Elementi di calcolo combinatorio

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi di calcolo combinatorio"

Transcript

1 Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare degli oggetti dati. Suppoiamo dati oggetti distiti di atura qualsiasi, che idicheremo semplicemete co i umeri 1, 2,...,. Fissiamo poi uumero positivo, o superiore a, e ci propoiamo di formare co gli oggetti dati tutti i possibili gruppi di oggetti. Nella formazioe di tali gruppi si possoo seguire due diversi criteri e cioè si può pesare a gruppi ordiati oppure a gruppi o ordiati. Cosiderare gruppi ordiati sigifica che i ogi gruppo si tiee coto dell ordie co cui compaioo gli oggetti che lo compogoo, vale a dire che due gruppi si cosiderao diversi, o solo se c è almeo u oggetto che compare i uo e oell altro, ma ache se, essedo i due gruppi costituiti dai medesimi oggetti, è però diverso l ordie secodo cui questi si susseguoo ei due gruppi. Quado co gli oggetti dati iteressa formare tutti i possibili gruppi ordiati di oggetti, si dice che si cosiderao le disposizioi degli oggetti dati di classe. Cosiderare ivece gruppi o ordiati vuol dire che i ogi gruppo o si tiee alcu coto dell ordie secodo il quale si susseguoo gli oggetti el gruppo stesso, cioè due gruppi si cosiderao diversi soltato se differiscoo i almeo u oggetto. Quado i gruppi di oggetti che si possoo formare co gli oggetti dati si cosiderao o ordiati, si dice che essi formao le combiazioi degli oggetti di classe. Ci chiediamo ora quate siao le disposizioi di classe di oggetti. Per formare ua di tali disposizioi occorre scegliere l oggetto che si vuole porre al primo posto (questa scelta si può fare i modi diversi), poi l oggetto che deve occupare il secodo posto (scelta che può ora farsi i 1 modi diversi), quidi l oggetto relativo al terzo posto (per il quale sussistoo 2 possibilità di scelta), e così via fio alla scelta dell oggetto da porre al -esimo posto (per il quale ci soo acora ( 1) possibilità). E poiché ogi scelta del primo oggetto può associarsi co ua qualuque del secodo, del terzo,..., del -esimo oggetto, si coclude che visoo ( 1)( 2)... ( +1) modi diversi di formare ua delle disposizioi cercate e pertato: Il umero delle disposizioi di classe di oggetti è espresso da ( 1)( 2)... ( + 1) (A.1) ossia dal prodotto di umeri cosecutivi, decresceti a partire da. 173

2 Appedice A. Elemeti di calcolo combiatorio Come caso particolare si può predere ; ogi gruppo cotiee allora tutti gli oggetti cosiderati ed u gruppo differisce da u altro soltato per l ordie co cui si susseguoo gli oggetti. I tal caso, ivece di usare il termie disposizioe di classe degli oggetti, si parla di permutazioe di essi. Come caso particolare della (A.1) si ha che il umero delle permutazioi di oggetti è dato da ( 1)( 2)... 1, cioè dal prodotto dei primi umeri iteri. Si ha spesso occasioe di cosiderare tale prodotto, che viee chiamato il fattoriale di e si idica co il simbolo!. Si può duque dire che: Il umero delle permutazioi di oggetti è espresso da ossia dal fattoriale di. Osserviamo che risulta evidete la relazioe! ( 1) (A.2)! ( 1)! che vale per 2; coviee rederla covezioalmete valida ache per 1, poedo per defiizioe 0! 1. (A.3) Passiamo ora a valutare il umero delle combiazioi di classe di oggetti. Suppoiamo formate tutte queste combiazioi e, fissatae ua qualsiasi, pesiamo di permutare i oggetti che la costituiscoo. Da tale fissata combiazioe sorgoo allora! gruppi ordiati, ciascuo di oggetti scelti tra gli dati. Immagiado di ripetere questa operazioe per tutte le combiazioi, otteiamo evidetemete le disposizioi di classe degli stessi oggetti. Teito coto della (A.1), risulta quidi che il umero delle combiazioi è dato dall epressioe ( 1)( 2)... ( + 1)! che si suole idicare brevemete col simbolo e prede il ome di coefficiete biomiale (per il motivo che vedremo el seguito). Si può quidi sitetizzare che: Il umero delle combiazioi di classe di oggetti è espresso da ( 1)( 2)... ( + 1)! (A.4) ossia dal coefficiete biomiale. (A.5) 174

3 A.2. Proprietà dei coefficieti biomiali A.2 Proprietà dei coefficieti biomiali Esamiiamo alcue semplici proprietà dei coefficieti biomiali (A.5) i quali hao seso se. Se ella frazioe (A.4) moltiplichiamo umeratore e deomiatore per ( )!, otteiamo la formula!!( )! (A.6) la quale vale per 1, 2,...,. Il primo membro della (A.6) o ha seso per 0; tuttavia viee dato covezioalmete u sigificato ache al coefficiete che si ottiee per 0, visto che, teedo coto della (A.3), si può scrivere! 0 0!!!! 1. Duque, fissato il umero itero 0, restao defiiti gli + 1 coefficieti biomiali ( ) 1,,,...,, 1 (A.7) dati dalla formula (A.6). Si oti che da questa segue la relazioe (A.8) che esprime ua proprietà di simmetria dei umeri della successioe (A.7) (il primo è uguale all ultimo, il secodo al peultimo, ecc.). Dado a i successivi valori 0, 1, 2, 3,... e scrivedo su righe successive i corrispodeti umeri (A.7) si ottiee il cosiddetto triagolo aritmetico di Tartaglia ( ) 0 0 ( ) 1 ( )

4 Appedice A. Elemeti di calcolo combiatorio vale a dire (A.9) Per 1 1 sussiste la relazioe (A.10) la quale si dimostra osservado che per la (A.6) si ha 1 1 ( 1)! + 1 ( 1)! ( )! + ( 1)!! ( 1)! ( 1)! + ( 1)! ( )! ( )! ( 1)! ( + )! ( )!!! ( )!. La (A.10) esprime ua proprietà del triagolo aritmetico di Tartaglia i base alla quale i ogi riga u qualsiasi umero (esclusi il primo e l ultimo) si ottiee sommadoe due della riga precedete, come si vede dalla (A.9). A.3 Disposizioi e combiazioi co ripetizioe Parlado di disposizioi e di combiazioi di classe di oggetti si è tacitamete supposto che, i ogi gruppo (ordiato o o) di oggetti, u determiato oggetto o potesse comparire più di ua volta. Rimuovedo questa restrizioe, cioè ammettedo che, i ogi gruppo di oggetti, u medesimo oggetto possa comparire ache più volte, si parlerà di disposizioi o combiazioi co ripetizioe. Naturalmete o sarà più ecessario supporre ; può essere beissimo >. Per cotare quate soo le disposizioi co ripetizioe di classe di oggetti basta osservare che quado si vuole formare ua tale disposizioe, ciascuo dei oggetti che la 176

5 A.4. Poteza di u biomio compogoo si può scegliere i modi diversi e perciò si hao i tutto... possibilità di scelta. Duque: Il umero delle disposizioi co ripetizioe di classe di oggetti è dato. Meo semplice è il computo delle combiazioi co ripetizioe; si ha al riguardo il seguete risultato: Il umero delle combiazioi co ripetizioe di classe di oggetti è dato dal coefficiete biomiale: + 1. A.4 Poteza di u biomio Dato u biomio a+b ci propoiamo di calcolare la poteza (a+b) (co itero positivo). Sviluppado, co le ote regole dell algebra, il prodotto (a + b)(a + b)... (a + b), (A.11) ove il umero dei fattori è, si ottiee ua somma di tati termii oguo dei quali è il prodotto di fattori, alcui uguali ad a ed i rimaeti a b. Se, i uo qualuque di tali termii, diciamo il umero dei fattori b (può essere 0, 1,..., ), sarà il umero dei fattori a e quidi il termie cosiderato avrà il valore a b. Va teuto coto però che, fissato il valore di, di termii uguali a a b oe esiste i geerale uo solo, ma e esistoo tati quati soo i modi di scegliere fra gli fattori a + b del prodotto (A.11) quei dai quali si voglioo prelevare i fattori b che compaioo i a b ; tali modi soo evidetemete tati quate soo le combiazioi di classe di oggetti. Duque, fissato, i termii uguali a a b dao, ello sviluppo del prodotto (A.11), u cotributo uguale a ( ) a b. Dado successivamete a i valori 0, 1, 2..., e sommado i predetti cotributi, deduciamo che lo sviluppo cercato è ( ) ( ) (a + b) a + a 1 b + a 2 b b, o brevemete (a + b) 0 a b. (A.12) Nella (A.12), detta formula del biomio, i coefficieti dei prodotti a b soo umri che si trovao su ua stessa riga del triagolo di Tartaglia, dode il ome di coefficieti biomiali dato ai umeri di tale triagolo. 177

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Elementi di Calcolo Combinatorio

Elementi di Calcolo Combinatorio Elemeti di Calcolo Combiatorio Alessadro De Gregorio Sapieza Uiversità di Roma alessadro.degregorio@uiroma1.it Idice 1 Premessa 1 2 Permutazioi 2 3 Disposizioi 3 4 Combiazioi 4 5 Il coefficiete multiomiale

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1 Paolo Siviglia Calcolo combiatorio Itroduzioe I questa parte della matematica vegoo affrotati i problemi riguardati lo studio dei raggruppameti che si possoo realizzare co gli elemeti di u isieme. Problemi

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Teoria degli insiemi : alcuni problemi combinatorici.

Teoria degli insiemi : alcuni problemi combinatorici. Teoria degli isiemi : alcui problemi combiatorici. Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota l ordie. Questo può dar luogo ad iteressati e utili applicazioi. Premettiamo

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO Pricipio fodametale del calcolo combiatorio Se u eveto E si può presetare i modi e u secodo eveto E 2 si può maifestare i 2 modi, allora l eveto composto E E 2 si può presetare i modi. 2 ORDINE/ RIPETIZIONE

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

CAMPUS ESTIVO 2011 MATEMATICA, FISICA E SPORT

CAMPUS ESTIVO 2011 MATEMATICA, FISICA E SPORT DANIELA ROMAGNOLI MATEMATICA AL FORTE CAMPUS ESTIVO 0 MATEMATICA, FISICA E SPORT BARD (AO) PREFAZIONE Ho preparato queste ote per il Corso di Algebra modera iserito el Campus estivo 0 di matematica, fisica

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale umeri aturali Scrivere il precedete e il successivo dei segueti umeri Milleciquecetoovatacique ottomilasettecetoottatuo Diecimilioisettecetoottatuomilaciquecetoveti Zero umiliardosettecetomilioiciquecetomila

Dettagli

Scelte finanziarie SCELTE FINANZIARIE

Scelte finanziarie SCELTE FINANZIARIE Scelte fiaziarie SCELE FINANZIARIE Spesso ella pratica si icotrao problemi decisioali i ambito fiaziario, per esempio come scegliere la più coveiete tra varie possibilità di ivestimeto, la meo oerosa tra

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

3.1 Il principio di inclusione-esclusione

3.1 Il principio di inclusione-esclusione Capitolo 3 Calcolo combiatorio 3.1 Il pricipio di iclusioe-esclusioe Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota il umero di elemeti. Questo può dar luogo ad iteressati

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Emilio Gagliardo Le fuzioi simmetriche semplici delle radici -esime primitive dell uità. Bollettio dell Uioe Matematica Italiaa, Serie 3, Vol. 8 (1953),.3, p. 269

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Esercizi di Combinatoria

Esercizi di Combinatoria Esercizi di Combiatoria Daiele A. Gewurz (Gli esercizi cotrassegati co l asterisco (*) soo u po più difficili.) 1. Dimostrare le segueti idetità i modo combiatorio e, dove ha seso, ache i modo algebrico

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

3. Calcolo dei limiti e confronti asintotici

3. Calcolo dei limiti e confronti asintotici Lezioi di Aalisi Matematica per Iformatici a.a. 009/00) Capitolo 3 Prof. Paolo Caldiroli 3. Calcolo dei iti e cofroti asitotici 3. Itroduzioe La teoria delle serie umeriche sviluppata el capitolo ci forisce

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

Calcolo delle Probabilità: esercitazione 3

Calcolo delle Probabilità: esercitazione 3 Argometo: Probabilità codizioata e teorema di Bayes (par. 3.4 libro di testo) Esercizio Tra i partecipati ad u cocorso per giovai musicisti, il 50% suoa il piaoforte, il 30% suoa il violio ed il restate

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terzi) STUDIO DELLE DISTRIBUZIONI SEMPLICI Esercitazioe. Data la segete distribzioe di freqeza: X 0- -2 2-3 3-5 5-0 0-5 5-25 N 44 35 22 58 60 06 02 a) calcolare le freqeze

Dettagli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli L'ALGORITMO DI STURM Michele Impedovo, Simoe Pavaelli Lettera P.RI.ST.EM, 10, dicembre 1993 Questo lavoro asce dalla collaborazioe tra u isegate e uo studete; lo studete ha curato iteramete la costruzioe

Dettagli

I numeri reali e la potenza del continuo. Raffaele SANTORO

I numeri reali e la potenza del continuo. Raffaele SANTORO Raffaele SANTORO I umeri reali e la poteza del cotiuo Vieste, Liceo Scietifico Statale Lorezo Fazzii, Ao scolastico 1977-78 (Riscrittura su computer di vecchi apputi maoscritti dati, dal 1977, a diverse

Dettagli

Distribuzioni per unità

Distribuzioni per unità Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa ota si occupa dell illustrazioe

Dettagli

2. PROBLEMI ISOPERIMETRICI

2. PROBLEMI ISOPERIMETRICI . ROBLEMI IOERIMETRICI (OLUZIONI roblema isoperimetrico classico : Tra le figure piae di perimetro fissato trovare quella di area massima. ROBLEMA IOERIMETRICO ER I RETTANGOLI: (itra tutti i rettagoli

Dettagli

Fermat e Tartaglia: alcune condizioni necessarie e sufficienti affinché un intero positivo n sia primo di Antonio Rita

Fermat e Tartaglia: alcune condizioni necessarie e sufficienti affinché un intero positivo n sia primo di Antonio Rita 1 Fermat e Tartaglia: alcue codizioi ecessarie e sufficieti affiché u itero positivo sia primo di Atoio Rita Premessa E bello immagiare che ell Aldilà ci sia u aima resposabile per ogi braca del sapere

Dettagli

Probabilità e Statistica I

Probabilità e Statistica I Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:diardo@uibas.it http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:

Dettagli

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione C a p i t o l o s e t t i m o Trasmissioe del calore per radiazioe Problema. Si cosideri u corpo ero i uo spazio o assorbete le radiazioi elettromagetiche; se il corpo viee mateuto alla temperatura di

Dettagli

Mole e Numero di Avogadro

Mole e Numero di Avogadro Mole e Numero di Avogadro La mole È ua uatità i grammi di ua sostaza che cotiee u umero preciso e be determiato di particelle (atomi o molecole) Numero di Avogadro Ua mole di ua sostaza cotiee u umero

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra?

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra? CALCOLO COMBINATORIO 1.1 Necessità del calcolo combiatorio Accade spesso di dover risolvere problemi dall'appareza molto semplice, ma che richiedoo calcoli lughi e oiosi per riuscire a trovare delle coclusioi

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Principio di induzione e sue applicazioni

Principio di induzione e sue applicazioni Uità didattica di matematica Luca Aluffi Pricipio di iduzioe e sue applicazioi Collocazioe Questa uità didattica è idirizzata ad ua classe III di u liceo scietifico tradizioale ed è da affrotare ella secoda

Dettagli

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 -

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 - ISTITUTO TECNICO INDUSTRIALE STATALE G. Marcoi PONTEDERA Prof. Pierluigi D Amico - Apputi su FIBRE OTTICHE - Classi QUARTE LICEO TECNICO A.S. 005/006 - Pagia. 1 di 5 1. LEGGE DI SNELL FIBRE OTTICHE si

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

ELEMENTI CALCOLO COMBINATORIO CALCOLO DELLE PROBABILITA' VARIABILI CASUALI TEORIA DEI GIOCHI

ELEMENTI CALCOLO COMBINATORIO CALCOLO DELLE PROBABILITA' VARIABILI CASUALI TEORIA DEI GIOCHI ELEMENTI DI CALCOLO COMBINATORIO CALCOLO DELLE PROBABILITA' VARIABILI CASUALI TEORIA DEI GIOCHI SABO ELEMENTI DI CALCOLO COMBINATORIO Dato u isieme di elemeti a 1, a 2, a 3,..., a è possibile da questo

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Titolo: Successioni; Progressioni geometriche e aritmetiche Specializzanda: Serena Bezzan

Titolo: Successioni; Progressioni geometriche e aritmetiche Specializzanda: Serena Bezzan Titolo: Successioi; Progressioi geometriche e aritmetiche Specializzada: Serea Bezza Classe destiataria L uità didattica è rivolta ad ua classe terza di u Liceo Scietifico ad idirizzo PNI. Iquadrameto

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

LA RADICE QUADRATA NELLA SCUOLA MEDIA E.BARONE

LA RADICE QUADRATA NELLA SCUOLA MEDIA E.BARONE LA RADICE QUADRATA NELLA SCUOLA MEDIA E.BARONE 1. Itroduzioe. La radice quadrata di solito e' itrodotta gia'ella.scuola media iferiore, quado i! cocetto di umero reale o e' stato acora dato e solitamete

Dettagli

Solidi e volumi Percorso: Il problema della misura

Solidi e volumi Percorso: Il problema della misura Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

LE PROPRIETA COLLIGATIVE sono proprietà fisiche delle soluzioni che dipendono dalla concentrazione del soluto ma non dalla tipologia del soluto

LE PROPRIETA COLLIGATIVE sono proprietà fisiche delle soluzioni che dipendono dalla concentrazione del soluto ma non dalla tipologia del soluto LE PROPRIETA COLLIGATIVE soo proprietà fisiche delle soluzioi che dipedoo dalla cocetrazioe del ma o dalla tipoloia del frazioi ari: χ + χ solvete 1 χ i di i di + i di solvete χ solvete i di solvete i

Dettagli

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata.

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata. I codesatori codesatore è u dispositivo i grado di immagazziare eergia, sottoforma di eergia poteziale, i u campo elettrico Ogi volta che abbiamo a che fare co due coduttori di forma arbitraria detti piatti

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argometo 1 Numeri reali. Fuzioi e loro grafici Parte A - Numeri reali Operazioi e ordiameto i R Idichiamo co R l isieme dei umeri reali, ossia l isieme di umeri che soo esprimibili i forma decimale, ad

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

Successioni e matrici enumerative 1

Successioni e matrici enumerative 1 Capitolo D20: Successioi e matrici eumerative 1 Coteuti delle sezioi a Successioe dei fattoriali e variati p1 b Coefficieti biomiali p3 c Multisiemi p10 d Numeri di Fiboacci p13 e Numeri di Catala p18

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Elementi di Probabilità e Statistica

Elementi di Probabilità e Statistica Elemeti di Probabilità e Statistica Maurizio Pratelli Ao Accademico 2013-14 Cotets 1 Nozioi fodametali 5 1.1 Prime defiizioi.......................... 5 1.2 Calcolo combiatorio....................... 9

Dettagli

Laboratorio di onde II anno CdL in Fisica

Laboratorio di onde II anno CdL in Fisica Laboratorio di ode II ao CdL i Fisica Itroduzioe Oda stazioaria di spostameto Quado u oda soora stazioaria si stabilisce i u tubo a fodo chiuso i cui la lughezza del tubo è molto maggiore del suo diametro,

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

DENSITA. La densità di un oggetto è la sua massa per unità di volume. massa volume

DENSITA. La densità di un oggetto è la sua massa per unità di volume. massa volume DENSITA La desità di u oggetto è la sua massa per uità di volume d massa volume m V Nel SI (sistema iterazioale) l'uità base per la massa è il chilogrammo (Kg). Spesso i chimica si usao dei sottomultipli

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che:

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che: ARITMETICA 1 U importate ramo della matematica è l aritmetica, o teoria dei umeri, qui itesi come umeri iteri. Ci si poe il problema di stabilire se certe relazioi possao essere soddisfatte da umeri iteri,

Dettagli

Navigazione tramite numeri e divertimento

Navigazione tramite numeri e divertimento 60 Chapter 6 Navigazioe tramite umeri e divertimeto Vladimir Georgiev Itroduzioe La ovità pricipale el ostro approccio e l avviciameto del lavoro dei ostri Lab ai problemi della vita reale tramite la parte

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

Le tante facce del numero e di Nepero

Le tante facce del numero e di Nepero Le tate facce del umero e di Nepero Paolo Tilli Dipartimeto di Matematica Politecico di Torio Premessa Questa breve ota raccoglie e i parte itegra il coteuto della cofereza da me teuta col medesimo titolo

Dettagli

Appunti per il corso di Metodi Algebrici

Appunti per il corso di Metodi Algebrici Apputi per il corso di Metodi Algebrici Erico Gregorio Ao accademico 2002 2003 gregorio@sci.uivr.it Dipartimeto di Iformatica Settore di Matematica Uiversità di Veroa CAPITOLO 1 Serie di poteze 1.1. Poliomi

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Disposizioni semplici. Disposizioni semplici esercizi

Disposizioni semplici. Disposizioni semplici esercizi Disposizioi semplici Ua disposizioe (semplice) di oggetti i k posti (duque 1 < k < ) è ogi raggruppameto di k oggetti, seza ripetizioi, scelti fra gli oggetti dati, cioè ciascuo dei raggruppameti ordiati

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015 ELEMENTI DI STATISTICA Giacarlo Zacaella 2015 2 Itroduzioe I termii statistici soo molto utilizzati el liguaggio correte 3 Cos è la STATISTICA STATISTICA = scieza che studia i feomei collettivi o di massa

Dettagli

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso.

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso. LA INTERPOLAZIONE Appartameti veduti el 006 da u agezia immobiliare di Treviso. superficie (mq) prezzo (k ) segue 10 160 45 70 80 95 85 110 64 98 106 140 10 170 50 80 100 150 90 15 115 165 140 165 98 145

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Esercizi di Combinatoria Stage presso il Liceo Scientifico F. Severi di Frosinone

Esercizi di Combinatoria Stage presso il Liceo Scientifico F. Severi di Frosinone Esercizi di Combiatoria Stage presso il Liceo Scietifico F. Severi di Frosioe A. Sambusetti - 31 geaio 2011 1. Formule di base del calcolo combiatorio Cosideriamo u isieme S di oggetti. Dimostrare che

Dettagli

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente Corso di Laurea i Matematica LEZIONI PER IL CORSO DI ANALISI MATEMATICA..2 A.A. 2007-2008 ARGOMENTO: SERIE NUMERICHE Dott.ssa Sadra Lucete Idice :. Prime geeralità sulle serie. 2. Serie a termii o egativi:

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itervalli di cofideza Fracesco Lagoa Itroduzioe Questa dispesa riassume schematicamete i pricipali risultati discussi a lezioe sulla costruzioe di itervalli di cofideza. Itervalli di cofideza per la media

Dettagli