo letterale.4 Prodotti notevoli.4 PRODOTTI NOTEVOLI Il prodotto fra due polinomi si calcola moltiplicando ciascun termine del primo polinomio per ciascun termine

Dettagli

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica? Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza

Dettagli

I sistemi di equazioni di primo grado

I sistemi di equazioni di primo grado I sistemi di equazioni di primo grado RIPASSIAMO INSIEME SISTEMI DI EQUAZIONI DI PRIMO GRADO Un sistema di equazioni di primo grado in due (o più) incognite è l insieme di due (o più) equazioni di primo

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria.

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. 1 Disequazioni fratte Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. Prima di affrontare le disequazioni fratte, ricordiamo il procedimento che utilizziamo per

Dettagli

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene:

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene: 1 EQUAZIONI 1. (Da Veterinaria 2006) L equazione di secondo grado che ammette per soluzioni x1 = 3 e x2 = -1/ 2 è: a) 2x 2 + (2 3-2)x - 6 = 0 b) 2x 2 - (2 3-2)x - 6 = 0 c) 2x 2 - (2 3-2)x + 6 = 0 d) 2x

Dettagli

Equazioni di primo grado

Equazioni di primo grado Capitolo 2 Equazioni di primo grado Adesso possiamo applicare quanto imparato nel capitolo precedente, con lo scopo di risolvere semplici problemi di natura pratica per cui le equazioni di primo grado

Dettagli

Sistemi di equazioni di primo grado (sistemi lineari)

Sistemi di equazioni di primo grado (sistemi lineari) Sistemi di equazioni di primo grado (sistemi lineari) DEFINIZIONE Un sistema di equazioni è un insieme di due o più equazioni, tutte nelle stesse incognite, di cui cerchiamo soluzioni comuni. Esempi 1.

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2.

270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2. 70 Capitolo 10. Monomi 10.9 Esercizi 10.9.1 Esercizi dei singoli paragrafi 10.1 - L insieme dei monomi 10.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

I coefficienti delle incognite sono proporzionali fra loro ma NON coi termini noti, e il sistema è dunque IMPOSSIBILE (si dice anche: INCOMPATIBILE).

I coefficienti delle incognite sono proporzionali fra loro ma NON coi termini noti, e il sistema è dunque IMPOSSIBILE (si dice anche: INCOMPATIBILE). RISOLUZIONI DEGLI ESERCIZI SUI SISTEMI DI 1 GRADO IMPOSSIBILI E INDETERMINATI Per ciascuno dei seguenti sistemi, stabilisci se è determinato, impossibile, o indeterminato. In caso di indeterminazione,

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

B3. Scomposizione di polinomi

B3. Scomposizione di polinomi B3. Scomposizione di polinomi Quando si calcola una espressione contenente solo prodotti di polinomi si ottiene un polinomio, che è il risultato dell espressione. La scomposizione in fattori di polinomi

Dettagli

Sezione 9.9. Esercizi 189

Sezione 9.9. Esercizi 189 Sezione 9.9. Esercizi 189 9.9 Esercizi 9.9.1 Esercizi dei singoli paragrafi 9.1 - L insieme dei monomi 9.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli