LEZIONE 13. Figura 13.1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 13. Figura 13.1"

Transcript

1 LEZIONE 3 Ritorniamo al nostro rettangolo R di vertici A = (, ), B = (, ), C = (, 3), D = (, 3) a partire dal segmento OU unitario di estremi l origine O ed il punto U = (, ). y D C R A B O Figura 3. Tra le applicazioni utilizzate a tale scopo vi sono rotazioni e riscalamenti che abbiamo studiato nelle lezioni precedenti nell ambito delle applicazioni lineari. Ci sono però anche le traslazioni che non sono lineari: infatti non fissano l origine. Esse rientrano in una più ampia classe di applicazioni, dette affini. 3.. Applicazioni affini. Definizione 3... Un applicazione f: R n R m si dice affine se è della forma f(x) = AX + B, ove A R m,n e B R m,. Un applicazione affine si dice affinità se è biunivoca. In particolare ogni applicazione lineare è affine ma non vale il viceversa. Esempio 3... Si consideri l applicazione T : R 3 R 3 definita da T (, y, z) = ( + b, y + b, z + b 3 ). Typeset by AMS-TEX

2 3.. APPLICAZIONI AFFINI T è un applicazione affine. Infatti T y = y + b b z z b 3 L effetto di T è quello di spostare ogni punto del piano di uno stesso segmento. T è per questo chiamata una traslazione del vettore b ı + b j + b 3 k. Per esempio si consideri la traslazione T nel piano del vettore v = 3/ ı j. Consideriamo il suo effetto sul rettangolo R di vertici Poiché A = (, ), B = (, ), C = (, 3), D = (, 3). A = T (A) = ( + 3/, ) = (/, ), B = T (B) = ( + 3/, ) = (/, ), C = T (C) = ( + 3/, 3 ) = (/, ), D = T (D) = ( + 3/, 3 ) = (/, ), il rettangolo R ottenuto da R con tale proiezione è come in Figura 3.. y D C R A B D' C' R' O A' B' v Figura 3. Il fatto che le traslazioni non siano moltiplicazioni per matrici è una difficoltà notevole dal punto di vista dell implementazione. Infatti, come visto negli esempi precedenti, l azione delle applicazioni che ci interessano sulle figure geomeriche, come il rettangolo R che abbiamo spesso utilizzato, è molto più facile da descrivere se l applicazione è rappresentabile come moltiplicazione per una matrice. Questo si sente particolarmente quando si tratta di comporre più applicazioni per ottenere immagini particolari dalle primitive grafiche o immagini in movimento. Per ovviare a questo problema si introduce la nozione di matrice omogenea di un applicazione affine.

3 LEZIONE 3 3 Definizione Sia f: R n R m l applicazione affine data dalla relazione f(x) = AX + B, ove A R m,n e B R m,. La matrice omogenea di f è la matrice a blocchi A B Mh(f) = R n+,m+.,n Osservazione 3... Se f: R n R m è lineare abbiamo M(f) m, Mh(f) = R n+,m+.,n Sia X = (,..., n ) R n. Consideriamo la colonna X =. n Allora A B X AX + B =. n, Concludiamo che l introduzione della matrice omogenea di un applicazione affine f ci permette di calcolare le immagini dei punti tramite f semplicemente con un prodotto di matrici. Esempio 3... Si consideri di nuovo la traslazione nello spazio del vettore b ı + b j + b 3 k considerata nell Esempio 3... Allora b b Mh(f) = b 3 Nel caso particolare della traslazione del piano descritta nell esempio Poiché =, ovvero R viene trasformato, come già sappiamo, nel rettangolo R di vertici A = (/, ), B = (/, ), C = (/, ), D = (/, ). 3.. Composizione di applicazioni affini. Il motivo principale per cui si introduce la matrice omogenea di un applicazione affine è la seguente proposizione che estede la Proposizione.. iii)

4 3.. COMPOSIZIONE DI APPLICAZIONI AFFINI Proposizione 3... Siano f: R n R m, h: R m R p. Allora h f: R n R p è affine e Mh(h f) = Mh(h)Mh(f). Dimostrazione. Supponiamo che f(x) = AX+B e h(y ) = CX+D con A R m,n, B R m,, C R p,m, D R p,. Allora Mh(f) = A B, Mh(h) =,n C D.,m Poiché h f(x) = h(f(x)) l azione di h f su X è ottenuta prendendo le prime p componenti del prodott (3...) Mh(f) ( Mh(h) ) X X = (Mh(h)Mh(f)) = CA CB + D X. n, In particolare concludiamo che h f(x) = (CA)X + (CB + D): poiché CA R p,n e CB + D R p, segue che h f è un applicazione affine. Inoltre la prima delle Uguaglianze (3...) ci permette d affermare che Mh(h f) = Mh(h)Mh(f) Le traslazioni permettono di spostare oggetti grafici nel piano e nello spazio parallelamente a se stessi. Permettono anche di effettuare tutte le operazioni lineari viste nel paragrafo precedente in generale. Infatti sia P = (, y, z ) un punto dello spazio e supponiamo di voler effettuare una delle operazioni viste nelle Lezioni precedenti avente come punto fisso P e non più O. Allora potremo procedere come segue. Consideriamo prima la traslazione T che porta il punto P in O, ovvero la traslazione del vettore ı y j z k, effettuiamo l operazione lineare f che ci interessa, infine effettuiamo la traslazione T, cioè quella del vettore ı + y j + z k. La trasformazione richiesta è dunque T f T. Posto t = (, y, z ), segue che la matrice omogenea della trasformazione cercata è (3..) ( I3 t A 3,,3,3 ) I3 t =,3 = A t At =,3 ( A (I3 A)t,3 Esempio Si consideri un punto P = (, y ) del piano e supponiamo di voler effettuare una rotazione in senso antiorario di un angolo ϕ intorno a P. Allora la Formula (3..) ci permette d affermare che la formula generale per la matrice omogenea di tale rotazione è cos ϕ sin ϕ ( cos ϕ) + y sin ϕ sin ϕ cos ϕ sin ϕ + y ( cos ϕ) ).

5 LEZIONE 3 Se, per esempio, vogliamo effettuare una rotazione di π/3 radianti in senso antiorario intorno al punto (3/, ), che è il punto d incontro delle diagonali del rettangolo R di vertici A = (, ), B = (, ), C = (, 3), D = (, 3), dobbiamo considerare la trasformazione T f T ove T e f hanno rispettivamente matrici omogenee 3, 3 3, quindi la matrice omogenea della rotazione in esame è 3 In particolare = = Nella figura sotto è disegnato il rettangolo R ottenuto da R con la rotazione sopra indicata. y D C' C D' A π/3 R R' A' B B' O Figura 3.3

6 6 3.. COMPOSIZIONE DI APPLICAZIONI AFFINI Esempio 3... Sia r la retta nel piano di equazione a + by = c ed effettuiamo una simmetria ortogonale intorno ad r. Allora dalla Formula (3..) segue che la matrice omogenea di tale simmetria ortogonale è a b a +b ab a +b ab a b a +b a +b ac a +b bc a +b Se, per esempio, si consideri il solito rettangolo R di vertici A = (, ), B = (, ), C = (, 3), D = (, 3), e sia r la retta di equazione + y =. Allora dobbiamo considerare la trasformazione T f T ove T e f hanno rispettivamente matrici omogenee 3, 3, quindi la matrice omogenea della rotazione in esame è = 3 In particolare = Il rettangolo R ottenuto da R con la rotazione sopra indicata è come in figura. y r D' C' R' A' D C B' R A B O Figura 3.

7 LEZIONE 3 Esempio 3... Andiamo a considerare la retta r di equazione a + by = c, la Formula (3..) ci permette d affermare che la matrice omogenea della proiezione parallela di direzione v = v ı + v y j su r è v yb v b cv v y a v a cv y av + bv y av + bv y Per esempio se r è la retta di equazione + y = e v = ı j, la matrici omogenea della proiezione parallela di direzione v su r è 8 Si consideri ora il rettangolo R di vertici Poiché A = (, ), B = (, ), C = (, 3), D = (, 3), = 8 6 Il rettangolo R ottenuto da R con la proiezione sopra indicata è come in figura. y r D R C C' D' O A B B' A' v Figura 3. Similmente è facile verificare che la matrice omogenea della proiezione parallela dallo spazio sul piano a + by + cz = d secondo la direzione del vettore v = v ı + v y j + v z k è av + bv y + cv z v y b + v z c v b v c dv v y a v a + v z c v y c dv y v z a v z b v a + v y b dv z av + bv y + cv z

8 IL DIFFERENZIALE DI UN APPLICAZIONE AFFINE 3.3. Il differenziale di un applicazione affine. Si consideri un applicazione affine f: R n R m definita da f(x) = AX + B. Risulta allora A B Mh(f) =.,n Abbiamo visto come calcolare l immagine di un punto utilizzando M h(f). Vogliamo capire quale sia il comportamento di f rispetto ai vettori f. A tale scopo generalizziamo la definizione di segmento a R n. Definizione Siano P, P R n. Definiamo segmento di estremi P, P l insieme P P = { tp + ( t)p R n t [, ] }. P, P, P R n si dicono allineati se esiste un segmento che li contiene. Quando n =, 3, la definizione data sopra coincide con la rappresentazione parametrica di un segmento di A n descritta nella Lezione 8. Siano P, P R n. Allora se P P P segue l esistenza di t [, ] tale che P = tp + ( t)p. Si ha f(p ) = A(tP + ( t)p ) + B = = t(ap + B) + ( t)(ap + B) = tf(p ) + ( t)f(p ). Concludiamo che un applicazione affine f trasforma il segmento P P nel segmento f(p )f(p ): se f(p ) f(p ) allora f mantiene anche l orienazione dei segmenti. In particolare un applicazione affine trasforma punti allineati in punti allineati che, eventualmente, potranno essere coincidenti (se, per esempio, l applicazione non è iniettiva). In particolare in R n, n =, 3, se f(p ) f(p ), la retta per P e viene trasformata nella retta per f(p ) e f(p ). Ritorniamo alla nostra applicazione lineare f: R n R m definita da f(x) = AX + B: sia T f : R n R m l applicazione definita da T (Y ) = Y f( n, ). Allora possiamo ora considerare T f(x) = f(x) f( n, ) = (AX + B) (A n, + B) = AX = µ A (X). Quindi ad ogni applicazione affine è associata un applicazione lineare. Definizione Sia f: R n R m affine. L applicazione df = T f f: R n R m viene differenziale di f. Si consideri un applicazione affine f: R n R m definita da f(x) = AX +B. Per dare un interpretazione geometrica di df pensiamo al caso del piano o dello spazio affini. Allora f può essere pensata come un applicazione che trasforma punti di A n in punti di A m secondo una certa regola. Tale regola implica che i punti del vettore applicato OP = P O, vengano trasformati nei punti del vettore applicato f(p ) f(o) = (AP + B) (A n, + B) = (AP ) O = OQ

9 LEZIONE 3 9 ove Q = df(p ). In particolare l applicazione V n (O) V m (O) indotta in questo modo da f può essere identificata con df tramite l identificazione usuale fra punti di A m e vettori applicati di V m (O). Mettiamo in evidenza alcune cose interessanti che discendono da quanto visto sopra in R n, n =, 3: () se f(p ) f(p ), la retta per P e viene trasformata nella retta per f(p ) e f(p ); () se df( v), ogni retta parallela a v viene trasformata in una retta parallela a df( v); (3) se, per esempio, f è un affinità essa trasforma rette parallele in rette parallele. Come abbiamo già fatto notare l mmagine di un punto P tramite l applicazione affine f: R n R m definita da f(x) = AX + B si ottiene calcolando il prodotto Invece l immagine tramite df del vettore P Mh(f). OP si ottiene calcolando il prodotto P Mh(f). Abbiamo quindi un modo sostanzialmente unico per trattare punti e vettori. Nel primo caso aggiugiamo un, nel secondo uno in coda alla matrice che rappresenta il punto od il vettore e moltiplichiamo questa nuova colonna a sinistra per la matrice omogenea di f. Vogliamo determinare gli elementi, punti o direzioni, che vengono fissati dall applicazione f. Nel primo caso si tratta di determinare le eventuali soluzioni X R n dell equazione X X Mh(f) = λ. Nel secondo cerchiamo i vettori v che vengono trasformati in loro multipli da df, cioè cerchiamo le eventuali soluzioni (λ, X) con λ R e X R n dell equazione X X Mh(f) = λ. Entrambi questi problemi possono essere ricondotti all unico problema della ricerca delle eventuali soluzioni (λ, X) con λ R e X R n avente ultima coordinata o dell equazione Mh(f) X = λ X.

10 3.3. IL DIFFERENZIALE DI UN APPLICAZIONE AFFINE Questo è un problema di non immediata soluzione ed è legato ad un altro problema molto importante ed ubiquo, non solo nella matematica ma in tutte le scienze, quello del calcolo degli autovalori ed autovettori di un applicazione lineare Dedicheremo una delle prossime lezioni a tale problema limitatamente al caso delle matrici. Per darne una trattazione semplice e completa è necessario, però, dedicare un po di tempo ad altri due argomenti ad esso strettamente correlati: i numeri complessi ed il calcolo delle radici di un polinomio univariato.

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

LEZIONE 11. Domanda 1. Quale metodo applica il programma per inserire l oggetto scelto con i dati di inserimento scelti?

LEZIONE 11. Domanda 1. Quale metodo applica il programma per inserire l oggetto scelto con i dati di inserimento scelti? LEZINE Nella preparazione delle dispense riguardanti la geometria piana e spaziale ho dovuto inserire dei disegni che illustrassero in qualche modo i concetti geometrici esposti nel testo. iò ha presentato

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Quiz Esercizio 1 Esercizio 2 Esercizio 3 Voto Finale

Quiz Esercizio 1 Esercizio 2 Esercizio 3 Voto Finale GEOMETRIA DESCRITTIVA 9 LUGLIO 2007 Istruzioni. -) Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. -) Trascrivere i risultati dei quiz della prima parte nell apposita tabella

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

LEZIONE 8. Figura 8.1.1

LEZIONE 8. Figura 8.1.1 LEZIONE 8 8.1. Equazioni parametriche di rette. In questo paragrafo iniziamo ad applicare quanto spiegato sui vettori geometrici per dare una descrizione delle rette nel piano e nello spazio. Sia r S 3

Dettagli

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono:

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono: LEZIONE 11 11.1. Spazi vettoriali ed esempi. La nozione di spazio vettoriale generalizza quanto visto nelle lezioni precedenti: l insieme k m,n delle matrici m n a coefficienti in k = R, C, l insieme V

Dettagli

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x).

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x). Trasformazioni geometriche di R In questo paragrafo studiamo alcune trasformazioni geometriche del piano R Per trasformazioni si intendono sempre delle applicazioni bigettive f : R R Le trasformazioni

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Spazi affini e combinazioni affini.

Spazi affini e combinazioni affini. Spazi affini e combinazioni affini. Morfismi affini. Giorgio Ottaviani Abstract Introduciamo il concetto di combinazione affine in uno spazio affine, e in base a questo, ne caratterizziamo i sottospazi.

Dettagli

LEZIONE 15. Esempio L applicazione f: R 3 R 2. è lineare. Infatti si ha che se α R, (x, y, z) R 3 risulta

LEZIONE 15. Esempio L applicazione f: R 3 R 2. è lineare. Infatti si ha che se α R, (x, y, z) R 3 risulta LEZIONE 15 15.1. Applicazioni lineari ed esempi. Definizione 15.1.1. Siano V e W spazi vettoriali su k = R, C. Un applicazione f: V W si dice k lineare se: (AL1) per ogni v 1, v 2 V si ha f(v 1 + v 2 )

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

Parte 12a. Trasformazioni del piano. Forme quadratiche

Parte 12a. Trasformazioni del piano. Forme quadratiche Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

2. Coordinate omogenee e trasformazioni del piano

2. Coordinate omogenee e trasformazioni del piano . Coordinate omogenee e trasformazioni del piano Nella prima sezione si è visto come la composizione di applicazioni lineari e di traslazioni porta ad una scomoda combinazione di prodotti matriciali e

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

Parte 9. Geometria del piano

Parte 9. Geometria del piano Parte 9. Geometria del piano A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Vettori geometrici del piano, 1 2 Lo spazio vettoriale VO 2, 3 3 Sistemi di riferimento, 8 4 Equazioni

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

Appunti di Algebra Lineare. Distanze

Appunti di Algebra Lineare. Distanze Appunti di Algebra Lineare Distanze 1 Indice 1 Distanze nel piano 1.1 Distanza punto-punto................................... 1. Distanza punto-retta.................................... 3 1.3 Distanza

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

LEZIONE 5. AX = 0 m,1.

LEZIONE 5. AX = 0 m,1. LEZIONE 5 5 isoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per quanto visto nella precedente lezione, sappiamo di poter trasformare,

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Geometria analitica dello spazio

Geometria analitica dello spazio Geometria analitica dello spazio Note per l insegnamento di Matematica per Scienze Naturali e Ambientali e Scienze Geologiche Marco Abate Dipartimento di Matematica, Università di Pisa Largo Pontecorvo

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) =

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) = LEZIONE 13 13.1. Il metodo degli scarti. Sia dato uno spazio vettoriale V su k = R, C e siano v 1,..., v n V. Quanto visto nella lezione precedente ci suggerisce il seguente algoritmo per stabilire se

Dettagli

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0 Dipartimento di Matematica e Informatica Anno Accademico 206-207 Corso di Laurea in Informatica (L-3) Prova scritta di Matematica Discreta (2 CFU) 6 Settembre 207 Parte A [0 punti] Sia data la successione

Dettagli

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

Esercizi su esponenziali, coni, cilindri, superfici di rotazione

Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizio 1. Risolvere exp (exp (z)) = i. Esercizio. Risolvere i exp(z)z 4 + i exp(z)(1 + i) z 4 i 1 = 0. Esercizio. Risolvere exp(z) =

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2 1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione

Dettagli

Parte 12b. Riduzione a forma canonica

Parte 12b. Riduzione a forma canonica Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

LE MATRICI NEL PIANO

LE MATRICI NEL PIANO LE MATRICI NEL PIANO A cura di Buon Laura, Carniel Chiara, Lucchetta Jessica, Spadetto Luca Realizzato nell'ambito del Progetto Archimede con la supervisione del Prof FZampieri ISISS MCasagrande, Pieve

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

0.1. MATRICI SIMILI 1

0.1. MATRICI SIMILI 1 0.1. MATRICI SIMILI 1 0.1 Matrici simili Definizione 0.1.1. Due matrici A, B di ordine n si dicono simili se esiste una matrice invertibile P con la proprietà che P 1 AP = B. Con questa terminologia dunque

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

LEZIONE 7. k definiamo prodotto scalare di v e w il numero. = v x w x + v y w y + v z w z. w z

LEZIONE 7. k definiamo prodotto scalare di v e w il numero. = v x w x + v y w y + v z w z. w z LEZINE 7 7.1. Prodotto scalare. Fissiamo un sistema di riferimento ı j k in S 3. Dati i ettori geometrici = ı + y j + k e w = w ı + j + k definiamo prodotto scalare di e w il numero, w = ( y ) w = + y

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi. 1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Vettori e loro applicazioni

Vettori e loro applicazioni Argomento 11 Vettori e loro applicazioni Parte B - Applicazioni geometriche Utilizzando la nozione di vettore si possono agevolmente rappresentare analiticamente distanze, rette e piani nello spazio Supponiamo

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul

Dettagli

Rette e piani nello spazio

Rette e piani nello spazio Rette e piani nello spazio Equazioni parametriche di una retta in R 3 : x(t) = x 0 + at r(t) : y(t) = y 0 + bt t R, parametro z(t) = z 0 + ct ovvero r(t) : X(t) = P 0 + vt, t R}, dove: P 0 = (x 0, y 0,

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

Esercizi di Geometria - 1

Esercizi di Geometria - 1 Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

LEZIONE 5. Typeset by AMS-TEX

LEZIONE 5. Typeset by AMS-TEX LEZINE 5 5.1. Vettori geometrici. In questo lezione inizieremo a studiare enti geometrici ben noti quali punti, segmenti (orientati), rette, piani nel piano A 2 e nello spazio A 3 affini (cioè in cui valgono

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

LEZIONE 24. a 1,1 x 2 + a 2,2 y 2 + a 3,3 z 2 + 2a 1,2 xy + 2a 1,3 xz+ + 2a 2,3 yz + 2a 1,4 x + 2a 2,4 y + 2a 3,4 z + a 4,4 = 0 (24.1.

LEZIONE 24. a 1,1 x 2 + a 2,2 y 2 + a 3,3 z 2 + 2a 1,2 xy + 2a 1,3 xz+ + 2a 2,3 yz + 2a 1,4 x + 2a 2,4 y + 2a 3,4 z + a 4,4 = 0 (24.1. LEZIONE 24 24.1. Riduione delle quadriche a forma canonica. Fissiamo nello spaio un sistema di riferimento Oxy e consideriamo un polinomio q(x, y, ) di grado 2 in x, y, a meno di costanti moltiplicative

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

Prodotti scalari e matrici

Prodotti scalari e matrici Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

La forma normale di Schur

La forma normale di Schur La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni

Dettagli