Moto in due dimensioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Moto in due dimensioni"

Transcript

1 INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni

2 Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è dt dl vettore r=(x,). Come si vede in figur, il vettore r rppresent lo spostmento. Si noti che lo spostmento non dipende dll triettori percors bensì solo dll posizione inizile e finle. Lo spostmento tende ll tngente ll triettori qundo il vettore r f si r i r r f triettori vvicin r i. x r i Velocità medi L velocità medi, nlogmente l cso unidimensionle, è definit come v m = r t r r f triettori Poiché dividendo un vettore per uno sclre positivo si ottiene un vettore con stess direzione e verso, il vettore velocità medi h direzione e verso dello spostmento. x

3 Velocità ed ccelerzione Velocità istntne L velocità istntne si ottiene l limite di t che tende zero. Poiché è dirett come lo spostmento per r f molto vicino d r i, llor ess è tngente, punto per punto, ll triettori. v i v f v=lim t 0 r t v i v f v ccelerzione medi L'ccelerzione medi è il vettore ottenuto dividendo l'incremento v sull velocità per l'intervllo di tempo trscorso t m = v t ccelerzione istntne Quindi, considerndo due velocità inizile e finle infinitmente vicine, e t 0 ottenimo l'ccelerzione istntne: =lim t 0 v t

4 Moto in due dimensioni con ccelerzione costnte Il vettore posizione r, nel pino x, può essere sempre scritto nelle sue coordinte x(t) ed (t). Queste due coordinte (e quindi r(t)) vrino nel tempo, mentre i e j sono, come sempre, i versori per sciss ed ordint. r t = x t i t j Anche l velocità, ricvt come spiegto nelle pgine precedenti, si può scomporre nelle sue singole componenti: v t =v x t i v t j Poiché l'ccelerzione è suppost costnte, il vettore si può scomporre in due componenti indipendenti dl tempo: = x i j Riscrivendo quindi v x (t)=v ox + x t e v (t)=v o + t, ottenimo, per il vettore velocità, l'espressione: Dove bbimo definito v 0 =v ox i+v o j. v t =v 0, x i v 0, j x t i t j= v 0 t Definendo quindi x(t)=x 0 +v 0x t+1/2 x t 2 e (t)= 0 +v 0 +1/2 t 2 riscrivimo Dove bbimo definito r 0 =x o i+ o j. r t = x 0 i 0 j v 0x t i v 0 t j 1 2 x t 2 i 1 2 t 2 j r t = r 0 v 0 t 1 2 t 2

5 Moto di un proiettile Il moto di un proiettile è il moto di un corpo sottoposto ll'ccelerzione di grvità in un sistem nel qule si poss trscurre l'ttrito con l'ri. Questo tipo di moto h un triettori prbolic. Supponimo che un proiettile veng lncito d terr con velocità v 0 d un ngolo sopr l'orizzonte v 0 v 0 v 0x x L velocità si può llor scomporre, come visto in precedenz, nelle sue componenti crtesine v 0 =v 0x i v 0 j=v 0 cos i v 0 sin j Per qunto rigurd l posizione inizile del corpo, ssumimo che esso si trovi ll'origine degli ssi, per cui porremo x 0 =0 ed 0 =0. L'unic ccelerzione esistente inoltre è l'ccelerzione di grvità, dirett nel verso delle negtive: g= g j Lungo l direzione x quindi non esiste lcun ccelerzione. Possimo scrivere quindi il moto del proiettile come moto in due dimensioni x t =v 0x t t =v 0 t 1 2 g t 2 A cui ssocimo, per l velocità v x t =v 0x v t =v 0 g t

6 Moto di un proiettile Il primo pproccio l problem è quello di trovre l triettori del proiettile, ottenut risolvendo l'equzione x(t) rispetto ll vribile t e sostituendo il vlore ottenuto nell'equzione (t) t= x v 0x h mx x = x tn 1 2 g x 2 v 0 2 cos 2 v 0 x mx x Dll triettori osservimo che il punto rggiunge un quot mssim h mx ed un distnz mssim x mx chimt gittt. Prim di clcolre questi due vlori, nlizzimo cos ccde l vettore velocità lungo l triettori del proiettile: h mx v 0 Come si osserv dl grfico, l componente dell velocità lungo x rimne costnte lungo l triettori, mentre l componente lungo diminuisce fino d nnullrsi (in h mx ) per poi diventre negtiv. Nel punto x mx l velocità è in modulo ugule ll velocità v 0. x mx

7 Moto di un proiettile Per ricvre l mssim quot rggiunt, possimo nlizzre l funzione triettori e ricvrne l coordinte del vertice. Allo stesso modo possimo clcolre i vlori dell'sciss per i quli si nnull l'ordint, ottenendo l gittt. A questo tipo di nlisi, che lscio per esercizio llo studente, preferisco un'nlisi cinemtic! L mssim quot rggiunt è l coordint del punto in cui l componente v dell velocità si nnull.d quest equzione ricvimo il tempo impiegto dl proiettile per giungere quot mssim, dopodiché lo sostituimo nell legge orri (t), ricvndo ppunto h mx. Per ricvre l gittt, considerimo che il moto prbolico è simmetrico rispetto l vertice. Per quest rgione, il tempo impiegto dl proiettile per rggiungere il punto x mx è doppio rispetto l tempo impiegto per rggiungere h mx. t xmx =2 v 0 g D cui ricvimo x 2 v 0 g = x mx=v 0x 2 v 0 g = v 2 0 g v t =0 t hmx = v 0 g v 0 g =h mx =v 0 h mx = 1 2 sin 2 2 v 0 g D cui ricvimo v 0 g 1 2 g v 0 g 2 ovvero

8 Moto di un proiettile Un'nlisi dei risultti ottenuti ci permette di cpire che si l'ltezz mssim si l gittt mssim dipendono solo dl modulo dell velocità inizile e dll'ccelerzione di grvità. In prticolre notimo che l gittt è mssim qundo è mssim l funzione sin(2 ) ovvero per =45. Inoltre, per ngoli complementri si h l stess gittt x

9 Moto circolre uniforme Il moto circolre uniforme è un moto che vviene su un percorso circolre e con modulo dell velocità v costnte. Poiché l velocità cmbi d ogni istnte direzione, c'è un'ccelerzione c non null rivolt verso il centro dell circonferenz, che chimeremo ccelerzione centripet.. v Dimostrimo or che esiste un relzione tr ccelerzione e velocità v, ovvero che v O v c = v2 r Per dimostrre quest relzione considerimo il settore circolre di figur in cui notimo che i tringoli rossi sono simili A v i r O r r B vf v i v f v i r r = v v Il grfico di sopr mostr nche che l'ccelerzione, dirett come v, è dirett verso il centro!!! L'ccelerzione medi è definit come m = v v f i = v t t Ovvero, sfruttndo le proprietà dei tringoli simili m = v r r t = v r v= v2 r

10 Accelerzione tngenzile e ccelerzione rdile t r r r Se oltre curvre, ovvero cmbire direzione e verso, un corpo cmbi nche modulo dell velocità, llor diremo che possiede nche un componente tngenzile dell'ccelerzione: = r t Dove r è l'ccelerzione rdile (centripet) ed t quell tngenzile. L'ccelerzione rdile è, istnte per istnte, r = v2 r Mentre quell tngenzile si trov come derivt del modulo dell velocità!!! t = d v dt t t

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G Liceo Scientifico Sttle Leonrdo d Vinci Vi Possidone 14 8915 Reggio Clbri Anno Scolstico 008/009 Clsse III Sezione G Dirigente scolstico: Preside Prof. ss Vincenzin Mzzuc Professore coordintore del progetto:

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Note sul moto circolare uniforme.

Note sul moto circolare uniforme. Note sul moto circolre uniforme. Muro Sit e-mil: murosit@tisclinet.it Versione proisori, ottobre 2012. Indice 1 Il moto circolre uniforme in sintesi. 1 2 L ide di Hmilton 2 3 Esercizi 5 3.1 Risposte.......................................

Dettagli

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz.

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz. Un punto mterile si muove luno un circonferenz di rio cm con frequenz di 5, Hz. Clcolre l velocità tnenzile ed il numero di iri compiuti in s. R L velocità tnenzile l clcolimo ttrverso l su definizione:

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1)

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1) Nome.Conome clsse 5D Febbrio Veriic di mtemtic Dt l unzione: ke k k per < per punti.5 Dimostr che k R è continu e derivbile R b Trov il vlore di k tle che l tnente l rico dell unzione nel suo punto di

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara Fisic I - Leione 01 Cristino Guidori Diprtimento di Fisic Universitá di Ferrr guidori@fe.infn.it http://www.fe.infn.it/ guidori/ 21 Novembre 2002 Fisic I - A.A. 2002-2003 Leione 01 Definiioni e Notioni

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli curvilinei di prim specie (integrli di densità) 15 Dicembre 215 Indice 1 Integrli di line di prim specie

Dettagli

{x (t) = CINEMATICA DEL PUNTO MOTI UNIDIMENSIONALI ESERCIZIO CP1

{x (t) = CINEMATICA DEL PUNTO MOTI UNIDIMENSIONALI ESERCIZIO CP1 CINEMATICA DEL PUNTO MOTI UNIDIMENSIONALI Pssimo ll prim serie di esercizi che crtterizzernno i nostri incontri. In prticolre risolveremo il primo esercizio commentndo ogni pssggio in modo esgertmente

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

La parabola con asse parallelo all ady

La parabola con asse parallelo all ady L prbol con sse prllelo ll dy I Prbol con vertice nell origine degli ssi crtesini I disegni degli esercizi dll 1 l 3 dell sched di lbortorio, sono i seguenti: Quindi il segno del coefficiente di x determin

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2 APPENDICE 1 AL CAPITOLO 3: RAPPRESENTAZIONE GRAFICA DELLA PARABOLA Per 0 l insieme,y / y = + + c, grfico dell funzione f = + + c { } f con, è l prol di equzione y = + + c Voglimo disegnrl non è difficile

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Definiamo ora alcuni vettori particolarmente importanti detti versori.

Definiamo ora alcuni vettori particolarmente importanti detti versori. Prof. A. Di Mro I versori Definimo or lcni vettori prticolrmente importnti detti versori. Un versore è semplicemente n vettore di modlo nitrio. Normlmente gli ssi, e z vengono ssociti i versori i ˆ, ˆj,

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

Nicola De Rosa, Liceo scientifico PNI sessione straordinaria 2010, matematicamente.it. e se ne tracci il grafico nell intervallo 0 x 2

Nicola De Rosa, Liceo scientifico PNI sessione straordinaria 2010, matematicamente.it. e se ne tracci il grafico nell intervallo 0 x 2 Nicol De Ros, Liceo scientifico PNI sessione strordinri, mtemticmente.it PROBLEMA Sono dti: un circonferenz di centro O e dimetro AB e tngente t prllel l dimetro. Si prolungno i rggi OA ed OB di due segmenti

Dettagli

Cap. 4 - Algebra vettoriale

Cap. 4 - Algebra vettoriale Mssimo Bnfi Cp. 4 - Algebr vettorile Cpitolo 4 Algebr vettorile 4.1. Grndezze sclri Si definiscono sclri quelle grndezze fisiche che sono descritte in modo completo d un numero con l reltiv unità di misur.

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

9 Simulazione di prova d Esame di Stato

9 Simulazione di prova d Esame di Stato 9 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si f l funzione rele di equzione y =( )e.. Studire e trccire il grfico di f.

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE uthor: Ing, Giulio De Meo GEOMETRIA TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE L somm degli ngoli interni di un poligono di n lti è (n - ) 180. L somm degli ngoli esterni di un qulsisi poligono vle 360.

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

Capitolo 12. Dinamica relativa

Capitolo 12. Dinamica relativa Cpitolo 12 Dinmic reltiv 12.1 Le forze pprenti 1. Sppimo dll cinemtic reltiv che l ccelerzione di un punto P in un riferimento K e l ccelerzione ' di P in un riferimento K ' sono legte l un ll ltr dll

Dettagli

Cinematica vettoriale

Cinematica vettoriale Cpitolo 3 Cinemtic vettorile. Indipendenz dei moti perpendicolri Il psso successivo llo studio dello spostmento lungo un rett, è l nlisi del moto di un punto mterile in due dimensioni, vle dire tutte quelle

Dettagli

Classi IV C IV E ALUNNO CLASSE LEGGI UNO DEI SEGUENTI TESTI. Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri

Classi IV C IV E ALUNNO CLASSE LEGGI UNO DEI SEGUENTI TESTI. Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Per informzioni, consigli, problemi robbypit@tin.it Istituto Professionle di Stto per l Industri e l Artiginto Gincrlo Vlluri Clssi IV C IV E.s. 0/0 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

SOLUZIONI GARA DI MATEMATICA ON-LINE (9/10/2017)

SOLUZIONI GARA DI MATEMATICA ON-LINE (9/10/2017) SOLUZIONI GARA DI MATEMATICA ON-LINE (9/10/017) 1. INSONNIA [04] L operzione richiest equivle sommre 01 volte 017 messo in colonn e spostto sempre di un csell come in figur. Nell prte finle del numero

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica

Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica Noe..Cognoe.clsse 4C 7 Mggio Verific di Mtetic PROBLEMA ( punti In un tringolo ABC il lto BC isur e l ngolo opposto è di. Deterinre in funzione dell piezz di ABC ˆ CH l ndento di f ( essendo CH e bisettrici

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

Orientamatica 2016/2017 Appunti sulle equazioni alle differenze e differenziali

Orientamatica 2016/2017 Appunti sulle equazioni alle differenze e differenziali Centro PRISTEM, Università Commercile L. Bocconi (2016) Orientmtic 2016/2017 Appunti sulle equzioni lle differenze e differenzili proff. Angelo Guerrggio e Jcopo De Tullio Centro PRISTEM - Università Bocconi

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli:

rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli: Esme scritto di Elettromgnetismo del 15 Luglio 2011 -.. 2010-2011 proff. S. Gigu, F. Lcv, F. Ricci Elettromgnetismo 10 o 12 crediti: esercizi 1,3,4 tempo 3 h e 30 min; Elettromgnetismo 5 crediti: esercizio

Dettagli

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di Sistemi principli di normli d un vrietà gicenti nel suo o 2. Not di Giuseppe Vitli Pdov. In un mio recente lvoro *) ho considerto, per ogni superficie il cui j si di 2 k dimensioni (k 2, 3), un sistem

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli