STRUTTURE NON LINEARI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STRUTTURE NON LINEARI"

Transcript

1 PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo Altamura, Maria Francesca, Costabile e Floriana Esposito, Università degli Studi di Bari.

2 Indice Astrazione e Specifiche Esempi di Specifiche Assiomatiche: Vettori e Liste Generalità su grafi e alberi. Alberi binari: specifiche sintattiche e semantiche. Realizzazioni. Visita di alberi binari. M. Nappi/PR1 2

3 Astrazione Dati e Funzionale L astrazione di dati ricalca ed estende il concetto di astrazione funzionale. Così come l'astrazione funzionale permette di ampliare l'insieme dei modi di operare sui dati, cioè gli operatori sui tipi di dati già disponibili, l astrazione di dati permette di ampliare i tipi di dati disponibili attraverso l'introduzione sia di nuovi tipi di dati che di nuovi operatori. L astrazione funzionale stimola gli sforzi per evidenziare operazioni ricorrenti o ben caratterizzate all interno della soluzione di un problema. L astrazione di dati sollecita ad individuare le organizzazioni dei dati più adatte alla soluzione del problema. M. Nappi/PR1 3

4 Astrazione Dati e Funzionale Un'astrazione di dati consente una estensione dell algebra dei dati disponibile in un linguaggio di programmazione. Cosa e un algebra? È un sistema matematico costituito da un dominio, cioè un insieme di valori e da un insieme di funzioni applicabili su tali valori. Un algebra dei dati può essere definita come costituita da: Una famiglia di insiemi (insieme di dati) Una famiglia di operatori sui dati (operatori) Un repertorio di simboli (o nomi) per indicare l insieme di dati Un repertorio di simboli (o nomi) per indicare gli operatori Un repertorio di simboli (detti costanti) per indicare elementi singoli degli insiemi di dati M. Nappi/PR1 4

5 Astrazione Dati e Funzionale Un astrazione di dati è costituita da una specifica e da una realizzazione: La Specifica ha il compito di descrivere sinteticamente il tipo dei dati e gli operatori che li caratterizzano La Realizzazione stabilisce come i dati e gli operatori vengono ricondotti ai tipi di dati e agli operatori già disponibili M. Nappi/PR1 5

6 Le Specifiche Assiomatiche Specifica Sintattica determina: l ELENCO dei nomi dei domini e delle operazioni i DOMINI di partenza e di arrivo per ogni nome di operatore M. Nappi/PR1 6

7 Le Specifiche Assiomatiche Specifica Semantica assegna: un INSIEME ad ogni nome di tipo introdotto nella Specifica Sintattica una FUNZIONE ad ogni nome di operatore, esplicitando le seguenti condizioni sui domini precondizione, che definisce quando l operatore è applicabile postcondizione, che stabilisce la relazione tra argomenti e risultato M. Nappi/PR1 7

8 Il tipo astratto Vettore: Una Specifica Assiomatica M. Nappi/PR1 8

9 Il tipo astratto Lista Una lista è una sequenza di elementi di un certo tipo, in cui è possibile aggiungere o togliere elementi. Per far questo occorre specificare la posizione relativa all interno della sequenza nella quale il nuovo elemento va aggiunto o nella quale il vecchio elemento va tolto. A differenza del array, che è una struttura a dimensione fissa dove è possibile accedere direttamente ad ogni elemento specificandone l indice, la lista è a dimensione variabile e si può accedere direttamente solo al primo elemento della lista. Per accedere ad un generico elemento, occorre scandire sequenzialmente gli elementi della lista. M. Nappi/PR1 9

10 Il tipo astratto Lista: Una Specifica Assiomatica Specifica sintattica Tipi: lista, tipoelem, booleano Operatori: CREALISTA: ( ) lista LISTAVUOTA: (lista) booleano INSERISCI: (tipoelem, lista) lista CANCELLA: (lista) lista PRIMOLISTA: (lista) tipoel M. Nappi/PR1 10

11 Il tipo astratto Lista: Una Specifica Assiomatica Specifica semantica Tipi: lista = insieme delle sequenze L=a1,a2,,an di tipo tipoelem booleano = insieme dei valori di verità {vero,falso} M. Nappi/PR1 11

12 Il tipo astratto Lista: Una specifica assiomatica Specifica semantica Operatori: CREALISTA()=L Post: L = ^, la sequenza vuota LISTAVUOTA(L)=b Post: b=vero, se L=^; b=falso, altrimenti INSERISCI(el,L)=L Pre: L = a1, a2,, an n>=0 Post: L = el, a1, a2,, an M. Nappi/PR1 12

13 Il tipo astratto Lista: Una specifica assiomatica Specifica semantica Operatori: CANCELLA(L)= L Pre: L = a1, a2,, an n>0 Post: L = a2,, an PRIMOLISTA(L)= el Pre: L = a1, a2,, an n>0 Post: el = a1 M. Nappi/PR1 13

14 Il tipo astratto Lista: Realizzazione // prototipi lista crealista(void); typedef struct nodo *lista; typedef struct nodo { tipoelem val; lista next; } nodo; int listavuota(lista L); lista cancella (lista L); lista inserisci(tipoelem val, lista L); tipoelem primolista (lista L); M. Nappi/PR1 14

15 I Grafi Una relazione tra due insiemi U e V è un sottoinsieme A di UxV La descrizione di A in forma diagrammatica si ottiene congiungendo elementi di U con elementi di V. La rappresentazione che si ottiene e detta grafo (bipartito). M. Nappi/PR1 15

16 I Grafi U V A UxU. In tal caso gli elementi di u vengono scritti una sola volta e viene segnata una freccia sulla congiunzione da ui a uj per quelle coppie <ui,uj > A. Si parla in questo caso di grafo orientato. Gli elementi u U sono detti nodi o vertici del grafo orientato. La linea di congiunzione è detta arco. Se <ui,uj > sono congiunti tanto attraverso l arco (i,j) quanto attraverso l arco (j,i) si potrà utilizzare una unica connessione senza freccia: l arco incide sui due nodi e si parla di grafo non orientato. M. Nappi/PR1 16

17 I Grafi Un grafo orientato G è una coppia <N,A> dove N è un insieme finito non vuoto (insieme di nodi) e A NxN è un insieme finito di coppie ordinate di nodi, detti archi (o spigoli o linee). Se < ui, uj > A nel grafo vi è un arco da ui ad uj Nell esempio N= {u1,u2,u3}, A= {(u1,u1),(u1,u2),(u2,u1),(u1,u3)}. M. Nappi/PR1 17

18 I Grafi In un grafo orientato G un cammino è una sequenza di nodi u0, u1,.., uk tali che (ui, ui+1) A, per i = 0, 1, 2,, k-1. Il cammino parte dal nodo u0, attraversa i nodi u1,, uk-1, arriva al nodo uk, ed ha lunghezza uguale a k. Se non ci sono nodi ripetuti il cammino è semplice (ui u j per 0 j k ) Se u0=uk il cammino è chiuso. Un cammino sia semplice che chiuso è un ciclo. Un grafo è detto completo se per ogni coppia di nodi ui, uj N esiste un arco che va da ui ad uj (A = NxN) M. Nappi/PR1 18

19 I Grafi M. Nappi/PR1 19

20 Gli Alberi Il GRAFO è una struttura dati alla quale si possono ricondurre strutture più semplici: LISTE ed ALBERI L ALBERO è una struttura informativa per rappresentare: partizioni successive di un insieme in sottoinsiemi disgiunti organizzazioni gerarchiche di dati procedimenti decisionali enumerativi M. Nappi/PR1 20

21 Gli Alberi M. Nappi/PR1 21

22 Gli Alberi M. Nappi/PR1 22

23 Gli Alberi M. Nappi/PR1 23

24 Gli Alberi Proprietà Un albero e un grafo aciclico, in cui per ogni nodo esiste un solo arco entrante (tranne che per la radice che non ne ha nessuno) Un albero è un grafo debolmente connesso Se esiste un cammino che va da un nodo u ad un altro nodo v, tale cammino è unico In un albero esiste un solo cammino che va dalla Radice a qualunque altro nodo Tutti i nodi di un albero t (tranne la radice) possono essere ripartiti in insiemi disgiunti ciascuno dei quali individua un albero: dato un nodo u, i suoi discendenti costituiscono un albero detto sottoalbero di radice u M. Nappi/PR1 24

25 Gli Alberi La natura ricorsiva degli alberi Un albero può essere definito ricorsivamente Un albero e un insieme di nodi ai quali sono associate delle informazioni Tra i nodi esiste un nodo particolare che e la radice (livello 0) Gli altri nodi sono partizionati in sottoinsiemi che sono a loro volta alberi (livelli successivi): Vuoto o costituito da un solo nodo (detto radice) Oppure è una radice cui sono connessi altri alberi M. Nappi/PR1 25

26 Gli Alberi Alberi Binari Sono particolari alberi ordinati in cui ogni nodo ha al più due figli e si fa sempre distinzione tra il figlio sinistro, che viene prima nell ordinamento e il figlio destro. Nell esempio gli alberi sono etichettati con interi e con caratteri Un albero binario è un grafo orientato che o è vuoto o è costituito da un solo nodo o è formato da un nodo n (detto radice) e da due sottoalberi binari, chiamati rispettivamente sottoalbero (o figlio) sinistro e sottoalbero (o figlio) destro M. Nappi/PR1 26

27 Gli Alberi M. Nappi/PR1 27

28 Gli Alberi M. Nappi/PR1 28

29 Gli Alberi M. Nappi/PR1 29

30 Gli Alberi M. Nappi/PR1 30

31 Gli Alberi L algebra che abbiamo presentato ovviamente rappresenta una scelta precisa di progetto: enfatizzare la natura ricorsiva degli Alberi e di costruire l albero binario dal basso verso l alto, cioè dal livello delle foglie verso la radice. Non sempre questa scelta è opportuna: soprattutto se l albero è usato per rappresentare un processo decisionale è preferibile un algebra che preveda di costruire l albero dall alto verso il basso, inserendo prima la radice e poi i nodi figli via via. In tal caso, mentre rimangono validi gli operatori creabinalbero, binalberovuoto, binradice, binpadre, figliosinistro, figliodestro, sinistrovuoto, destrovuoto, cancsottobinalbero Andrebbe sostituito l operatore di costruzione con tre operatori nuovi, uno dedicato all inserimento della radice e gli altri due dedicati all inserimento del figlio sinistro e del figliodestro. M. Nappi/PR1 31

32 Gli Alberi M. Nappi/PR1 32

33 Algoritmi di Visita La visita di un albero consiste nel seguire una rotta di viaggio che consenta di esaminare ogni nodo dell albero esattamente una volta. Visita in pre-ordine: si applica ad un albero non vuoto e richiede dapprima l analisi della radice dell albero e, poi, la visita, effettuata con lo stesso metodo, dei due sottoalberi, prima il sinistro, poi il destro Visita in post-ordine: si applica ad un albero non vuoto e richiede dapprima la visita, effettuata con lo stesso metodo, dei sottoalberi, prima il sinistro e poi il destro, e, in seguito, l analisi della radice dell albero Visita simmetrica: richiede prima la visita del sottoalbero sinistro (effettuata sempre con lo stesso metodo), poi l analisi della radice, e poi la visita del sottoalbero destro M. Nappi/PR1 33

34 Algoritmi di Visita M. Nappi/PR1 34

35 Algoritmi di Visita visita in preordine l albero binario t { se l albero non è vuoto allora visita la radice di t visita in preordine il sottoalbero sinistro di t visita in preordine il sottoalbero destro di t fine } M. Nappi/PR1 35

Corso di Laurea in INFORMATICA

Corso di Laurea in INFORMATICA Corso di Laurea in INFORMATICA Algoritmi e Strutture Dati MODULO 2. Algebre di dati Dati e rappresentazioni, requisiti delle astrazioni di dati, costrutti. Astrazioni di dati e dati primitivi. Specifica

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

I tipi di dato astratti

I tipi di dato astratti I tipi di dato astratti.0 I tipi di dato astratti c Diego Calvanese Fondamenti di Informatica Corso di Laurea in Ingegneria Elettronica A.A. 001/00.0 0 I tipi di dato astratti La nozione di tipo di dato

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati schifano@fe.infn.it Laurea di Informatica - Università di Ferrara 2011-2012 [1] Strutture dati Dinamiche: Le liste Una lista è una sequenza di elementi di un certo tipo in cui è possibile aggiungere e/o

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

La struttura dati ad albero binario

La struttura dati ad albero binario La struttura dati ad albero binario L albero è una struttura dati nella quale le informazioni sono organizzate in modo gerarchico, dall alto verso il basso. Gli elementi di un albero si chiamano nodi,

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Realizzazione di Liste Laboratorio di Algoritmi e Strutture Dati Domenico Redavid redavid@di.uniba.it Materiale di base gentilmente concesso dal dott. Nicola Di Mauro Ricercatore presso l'univ. di Bari

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 3 - Tipi di dato e strutture di dati!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: Camillo Fiorentini 18 dicembre 2007 Esercizio 1: rappresentazione di una tabella di occorrenze L obiettivo è quello di rappresentare in modo efficiente

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Grafi. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria Università di Bologna. moreno.marzolla@unibo.it http://www.moreno.marzolla.

Grafi. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria Università di Bologna. moreno.marzolla@unibo.it http://www.moreno.marzolla. Grafi Moreno Marzolla ip. di Informatica Scienza e Ingegneria Università di ologna moreno.marzolla@unibo.it http://www.moreno.marzolla.name/ opyright lberto Montresor, Università di Trento, Italy (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura

Dettagli

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1

Dettagli

Progettazione del Software A.A.2008/09

Progettazione del Software A.A.2008/09 Laurea in Ing. Informatica ed Ing. dell Informazione Sede di latina Progettazione del Software A.A.2008/09 Domenico Lembo* Dipartimento di Informatica e Sistemistica A. Ruberti SAPIENZA Università di Roma

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Cenni di logica & algebra booleana

Cenni di logica & algebra booleana Cenni di algebra booleana e dei sistemi di numerazione Dr. Carlo Sansotta - 25 2 Parte Cenni di logica & algebra booleana 3 introduzione L elaboratore elettronico funziona secondo una logica a 2 stati:

Dettagli

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS INTRODUZIONE Per conoscere la struttura di un grafo connesso è importante individuare nel grafo la distribuzione di certi punti detti cutpoints (punti

Dettagli

Informatica 3. LEZIONE 23: Indicizzazione. Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees

Informatica 3. LEZIONE 23: Indicizzazione. Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees Informatica 3 LEZIONE 23: Indicizzazione Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees Informatica 3 Lezione 23 - Modulo 1 Indicizzazione lineare, ISAM e

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

STRINGHE di un ALFABETO. Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto. Alfabeto della lingua inglese I={a,b,c,..

STRINGHE di un ALFABETO. Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto. Alfabeto della lingua inglese I={a,b,c,.. STRINGHE di un ALFABETO Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto Alfabeto binario A={0,1} Alfabeto della lingua inglese I={a,b,c,..z} Stringhe o parole Gli elementi di V

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

40 Algoritmi sui Grafi

40 Algoritmi sui Grafi Università degli Studi di Napoli Parthenope Corso di Laurea in Informatica A.A 2014/15 PROGETTO PROGRAMMAZIONE III 40 Algoritmi sui Grafi Relatore: Prof. Raffaele Montella Studente: Diego Parlato Matricola:

Dettagli

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o Sommario Sintesi di macchine a stati finiti 1 Realizzazione del ST M. avalli 2 utoma minimo di SM completamente specificate 6th June 2007 3 Ottimizzazione di SM non completamente specificate Sommario ()

Dettagli

Minimo Albero Ricoprente

Minimo Albero Ricoprente Minimo lbero Ricoprente Pag. 1/20 Minimo lbero Ricoprente Il problema della definizione di un Minimo lbero Ricoprente trova applicazione pratica in diverse aree di studio, quali ad esempio la progettazione

Dettagli

Esercizio su MT. Svolgimento

Esercizio su MT. Svolgimento Esercizio su MT Definire una macchina di Turing deterministica M a nastro singolo e i concetti di configurazione e di transizione. Sintetizzare una macchina di Turing trasduttore che trasformi un numero

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Dott.Davide Di Ruscio Dipartimento di Informatica Università degli Studi di L Aquila Lezione del 08/03/07 Nota Questi lucidi sono tratti

Dettagli

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE -

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE - Esame di Ricerca Operativa - settembre 7 Facoltà di rchitettura - Udine - CORREZIONE - Problema ( punti): Un azienda pubblicitaria deve svolgere un indagine di mercato per lanciare un nuovo prodotto. L

Dettagli

Il tipo di dato astratto Pila

Il tipo di dato astratto Pila Il tipo di dato astratto Pila Il tipo di dato Pila Una pila è una sequenza di elementi (tutti dello stesso tipo) in cui l inserimento e l eliminazione di elementi avvengono secondo la regola seguente:

Dettagli

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory FILE SYSTEM : INTERFACCIA 8.1 Interfaccia del File System Concetto di File Metodi di Accesso Struttura delle Directory Montaggio del File System Condivisione di File Protezione 8.2 Concetto di File File

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Simulazione di una Rete di Interconnessione di una Compagnia Aerea

Simulazione di una Rete di Interconnessione di una Compagnia Aerea Simulazione di una Rete di Interconnessione di una Compagnia Aerea Progetto del corso di Algoritmi e Strutture Dati a.a. 2011/2012 December 4, 2011 1 Introduzione Il progetto consiste nella realizzazione

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi

Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi TIPI DI DATO Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi numeri naturali, interi, reali caratteri e stringhe di caratteri e quasi sempre anche collezioni di oggetti,

Dettagli

Definizione di nuovi tipi in C

Definizione di nuovi tipi in C Definizione di nuovi tipi in C typedef Ancora sui tipi di dato Ogni elaboratore è intrinsecamente capace di trattare domini di dati di tipi primitivi numeri naturali, interi, reali caratteri e stringhe

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Comparatori. Comparatori di uguaglianza

Comparatori. Comparatori di uguaglianza Comparatori Scopo di un circuito comparatore é il confronto tra due codifiche binarie. Il confronto può essere effettuato per verificare l'uguaglianza oppure una relazione d'ordine del tipo "maggiore",

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = , dove: Finite State Machine (2)

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = <Q,,, q0, F>, dove: Finite State Machine (2) Idee guida ASM = FSM con stati generalizzati Le ASM rappresentano la forma matematica di Macchine Astratte che estendono la nozione di Finite State Machine Ground Model (descrizioni formali) Raffinamenti

Dettagli

Alberi ed Alberi Binari

Alberi ed Alberi Binari Alberi ed Alberi Binari Il tipo di dato Albero Un albero è una struttura di data organizzata gerarchicamente. È costituito da un insieme di nodi collegati tra di loro: ogni nodo contiene dell informazione,

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

Fondamenti di Ricerca Operativa

Fondamenti di Ricerca Operativa Politecnico di Milano Anno Accademico 2010/2011 Fondamenti di Ricerca Operativa Corso del Prof. Edoardo Amaldi Stefano Invernizzi Facoltà di Ingegneria dell Informazione Corso di Laurea Magistrale in Ingegneria

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente.

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Ricorsione Funzioni ricorsive Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Un esempio di funzione ricorsiva

Dettagli

Programma di Paradigmi e possibili domande. Capitolo 1

Programma di Paradigmi e possibili domande. Capitolo 1 Definizione di macchina astratta Programma di Paradigmi e possibili domande Capitolo 1 Una macchina astratta per il linguaggio L detta ML, è un qualsiasi insieme di algoritmi e strutture dati che permettono

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

PROGRAMMI LINGUAGGIO C

PROGRAMMI LINGUAGGIO C PROGRAMMI IN LINGUAGGIO C Corso di Programmazione Modulo B Prof. GIULIANO LACCETTI Studentessa Bellino Virginia Matr. 408466 Corso di Diploma in Informatica http://www.dicecca.net Indice 1. Package per

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Abstract Data Type (ADT)

Abstract Data Type (ADT) Abstract Data Type Pag. 1/10 Abstract Data Type (ADT) Iniziamo la nostra trattazione presentando una nozione che ci accompagnerà lungo l intero corso di Laboratorio Algoritmi e Strutture Dati: il Tipo

Dettagli

Breve introduzione al Calcolo Evoluzionistico

Breve introduzione al Calcolo Evoluzionistico Breve introduzione al Calcolo Evoluzionistico Stefano Cagnoni Dipartimento di Ingegneria dell Informazione, Università di Parma cagnoni@ce.unipr.it 1 Introduzione Il mondo fisico ed i fenomeni naturali

Dettagli

Tipi di Dato Ricorsivi

Tipi di Dato Ricorsivi Tipi di Dato Ricorsivi Luca Abeni September 2, 2015 1 Tipi di Dato Vari linguaggi di programmazione permettono all utente di definire nuovi tipi di dato definendo per ogni nuovo tipo l insieme dei suoi

Dettagli

Introduzione alla programmazione in C

Introduzione alla programmazione in C Introduzione alla programmazione in C Testi Consigliati: A. Kelley & I. Pohl C didattica e programmazione B.W. Kernighan & D. M. Ritchie Linguaggio C P. Tosoratti Introduzione all informatica Materiale

Dettagli

LISTE, INSIEMI, ALBERI E RICORSIONE

LISTE, INSIEMI, ALBERI E RICORSIONE LISTE, INSIEMI, ALBERI E RICORSIONE Settimo Laboratorio LISTE E RICORSIONE SVUOTALISTA: CONSIDERAZIONI Per svuotare una lista si devono eliminare i singoli nodi allocati con la malloc... Come fare? Per

Dettagli

I Sistemi di numerazione e la rappresentazione dei dati

I Sistemi di numerazione e la rappresentazione dei dati I Sistemi di numerazione e la rappresentazione dei dati LA RAPPRESENTAZIONE DELLE INFORMAZIONI (1) Per utilizzare un computer è necessario rappresentare in qualche modo le informazioni da elaborare e il

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Appello dell 8 Febbraio 2005 Esercizio 1 (ASD) 1. Dire quale delle seguenti affermazioni è vera giustificando la risposta. (a) lg

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Macchine sequenziali

Macchine sequenziali Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali Lezione 14 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Automa a Stati Finiti (ASF) E una prima astrazione di

Dettagli

Sistemi avanzati di gestione dei Sistemi Informativi

Sistemi avanzati di gestione dei Sistemi Informativi Esperti nella gestione dei sistemi informativi e tecnologie informatiche Sistemi avanzati di gestione dei Sistemi Informativi Docente: Email: Sito: Eduard Roccatello eduard@roccatello.it http://www.roccatello.it/teaching/gsi/

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 25/6/2015

Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 25/6/2015 Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 25/6/2015 Chi deve recuperare il progetto del modulo 1 ha 1 ora e 30 minuti per svolgere gli esercizi 1, 2, 3 Chi deve recuperare

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

Interpretazione astratta

Interpretazione astratta Interpretazione astratta By Giulia Costantini (819048) e Giuseppe Maggiore (819050) Contents Interpretazione astratta... 2 Idea generale... 2 Esempio di semantica... 2 Semantica concreta... 2 Semantica

Dettagli

Ricerche, ordinamenti e fusioni. 5.1 Introduzione. 5.2 Ricerca completa

Ricerche, ordinamenti e fusioni. 5.1 Introduzione. 5.2 Ricerca completa Ricerche, ordinamenti e fusioni 5.1 Introduzione Questo capitolo ci permette di fare pratica di programmazione utilizzando gli strumenti del linguaggio introdotti finora. A una prima lettura possono essere

Dettagli

DNA sequence alignment

DNA sequence alignment DNA sequence alignment - Introduzione: un possibile modello per rappresentare il DNA. Il DNA (Acido desossiribonucleico) è una sostanza presente nei nuclei cellulari, sia vegetali che animali; a questo

Dettagli

Alberi binari e alberi binari di ricerca

Alberi binari e alberi binari di ricerca Alberi binari e alberi binari di ricerca Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica

Dettagli

10. Interfaccia del File System

10. Interfaccia del File System 10. Interfaccia del File System 10.1 Il concetto di File 10.2 Metodi di accesso 10.3 Struttura delle Directory 10.4 Protezione (Leggere) 10.5 Semantica della Consistenza (Leggere) Un File System consiste

Dettagli

Laboratorio 07. Programmazione - CdS Matematica. Michele Donini 10 dicembre 2015

Laboratorio 07. Programmazione - CdS Matematica. Michele Donini 10 dicembre 2015 Laboratorio 07 Programmazione - CdS Matematica Michele Donini 10 dicembre 2015 Esercizio Lista I Costruire la classe lista concatenata: class Lista(): def init (self, val=none, succ=none): Denire le principali

Dettagli

E una notazione per descrivere gli algoritmi.

E una notazione per descrivere gli algoritmi. Linguaggio di Programmazione E una notazione per descrivere gli algoritmi. Programma:: e la rappresentazione di un algoritmo in un particolare linguaggio di programmazione. In generale, ogni linguaggio

Dettagli

Per semplicità eliminiamo le ripetizioni nell'albero.

Per semplicità eliminiamo le ripetizioni nell'albero. Albero binario di ricerca 20 40 100 95 Un albero binario di ricerca é un albero binario in cui ogni nodo ha un etichetta minore o uguale a quelle dei nodi nel sottoalbero radicato nel figlio destro e maggiore

Dettagli

Semantica Assiomatica

Semantica Assiomatica Semantica Assiomatica Anche nella semantica assiomatica, così come in quella operazionale, il significato associato ad un comando C viene definito specificando la transizione tra stati (a partire, cioè,

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Interfaccia del file system

Interfaccia del file system Interfaccia del file system Concetto di file Modalità di accesso Struttura delle directory Montaggio di un file system Condivisione di file Protezione 9.1 File E un insieme di informazioni correlate e

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli