Freni. I freni sono dispositivi atti a creare resistenza al moto allo scopo di impedirne l inizio o per regolarne la velocità o l accelerazione.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Freni. I freni sono dispositivi atti a creare resistenza al moto allo scopo di impedirne l inizio o per regolarne la velocità o l accelerazione."

Transcript

1 Generalità Freni I freni sono dispositivi atti a creare resistenza al moto allo scopo di impedirne l inizio o per regolarne la velocità o l accelerazione. A seconda del tipo di resistenza si distinguono in: freni ad attrito o meccanici; freni a fluido (a liquido, aerodinamici), usati soprattutto per la misura della curva caratteristica di motori; freni elettromagnetici, usati, soprattutto, anch essi per la misura della curva caratteristica di motori. A seconda della funzione, si notano: freni di stazionamento o di trattenuta, atti a impedire l inizio del movimento; freni di arresto o servizio che servono ad arrestare temporaneamente il movimento; freni di lavoro il cui scopo è quello di regolare il movimento. Ci occuperemo qui solo dei freni meccanici che si suddividono in: freni a nastro (già trattati a proposito delle trasmissioni a cinghia) ; freni a ceppi o a tamburo (in figura un freno a ceppi liberamente girevoli, tipico nelle costruzioni ferroviarie); freni assiali o a disco. A.A. /

2 ( ) cos( ) 7 = S IO G = I Lezione XVI Freni a ceppi Nelle due figure sono rappresentati, rispettivamente, dei freni a ceppi esterni (usati soprattutto negli impianti di sollevamento) e altri a ceppi interni (di comune impiego nei veicoli). I ceppi sono infulcrati su cerniere distinte e alle estremità libere delle leve agisce la forza. tendente a chiudere i freni. Limitando lo studio alle azioni scambiate tra il tamburo e un solo ceppo, la coppia frenante, la risultante delle pressioni, quella delle azioni tangenziali 7 e il relativo braccio equivalente K rispetto al centro del tamburo sono calcolabili dalle relazioni K S IO G = ( ) essendo S la distribuzione incognita delle pressioni di contatto, I il coefficiente di attrito radente, O la larghezza del ceppo e il raggio del tamburo. ( ) cos( ) = S O G ( ) cos( ) 7 = S IO G = I ( ) = = = 7 ( ) cos( ) ( ) S IO G S G ( ) cos( ) S IO G S G A.A. /

3 L angolo è quello che la retta di azione della forma con la bisettrice con l arco di contatto e si determina imponendo che la risultante in direzione ortogonale alla retta d azione sia nulla. Ovvero: ( ) ( ) S sin G = Come già visto in precedenza, il problema può essere risolto solo conoscendo la distribuzione delle pressioni S. A questo scopo si nota che, supponendo il ceppo infinitamente rigido, una sua rotazione piccolissima δϕ attorno alla cerniera, che porta i vari punti della guarnizione di attrito a venire a contatto con il tamburo, può sempre essere vista come una rotazione rigida infinitesima δϕ del ceppo stesso attorno a un altro polo, a esempio il centro del tamburo, più una traslazione δ δϕ. Nel moto del ceppo, solo la traslazione porta i punti della guarnizione di attrito ad avvicinarsi al tamburo e quindi a esercitare una pressione su quest ultimo. Per quanto detto la direzione di accostamento, ovvero quella per cui avviene la frenatura, sarà perpendicolare alla congiungente il centro della cerniera del ceppo e quello del tamburo e individuata da un angolo rispetto alla bisettrice dell arco di contatto. Per come sono costruiti i freni a ceppi quest angolo è piccolo per cui da un punto di vista pratico si può considerare circa uguale a e quindi considerare la direzione di accostamento praticamente coincidente con la bisettrice dell arco di azione. A.A. / 3

4 Per effetto dell avvicinamento δ del ceppo, lo spessore di guarnizione asportato nel generico punto di essa risulta uguale alla componente dello spostamento secondo la normale alla superficie nel punto considerato, ovvero Secondo l ipotesi di Reye, δ ( ) = δ cos ( ) = = ( ) δ G$ δ cosog NIS OGω ovvero, supponendo costante la velocità angolare S( ) = S cos espressione che sostituita negli integrali prima visti porta a S cossin ( ) G = cos cossin G sin cos G = sin sin = = e a un braccio K della 7 ( ) cos sin = S O G = S O + cos sin = IS O G = IS O sin = = > I + sin K A.A. / 4

5 Scrivendo l equilibrio alla rotazione rispetto al perno per il ceppo sinistro otteniamo =. = S O + E IF ( sin ) e per quello destro =. = S O + E+ IF ( sin ) con un momento frenante totale E = I.K E I F L azione trasmessa dai due ceppi al tamburo è quindi F ; = = I. E F I E F < = I ( ) = I. E F I E A.A. / 5

6 Per questo motivo si usano i freni a ceppi autoavvolgenti (o autocentranti) per i quali Si ricordi che se = =. E IF il ceppo è autofrenante (s impunta e impedisce la rotazione del tamburo) I F I E = = A.A. / 6

7 Freni a disco Vantaggi rispetto al freno a tamburo minor massa e momento d inerzia; maggior facilità di asportare il calore; facilità nell asportare impurità depositatesi sul disco. Svantaggi minor potere frenante (meno della metà) a parità di forza. applicata, coefficiente di attrito e dimensioni 5 anche supponendo E = I.5 < I.K 4I.K E I F ( I ) 5 E F < K quindi l esigenza di un servofreno che riduca la forza applicata al pedale a parità di. necessità comunque di freni a tamburo su una coppia di ruote della medesima sala per effettuare lo stazionamento (freno a mano) in quanto le pressioni (.$ con $=area delle pastiglie) sono molto maggiori di S con conseguente incollaggio delle guarnizioni al disco per lunghi periodi di stazionamento. A.A. / 7

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

Altri meccanismi: freni

Altri meccanismi: freni Freni ad attrito 1 Altri meccanismi: freni 2 FRENI I freni sono meccanismi che permettono di rallentare e, in caso di necessità, arrestare le parti mobili di una macchina. Si possono distinguere: freni

Dettagli

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2 MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata

Dettagli

MECCANICA APPLICATA ALLE MACCHINE L

MECCANICA APPLICATA ALLE MACCHINE L Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

MOTO DI PURO ROTOLAMENTO

MOTO DI PURO ROTOLAMENTO MOTO DI PURO ROTOLAMENTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOTO DI PURO ROTOLAMENTO

Dettagli

268 MECCANICA DEL VEICOLO

268 MECCANICA DEL VEICOLO LISTA SIMBOLI a accelerazione longitudinale veicolo [ms -2 ]; a distanza tra il baricentro e l avantreno veicolo [m]; a parametro caratterizzante la taratura del giunto viscoso; a fm decelerazione veicolo

Dettagli

Reazioni vincolari. Sistemi di corpi rigidi. Resistenza dei materiali. Forme strutturali per il design A.A prof.

Reazioni vincolari. Sistemi di corpi rigidi. Resistenza dei materiali. Forme strutturali per il design A.A prof. Resistenza dei materiali e Forme strutturali per il design A.A. 2014-2015 prof. Andrea Dall Asta Reazioni vincolari e Sistemi di corpi rigidi Scuola di Architettura e Design, Università di Camerino e-mail:andrea.dallasta@unicam.it

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

La Statica. La statica è una parte della meccanica che studia l equilibrio dei corpi. Prof Giovanni Ianne

La Statica. La statica è una parte della meccanica che studia l equilibrio dei corpi. Prof Giovanni Ianne La Statica La statica è una parte della meccanica che studia l equilibrio dei corpi. Sistemi rigidi ed equilibrio Un corpo è in equilibrio quando è fermo e continua a restare fermo. Il punto materiale

Dettagli

Progetto e costruzione di macchine 2/ed Joseph E. Shigley, Charles R. Mischke, Richard G. Budynas Copyright 2009 The McGraw-Hill Companies srl

Progetto e costruzione di macchine 2/ed Joseph E. Shigley, Charles R. Mischke, Richard G. Budynas Copyright 2009 The McGraw-Hill Companies srl Copyright 2009 The Companies srl Esercizi aggiuntivi capitolo 16 16.2 Per il freno dell Esercizio 16-1 (vedi libro), si considerino le medesime posizioni del perno e del punto di azione della forza. Si

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

METODI PER LA PROGETTAZIONE INDUSTRIALE. Prof. G. Fargione a.a. 2011/12

METODI PER LA PROGETTAZIONE INDUSTRIALE. Prof. G. Fargione a.a. 2011/12 METODI PER LA PROGETTAZIONE INDUSTRIALE Prof. G. Fargione a.a. 2011/12 La concretizzazione qualitativa Corrisponde a rivestire con determinate forme e materiali lo schema del principio, può venire espressa

Dettagli

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE ESAME DI MECCANICA solo PRIMA PARTE Versione A Corso di Laurea in Ingegneria Biomedica 28 Gennaio 2015 Esercizio 1 Del meccanismo in figura,

Dettagli

Università degli Studi di Roma La Sapienza. Facoltà di Ingegneria Corso di laurea in ingegneria Meccanica. Tesi di Laurea

Università degli Studi di Roma La Sapienza. Facoltà di Ingegneria Corso di laurea in ingegneria Meccanica. Tesi di Laurea Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Corso di laurea in ingegneria Meccanica Tesi di Laurea PROGETTO DELL IMPIANTO FRENANTE DI UNA VETTURA DA COMPETIZIONE Laureando: Alessandro

Dettagli

MECCANICA APPLICATA - CdS in Ingegneria Industriale (Lecce) A.A Appello del

MECCANICA APPLICATA - CdS in Ingegneria Industriale (Lecce) A.A Appello del Esercizio 2 Per il freno a tamburo riportato in Fig. 2 (le misure sono in mm), nota la forza F agente in D, determinare il momento frenante sul tamburo e la reazione risultante della cerniera fissa O.

Dettagli

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo.

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. C Si consideri il veicolo rappresentato in figura per il quale valgono le seguenti

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

MECCANICA Prof. Roberto Corradi Allievi informatici AA Prova del Problema N.1

MECCANICA Prof. Roberto Corradi Allievi informatici AA Prova del Problema N.1 MECCANICA Prof. Roberto Corradi Allievi informatici AA.2009-2010 Prova del 29-06-2010 1 Problema N.1 AC=140mm M=0.5 kg J G =0.005 kg m 2 M C =1 kg f d =0.3 v C =10m/s a C =25m/s 2 Il sistema articolato

Dettagli

Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido

Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido Capitolo 2 Statica del corpo rigido La statica è la parte della meccanica che si occupa dello studio dell equilibrio di corpi in quiete, ossia fermi, o mobili di moto rettilineo uniforme. In effetti applichiamo

Dettagli

Compito di Fisica Generale (Meccanica) 13/01/2014

Compito di Fisica Generale (Meccanica) 13/01/2014 Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella

Dettagli

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015 Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 3 giugno 015 Problema 1 Si consideri un sistema costituito da un cilindro omogeneo di raggio R 1 = 10 cm e altezza h = 0 cm, inserito all

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

Principi base dei sistemi frenanti. Toyota Motor Italia S.p.A.

Principi base dei sistemi frenanti. Toyota Motor Italia S.p.A. Principi base dei sistemi frenanti 2/37 Fondamenti Cosa accade in frenata? 3/37 Fondamenti Cosa accade in curva? Accelerazione/decelerazione (marcia in rettilineo) 4/37 Accelerazione TRC F = m x a Zona

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Lezione VI Cinematica e dinamica del manovellismo. Cinematica e dinamica di un manovellismo ordinario centrato

Lezione VI Cinematica e dinamica del manovellismo. Cinematica e dinamica di un manovellismo ordinario centrato Cinematica e dinamica di un manovellismo ordinario centrato C x β l α r Definizioni lunghezza della biella raggio di manovella corsa dello stantuffo r posizione dello stantuffo rispetto al PMS α spostamento

Dettagli

ITIS OTHOCA ORISTANO INNESTI E FRIZIONI

ITIS OTHOCA ORISTANO INNESTI E FRIZIONI ITIS OTHOCA ORISTANO INNESTI E FRIZIONI Prof. Ignazio Peddis A.S. 2007/08 Gli innesti Si definisce INNESTO un organo meccanico capace di rendere solidali due estremità di albero coassiali, in modo da permettere

Dettagli

I n s e g n a m e n t o d i BIOMECCANICA

I n s e g n a m e n t o d i BIOMECCANICA A A 2 0 1 3-2014 U N I V E R S I TA D E G L I S T U D I DI R O M A T O R V E R G ATA F A C O LTA DI M E D I C I N A E C H I R U R G I A L A U R E A T R I E N N A L E I N S C I E N Z E M O T O R I E I n

Dettagli

Trasmissione di potenza

Trasmissione di potenza Trasmissione di potenza Differenziale Aperto Perno con i due satelliti in estremità Ruota conica planetaria Disegno di Macchine: materiale di supporto alle Questo assieme è un differenziale di tipo aperto.

Dettagli

Compito di Fisica Generale (Meccanica) 17/01/2013

Compito di Fisica Generale (Meccanica) 17/01/2013 Compito di Fisica Generale (Meccanica) 17/01/2013 1) Un proiettile massa m è connesso ad una molla di costante elastica k e di lunghezza a riposo nulla. Supponendo che il proiettile venga lanciato a t=0

Dettagli

Secondo Appello Estivo del corso di Fisica del

Secondo Appello Estivo del corso di Fisica del Secondo Appello Estivo del corso di Fisica del 25.7.2012 Corso di laurea in Informatica A.A. 2011-2012 (Prof. Paolo Camarri) Cognome: Nome: Matricola: Anno di immatricolazione: Problema n.1 Una semisfera

Dettagli

Macchina a regime periodico

Macchina a regime periodico Macchina a regime periodico rev. 1.2 J m J v τ, η t r φ motore l m F x, ẋ, ẍ (P.M.E.) p m p a Figura 1: Schema dell impianto di pompaggio Della pompa volumetrica a stantuffo a singolo effetto rappresentata

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello DM 509/99 e DM 270/04 e Diploma Universitario)

Dettagli

Meccanica Teorica e Applicata I prova in itinere AA 06-07

Meccanica Teorica e Applicata I prova in itinere AA 06-07 I prova in itinere 06-07 Esercizio 1. F p D P E Tracciare i diagrammi delle azioni interne per la struttura rappresentata in figura. D=D=DE==L. Il triangolo F è isoscele rettangolo. Esercizio 2. fs P Q

Dettagli

2 - Principi di Meccanica e di Equilibrio

2 - Principi di Meccanica e di Equilibrio 2 - Principi di Meccanica e di Equilibrio Cause dei fenomeni meccanici (quiete e moto) 1/2 Nella Meccanica Classica (Meccanica Newtoniana) si assume che tra corpi diversi, così come tra le diverse parti

Dettagli

Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido

Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido Università degli Studi di Bergamo Corso di Laurea in Ingegneria essile Corso di Elementi di Meccanica Esercitazione 6 - Dinamica del punto materiale e Esercizio n. del corpo rigido Studiare la dinamica

Dettagli

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1 CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale

Dettagli

EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO

EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO Equilibrio di un Punto Materiale Definizione 1 Un punto materiale è in una posizione di equilibrio quando posto in quella posizione

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Lezione Analisi Statica di Travi Rigide

Lezione Analisi Statica di Travi Rigide Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni

Dettagli

Quesiti dell Indirizzo Tecnologico

Quesiti dell Indirizzo Tecnologico Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella

Dettagli

Rotazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Rotazioni. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Rotazioni ALTAIR http://metropolis.sci.univr.it Argomenti Propietá di base della rotazione Argomenti Argomenti Propietá di base della rotazione Leggi base del moto Inerzia, molle, smorzatori, leve ed ingranaggi

Dettagli

ESERCIZIO 1 (Punti 9)

ESERCIZIO 1 (Punti 9) UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

3.3 Il principio di disgregazione Esempi applicativi del principio di disgregazione Il principio dei lavori virtuali...

3.3 Il principio di disgregazione Esempi applicativi del principio di disgregazione Il principio dei lavori virtuali... Indice 1 Cinematica 1 1.1 Introduzione......................... 1 1.2 Classificazione delle coppie e relativi gradi di libertà... 2 1.2.1 Esempi di coppie inferiori............. 5 1.2.2 Esempi di coppie

Dettagli

Le condizioni di equilibrio di un punto materiale Giuseppe Frangiamore con la collaborazione di Daniele Alessi

Le condizioni di equilibrio di un punto materiale Giuseppe Frangiamore con la collaborazione di Daniele Alessi Le condizioni di equilibrio di un punto materiale Giuseppe Frangiamore con la collaborazione di Daniele Alessi Un punto materiale soggetto a più forze rimane in equilibrio se il vettore risultante (R)

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

Gradi di libertà e vincoli. Moti del corpo libero

Gradi di libertà e vincoli. Moti del corpo libero Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua

Dettagli

Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizione di equilbrio Leve

Statica. Equilibrio dei corpi Corpo rigido Momento di una forza Condizione di equilbrio Leve Statica Equilibrio dei corpi Corpo rigido Momento di una forza Condizione di equilbrio Leve Statica La statica è la parte della meccanica che studia l equilibrio di un corpo materiale, ovvero le condizioni

Dettagli

Studia le condizioni di equilibrio dei corpi. Caso particolare della dinamica: forze presenti, ma nessuna variazione di movimento.

Studia le condizioni di equilibrio dei corpi. Caso particolare della dinamica: forze presenti, ma nessuna variazione di movimento. Studia le condizioni di equilibrio dei corpi. Caso particolare della dinamica: forze presenti, ma nessuna variazione di movimento. Massa: misura della quantità di materia di un corpo, ha la proprietà dell

Dettagli

Disegno di Macchine. Lezione n 10 Cuscinetti radenti e volventi. corso per I anno della laurea in ing. meccanica Docente: ing.

Disegno di Macchine. Lezione n 10 Cuscinetti radenti e volventi. corso per I anno della laurea in ing. meccanica Docente: ing. Disegno di Macchine corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana Lezione n 10 Cuscinetti radenti e volventi Supporti e Cuscinetti I supporti sorreggono gli elementi rotanti

Dettagli

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE 10 Gennaio 2014 ESAME DI MECCANICA solo PRIMA PARTE versione A Corso di Laurea in Ingegneria Biomedica Esercizio 1 Nel meccanismo in figura,

Dettagli

Meccanica e Macchine esame 2008 MECCANICA APPLICATA E MACCHINE A FLUIDO

Meccanica e Macchine esame 2008 MECCANICA APPLICATA E MACCHINE A FLUIDO Meccanica e Macchine esame 008 MECCANICA APPLICATA E MACCHINE A FLUIDO Sessione ordinaria 008 Lo schema riportato in figura rappresenta un motore elettrico che eroga una potenza nominale di 0 kw ad un

Dettagli

LABILITA DI STRUTTURE

LABILITA DI STRUTTURE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU LAILITA DI STRUTTURE v 0.9 1 1 2 2n-1= 1 A C D 2n = 2 2(n-1) = 2 2n-1= 1 Numero totale di aste N = 2 GdL (gradi di libertà aste libere) = N 3 = 6 GdV (gradi

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI Dinamica Prof. Paolo Biondi Dipartimento GEMINI Dinamica: studio delle cause che determinano il moto dei corpi Forza = massa per accelerazione Unità di misura Newton (N): forza che applicata al chilogrammo

Dettagli

Meccanica Teorica e Applicata I prova in itinere AA 10-11

Meccanica Teorica e Applicata I prova in itinere AA 10-11 Università degli Studi di ergamo eccanica Teorica e pplicata I prova in itinere 10-11. p E C D Calcolare le reazioni vincolari a terra per la struttura rappresentata in figura. Tracciare i diagrammi delle

Dettagli

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.

Dettagli

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture

Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture Introduzione La meccanica è quella parte delle scienze applicate che studia le forze ed il moto. In questo campo è fondamentale la nozione di equilibrio, ovvero la condizione che si instaura quando le

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

Meccanica. 5. Moti Relativi. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 5. Moti Relativi.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 5. Moti Relativi http://campus.cib.unibo.it/2423/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. Cambiamento del Sistema di Riferimento 2. Trasformazione del Vettore

Dettagli

Le grandezze vettoriali e le Forze

Le grandezze vettoriali e le Forze Fisica: lezioni e problemi Le grandezze vettoriali e le Forze 1. Gli spostamenti e i vettori 2. La scomposizione di un vettore 3. Le forze 4. Gli allungamenti elastici 5. Le operazioni sulle forze 6. Le

Dettagli

Esercitazione di Dinamica

Esercitazione di Dinamica Appunti di Elementi di Meccanica Esercitazione di Dinamica Il traghetto di Leonardo v 1.0 dicembre 008 Figura 1: Traghetto sull Adda tra Imbersago (LC) e Villa d Adda (BG) 1 Il traghetto Il traghetto di

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni. (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

Prova scritta di Meccanica Razionale

Prova scritta di Meccanica Razionale Prova scritta di Meccanica Razionale - 0.07.013 ognome e Nome... N. matricola....d.l.: MLT UTLT IVLT MTLT MELT nno di orso: altro FIL 1 Esercizio 1. Nel riferimento cartesiano ortogonale, si consideri

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

POMPE A PALETTE Introduzione

POMPE A PALETTE Introduzione POMPE A PALETTE Introduzione Architettura Caratteristiche di Funzionamento Calcolo della Cilindrata Bilanciamento Idraulico Pompe a Palette 1 SCHEMA BASE Il rotore è un tamburo circolare che ruota all

Dettagli

Meccanica Teorica e Applicata I prova in itinere AA A

Meccanica Teorica e Applicata I prova in itinere AA A I prova in itinere 07-08 Esercizio 1. D P E C p Determinare le azioni interne nella struttura rappresentata in figura. CE=CD=C=L. EÂ=45. P=pL Esercizio 2 M Q, R fs M, r Trascurando la presenza di attrito

Dettagli

Alberi e perni Accoppiamenti albero e mozzo con linguette, chiavette, alberi scanalati e spine

Alberi e perni Accoppiamenti albero e mozzo con linguette, chiavette, alberi scanalati e spine Istituto Istruzione Superiore G. Boris Giuliano" Via Carducci, 13-94015 Piazza Armerina (En) Corso di Tecnologie Meccaniche e Applicazioni Anno scolastico 2015-2016 Docente: Ing. Filippo Giustra Alberi

Dettagli

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Lezione 5. L equilibrio dei corpi. Lavoro ed energia. Lezione 5 L equilibrio dei corpi. Lavoro ed energia. Statica E la parte della Meccanica che studia l equilibrio dei corpi. Dai principi della dinamica sappiamo che se su un corpo agiscono delle forze allora

Dettagli

Frenatura di un impianto montacarichi

Frenatura di un impianto montacarichi I M f F ω 1 J 1 τ, η, η J ω T M R D = r Figura 1: schema funzionale dell impianto montacarichi. v Q = m g m C Legenda: M = motore, I = innesto, F = freno, R = riduttore, T = tamburo, C = carico. 1. Elenco

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Lezione VII Calcolo del volano. Forze alterne d inerzia

Lezione VII Calcolo del volano. Forze alterne d inerzia Lezione VII Forze alterne d inerzia Dalla relazione ( cos cos ) = = ω α + λ α con m a pari alla massa totale del pistone, prima definita, più la massa m 1 che rappresenta quella parte della biella che,

Dettagli

L Unità didattica in breve

L Unità didattica in breve L Unità didattica in breve Generalità su macchine e meccanismi La Meccanica applicata alle macchine studia gli elementi che le compongono, riguardo ai reciproci movimenti, alle forze, alle masse, alle

Dettagli

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE ESAME DI MECCANICA solo PRIMA PARTE Corso di Laurea in Ingegneria Biomedica 1 Luglio 2013 Esercizio 1 Il sistema in figura è una realizzazione

Dettagli

Costruzione di Macchine Verifica a fatica degli elementi delle macchine

Costruzione di Macchine Verifica a fatica degli elementi delle macchine Costruzione di Macchine Verifica a fatica degli elementi delle macchine In figura 1 è rappresentato schematicamente un mescolatore: l albero con la paletta è mosso da un motore elettrico asincrono trifase

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 UNIVESITA DEL SANNIO COSO DI FISICA 1 ESECIZI Dinamica dei corpi rigidi 1 La molecola di ossigeno ha una massa di 5,3 1-6 Kg ed un momento di inerzia di 1,94 1-46 Kg m rispetto ad un asse passante per

Dettagli

MACCHINE OPERATRICI SEMOVENTI A UN ASSE

MACCHINE OPERATRICI SEMOVENTI A UN ASSE Disciplinare di Sicurezza 23.01 MACCHINE OPERATRICI SEMOVENTI A UN ASSE Decespugliatrici a ruote ad asse Revisione: del: 2.1 01/04/2008 Rev.: 2.1 Pagina 2 di 5 Controllo del documento Stato delle revisioni

Dettagli

RUOTE DENTATE ELICOIDALI AD ASSI PARALLELI

RUOTE DENTATE ELICOIDALI AD ASSI PARALLELI RUOTE DENTATE ELICOIDALI AD ASSI PARALLELI Non interessa qui trattare del taglio delle ruote dentate elicoidali, basti ricordare che le superfici dei denti sono delle superfici coniugate a evolvente come

Dettagli

Fisica dei Materiali A.A Dinamica III. P.A. Tipler, "Invito alla Fisica", volume 1, Zanichelli 2001, 5.2, 5.3, 6.5

Fisica dei Materiali A.A Dinamica III. P.A. Tipler, Invito alla Fisica, volume 1, Zanichelli 2001, 5.2, 5.3, 6.5 Dinamica III.A. Tipler, "Invito alla isica", volume 1, Zanichelli 2001, 5.2, 5.3, 6.5 A.A. 2003-2004 isica dei Materiali 71 Equilibrio statico di un corpo esteso La statica è quella parte della dinamica

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Laboratorio di Tecnologie Biomediche

Laboratorio di Tecnologie Biomediche Laboratorio di Tecnologie Biomediche Collegamenti meccanici Carmelo De Maria carmelo.demaria@unipi.it Imbiettamenti collegamenti di tipo smontabile che hanno per scopo quello di impedire la rotazione relativa

Dettagli

Condizioni di Equilibrio dei corpi

Condizioni di Equilibrio dei corpi Condizioni di Equilibrio dei corpi Un oggetto interagisce con l esterno mediante forze (localizzate, superficie, volume, ) Se l insieme di forze è equilibrato, l oggetto permane in uno stato di equilibrio

Dettagli

Ministero dell Istruzione dell Università e della Ricerca M552 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE

Ministero dell Istruzione dell Università e della Ricerca M552 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE Pag. 1/1 Sessione ordinaria 2010 Seconda prova scritta Ministero dell Istruzione dell Università e della Ricerca M552 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE CORSO DI ORDINAMENTO Indirizzo: MECCANICA

Dettagli

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE 29 Gennaio 2014 ESAME DI MECCANICA solo PRIMA PARTE versione A Corso di Laurea in Ingegneria Biomedica Nel meccanismo in figura sono individuabili

Dettagli

L EQUILIBRIO DEL PUNTO MATERIALE

L EQUILIBRIO DEL PUNTO MATERIALE 1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

LA RETTA NEL PIANO CARTESIANO

LA RETTA NEL PIANO CARTESIANO LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;

Dettagli

MOTORI AUTOFRENANTI. Funzionamento

MOTORI AUTOFRENANTI. Funzionamento MOTORI AUTOFRENANTI Generalità I motori autofrenanti combinano un motore trifase o monofase ed un in una singola unità. Grazie alla sua compatezza, è indicato in tutti i casi in cui è importante ridurre

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportamento meccanico dei materiali inematica piana omportamento meccanico dei materiali inematica ed equilibrio del corpo rigido inematica piana Equilibrio esterno aratteristiche di sollecitazione 2

Dettagli

Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano

Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano Reazioni vincolari e equilibrio del corpo rigido Reazioni vincolari del corpo rigido 2 I corpi rigidi sono generalmente vincolati al riferimento fisso tramite i vincoli, che esercitano delle forze sul

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli