Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza"

Transcript

1 Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza 3 maggio 2005 Esercizio 1 Consideriamo l esempio del libro di testo Annette Dobson (1990) An Introduction to Generalized Linear Models, pagina 9: Plant Weight Data. In questo esempio si considerano due gruppi di piante, tutti di numerosità uguale a 10. Piante appartenenti a gruppi diversi sono cresciute in condizioni diverse; piante appartenenti al medesimo gruppo si sono sviluppate nelle stesse condizioni di crescita. In particolare: - ctl indica il peso di piante cresciute in condizioni normali (gruppo 0); - trt indica il peso delle piante che hanno subito un trattamento. ctl=c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14) trt=c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69) Definiamo la variabile group: essa rappresenta una variabile factor, definita attraverso la funzione gl, e costituirà l insieme di variabili indicatrici nel modello di regressione. group=gl(2,10,20, labels=c("ctl","trt")) La variabile group, di tipo factor, ci dice che le prime 10 unità statistiche appartengono al gruppo 0, le seconde 10 al gruppo 1. Se si stampa a video la variabile group, con il comando print(group), 1

2 Ctl Trt Figura 1: Data frame piante si possono osservare tutti i valori che essa assume sul campione, in questo caso stringhe uguali alle etichette che vengono utilizzate. Oltre a questo sul monitor compare una scritta che in questo caso sarà: labels: Ctl Trt. Quest ultima ci ricorda che non si tratta di un semplice vettore di stringhe, ma di una variabile di tipo factor caratterizzata dalle etichette Ctl, Trt. Definiamo inoltre la variabile weight, la variabile risposta nel modello di regressione weight=c(ctl,trt) Attenzione: essa deve essere definita coerentemente con la costruzione della variabile factor, quindi i primi 10 elementi devono appartenere al gruppo di controllo, i secondi 10 al gruppo 1, individuato dall etichetta Trt nella variabile group. (Le etichette di una variabile factor possono anche essere costituite da numeri. Non bisogna però dimenticare che, anche in quel caso, essa sarà una variabile qualitativa e non quantitativa.) Definiamo un data frame, e diamo uno sguardo ai nostri dati, figura 1. plant=data.frame(weight,group) plot(group,weight,col="red",range=0) Il boxplot della variabile weight contro la variabile group costituisce un utile analisi preliminare atta a descrivere le differenze esistenti fra i diversi gruppi di unità statistiche. Il boxplot è basato su cinque valori che sintetizzano 2

3 Ctl Trt Figura 2: Data frame piante la distribuzione: il valore più basso, il primo quartile, la mediana, il terzo quartile e il valore più alto (li possiamo ricavare velocemente con il comando summary). La base e l altezza del rettangolo rappresentano il primo ed il terzo quartile, mentre gli estremi dei baffi rappresentano il valore più basso ed il valore più alto. Dall osservazione del boxplot sembrerebbe emergere una differenza tra i due gruppi, ma teniamo presente che abbiamo a disposizione soltanto 10 osservazioni per gruppo. (IMPORTANTE: R ordina le etichette di una variabile factor alfabeticamente, se esse sono stringhe di caratteri, o in senso crescente se esse sono numeri. Il gruppo di controllo sarà costituito da quelle unità statistiche su cui si osserva il valore più piccolo della variabile factor. In questo esempio si tratta delle unità statistiche su cui si osserva group = Ctl.) Definiamo il modello seguente: Y i = β 0 + β 1 x i + e i, dove x i = 0 se la i-esima unità statistica non è stata trattata, x i = 1 altrimenti. Il coefficiente di regressione β 0 rappresenta la media generale comune a tutte le unità, mentre il coefficiente β 1 rappresenta l effetto del trattamento sulla media del gruppo di piante che hanno subito un trattamento. Stimiamo il modello e con il comando points andiamo a sovrapporre i punti corrispondenti ai fitted-values al boxplot, figura 2. L effetto stimato del trattamento sul peso delle piante è pari a points(group,lm.1$fitted.values) 3

4 Supponiamo di voler verificare l effetto del trattamento sul peso delle piante. A tale scopo effettuiamo una analisi della varianza. Consideriamo il sistema di ipotesi: { H0 : β 1 = β 1 H 1 : β 1 β 1 con β1 = 0, e definiamo la statistica T = b 1 β1. Sappiamo che se H s.e.(b 1 ) 0 è vera, T t n 2. Guardiamo il valore della statistica T fornito dal comando summary, ed il relativo p value. Avendo fissato un livello di significatività pari a 0.05, e avendo ottenuto un valore del p value pari a 0.249, siamo indotti ad accettare l ipotesi nulla. Quindi al livello di significatività 0.05, siamo indotti a ritenere che le condizioni di crescita non influenzino il peso delle piante. Allo stesso modo potevamo osservare il valore della statistica n i=1 F = (Ŷi Ȳi) 2 ˆσ 2 Sappiamo che sotto l ipotesi nulla F F 1,n 2. La statistica test F può essere espressa come rapporto tra la devianza spiegata D REG e la devianza residua D RES, divise per i rispettivi gradi di libertà. summary(lm.1) anova(lm.1) Call: lm(formula = weight ~ group) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-15 *** grouptrt Signif. codes: 0 *** ** 0.01 * Residual standard error: on 18 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 18 DF, p-value:

5 Normal Q Q Plot Sample Quantiles Theoretical Quantiles Figura 3: Q-Q Plot residui Osserviamo che il valore della statistica F che si legge nella tabella dell analisi della varianza, coincide con quello fornito dal comando summary(lm.1). Analysis of Variance Table Response: weight Df Sum Sq Mean Sq F value Pr(>F) group Residuals È importante tenere presente che il modello che abbiamo stimato si basa su delle ipotesi, ed è pertanto importante verificarne che i dati non esibiscano un comportamento palesemente difforme, come abbiamo visto in parte nella prima esercitazione. Ma in questo esercizio abbiamo effettuato un altra ipotesi sugli errori, ipotesi che ci ha consentito di effettuare la verifica di ipotesi sui coefficienti di regressione: abbiamo ipotizzato che gli errori abbiano distribuzione normale. Al fine di valutare la fondatezza di questa ipotesi possiamo rappresentare il qqplot: ad ogni osservazione associamo un punto avente come coordinate il quantile rispetto alla distribuzione di riferimento, e il quantile empirico. qqnorm(lm.1$residuals) qqline(lm.1$residuals) Il grafico suggerisce una violazione dell ipotesi di normalità. Tuttavia è importante osservare e fare attenzione al fatto che abbiamo poche osservazioni, non è detto che i residui siano gaussiani. 5

6 Hwt Bwt Figura 4: Data frame gatti1 - modello con intercetta Esercizio 2 Il file gatti1.dat contiene le misurazioni del peso corporeo in chilogrammi (tale variabile è chiamata Bwt ) e del peso del cuore misurato in grammi (il nome di questa variabile è Hwt ) rilevate su 144 gatti. Stimare la regressione lineare di Hwt su Bwt e verificare che i coefficienti siano significativamente diversi da 0 ad un livello pari a Commentare i risultati, con particolare riguardo alla bontà di adattamento del modello. Carichiamo il dataset gatti=read.table("gatti2.dat"), e andiamo a rappresentarlo graficamente. La rappresentazione grafica suggerisce una relazione lineare tra le variabili, pertanto proviamo ad adattare un modello di regressione lineare semplice: y = β 0 + β 1 x + e. La variabile risposta y è il peso del cuore, mentre la variabile x rappresenta il peso corporeo. Dopo aver stimato il modello (i dati e la retta di regressione sono rappresentati nella figura 4), andiamo a verificare la significatività dei coefficienti di regressione. Consideriamo il sistema di ipotesi: 6

7 { H0 : β j = β j H 1 : β j β j con βj = 0, j = 0, 1. Definiamo la statistica T = b j βj s.e.(b j. Sappiamo che se ) H 0 è vera, T t n 2. Osserviamo quanto segue: - Coefficiente β 0. Il p-value è pari a 0.607: avendo fissato α = 0.05, accettiamo l ipotesi nulla. Pertanto concludiamo che, ad un livello di significatività pari a 0.05, il coefficiente di regressione β 0 non è significativamente diverso da 0. - Coefficiente β 1. Il p-value è < 2e 16: avendo fissato α = 0.05, rifiutiamo l ipotesi nulla. Pertanto concludiamo che, ad un livello di significatività pari a 0.05, il coefficiente di regressione β 1 è significativamente diverso da 0. Call: lm(formula = Hwt ~ Bwt) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) Bwt <2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 142 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 142 DF, p-value: 0 La non significatività del coefficiente β 0 ci induce a proporre un modello senza intercetta: y = β 1 x 1 + e. Per stimare con R un modello senza intercetta è necessario aggiugere -1 quando si utilizza il comando lm: 7

8 Hwt Bwt Figura 5: Data frame gatti 1 - modello senza intercetta lm2fit_lm(hwt~bwt-1) La retta di regressione stimata, e i dati, sono rappresentati nella figura 5. Al fine di valutare la bontà di adattamento del modello ai dati possiamo per prima cosa osservare il valore assunto dal coefficiente di determinazione lineare. Osserviamo che elimando l intercetta il il valore del coefficiente di determinazione lineare R 2 passa da 0.64 a Call: lm(formula = Hwt ~ Bwt - 1) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) Bwt <2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 143 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: 8015 on 1 and 143 DF, p-value: 0 8

9 gatti1 lm2fit$residuals Index lm2fit$residuals lm2fit$fitted.values Figura 6: Residui e valori stimati contro residui Al fine di valutare la bontà del modello possiamo anche condurre una analisi dei residui. Osserviamo, vedi figura 6, che i residui sono compresi in una banda orizzontale. Non emerge pertanto un palese conflitto tra l evidenza empirica e le ipotesi effettuate (media nulla, incorrelazione, omoschedasticità, indipendenza con i regressori). L ipotesi di normalità non è contraddetta dal Q-Q plot, figura 7. 9

10 Normal Q Q Plot Sample Quantiles Theoretical Quantiles Figura 7: Q-Q Plot residui 10

11 F M Figura 8: Data frame gatti2 Esercizio 3 Il file gatti2.dat contiene le misurazioni del peso corporeo in chilogrammi e l indicazione del sesso di 144 gatti. Utilizzando il modello di regressione lineare, verificare l ipotesi che il sesso sia influente sul peso dei gatti ad un livello di significatività uguale a Qualora tale ipotesi fosse confermata, dire quale sia il valore della stima puntuale dell effetto sesso sul peso. Proponiamo un modello di regressione lineare semplice: y i = β 0 + β 1 x i + e i, e lo andiamo a stimare. Il boxplot e la stima dei coefficienti di regressione sono rappresentati nella figura 8. Call: lm(formula = Bwt ~ Sex) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** SexM e-11 *** --- Signif. codes: 0 *** ** 0.01 *

12 Residual standard error: on 142 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 142 DF, p-value: 1.59e-011 Il valore della stima puntuale dell effetto sesso sul peso è pari a Avendo cura di introdurre un opportuno sistema di ipotesi, come visto nell esercizio 1, è possibile osservare che il sesso ha influenza sul peso corporeo. La bontà di adattamento del modello ai dati può essere analizzata come di consueto attraverso l analisi dei residui. 12

13 Dati 1 y x1 Figura 9: Dati Dati1.dat e retta di regressione stimata Esercizio 4 Considerato un file dati esterno, dati1.dat, individuare e stimare un modello, verificare la significatività dei coefficienti di regressione, ed analizzare la bontà di adattamento del modello ai dati. Dopo aver osservato i dati, stimiamo un modello di regressione lineare semplice, figura 9. Cosa possiamo concludere sulla significatività dei coefficienti di regressione? Per rispondere a questa domanda dobbiamo introdurre un sistema di ipotesi, definire una statistica test, e confrontare i valori del p-value con il livello di significatività richiesto. Call: lm(formula = y1 ~ x1) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) * x ** --- Signif. codes: 0 *** ** 0.01 *

14 Dati 1 x1y1fit$residuals Index x1y1fit$residuals x1y1fit$fitted.values Figura 10: Residui e valori stimati contro residui Residual standard error: on 9 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 9 DF, p-value: Ad un livello α = 0.05, entrambi i coefficienti risultano essere significativamente diversi da zero. Possiamo valutare la bontà di adattamento del modello ai dati osservando il coefficiente di determinazione lineare, che assume un valore pari a Proponiamo inoltre un analisi dei residui come visto in precedenza. Osserviamo in particolare, figura 10-11, che i residui stimati non sembrano supportare l ipotesi di incorrelazione, l ipotesi di indipendenza con i regressori, di normalità. Ripetere l esercizio con riferimento al file dati dati2.dat. 14

15 Normal Q Q Plot Sample Quantiles Theoretical Quantiles Figura 11: QQ-plot dati1 15

> d = alimentazione == "benz" > mean(percorr.urbana[!d]) - mean(percorr.urbana[d]) [1] 2.385627. > sd(percorr.urbana[d]) [1] 2.

> d = alimentazione == benz > mean(percorr.urbana[!d]) - mean(percorr.urbana[d]) [1] 2.385627. > sd(percorr.urbana[d]) [1] 2. A questo punto vale la pena di soffermarci di più sull alimentazione. Intanto cerchiamo di indagare se l alimentazione è davvero un fattore significativo per la percorrenza come è luogo comune pensare.

Dettagli

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12)

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12) Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 011-1) REGRESSIONE LINEARE SEMPLICE OPEN STATISTICA 8.44 Per 8 settimanali, appartenenti alla medesima fascia di prezzo e presenti in edicola

Dettagli

Indice. 1 Introduzione ai modelli lineari 2. 2 Dataset 3. 3 Il Modello 8. 4 In pratica 12 4.1 Peso e percorrenza... 12

Indice. 1 Introduzione ai modelli lineari 2. 2 Dataset 3. 3 Il Modello 8. 4 In pratica 12 4.1 Peso e percorrenza... 12 Indice 1 Introduzione ai modelli lineari 2 2 Dataset 3 3 Il Modello 8 4 In pratica 12 41 Peso e percorrenza 12 1 Capitolo 1 Introduzione ai modelli lineari Quando si analizzano dei dati, spesso si vuole

Dettagli

Regressione lineare multipla Strumenti quantitativi per la gestione

Regressione lineare multipla Strumenti quantitativi per la gestione Regressione lineare multipla Strumenti quantitativi per la gestione Emanuele Taufer Regressione lineare multipla (RLM) Esempio: RLM con due predittori Stima dei coefficienti e previsione Advertising data

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Validazione dei modelli Strumenti quantitativi per la gestione

Validazione dei modelli Strumenti quantitativi per la gestione Validazione dei modelli Strumenti quantitativi per la gestione Emanuele Taufer Validazione dei modelli Il data set Auto I dati Il problema analizzato Validation set approach Diagramma a dispersione Test

Dettagli

LABORATORIO 5. ANALISI DELLA VARIANZA AD UN CRITERIO DI CLASSIFICAZIONE

LABORATORIO 5. ANALISI DELLA VARIANZA AD UN CRITERIO DI CLASSIFICAZIONE LABORATORIO 5. ANALISI DELLA VARIANZA AD UN CRITERIO DI CLASSIFICAZIONE 5.1 ESEMPIO DI ANOVA AD UNA VIA In un esperimento un gruppo di bambini è stato assegnato a caso a 3 trattamenti, allo scopo di determinare

Dettagli

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO I TEST STATISTICI E IL P-VALUE Obiettivo di questo Learning Object è ripassare la teoria ma soprattutto la pratica dei test statistici, con un attenzione particolare ai test che si usano in Econometria.

Dettagli

ANALISI DELLA VARIANZA

ANALISI DELLA VARIANZA ANALISI DELLA VARIANZA Il data set coagulation contenuto nella libreria faraway contiene i tempi di coagulazione del sangue (misurato in secondi) di 24 animali sottoposti casualmente a quattro tipi di

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

0.1 Percorrenza e Cilindrata

0.1 Percorrenza e Cilindrata 0.1 Percorrenza e Cilindrata Iniziamo ora un analisi leggermente più complessa basata sempre sui concetti appena introdotti. Innanzi tutto possiamo osservare, dal grafico ottenuto con il comando pairs,

Dettagli

Analisi grafica residui in R. Da output grafico analisi regressionelm1.csv Vedi dispensa. peso-statura

Analisi grafica residui in R. Da output grafico analisi regressionelm1.csv Vedi dispensa. peso-statura Analisi grafica residui in R Da output grafico analisi regressionelm1.csv Vedi dispensa peso-statura 1) Il plot in alto a sinistra mostra gli errori residui contro i loro valori stimati. I residui devono

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

La previsione delle vendite dei lm

La previsione delle vendite dei lm La previsione delle vendite dei lm L'industria cinematograca è un business con un alto prolo e un'elevata variabilità nei ricavi. Nel 2005, gli americani hanno speso 8.8 miliardi di dollari di biglietti

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

LABORATORIO DI PROBABILITA E STATISTICA

LABORATORIO DI PROBABILITA E STATISTICA UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 6 ESERCIZI RIEPILOGATIVI PRIME 3 LEZIONI REGRESSIONE LINEARE: SPORT - COLESTEROLO ESERCIZIO 8: La tabella seguente

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Esercizio 1 GRAFICO 1. X e Y sono indipendenti. X e Y non sono correlate. La correlazione tra X e Y è <1. X e Y sono perfettamente correlate

Esercizio 1 GRAFICO 1. X e Y sono indipendenti. X e Y non sono correlate. La correlazione tra X e Y è <1. X e Y sono perfettamente correlate Esercizio 1 Osservare il grafico 1 riportato in figura che mette in relazione una variabile dipendente Y ed una variabile indipendente X e rispondere alle seguenti domande. 400 300 200 GRAFICO 1 100 0

Dettagli

Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009)

Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009) Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009) Quesito: Posso stimare il numero di ore passate a studiare statistica sul voto conseguito all esame? Potrei calcolare il coefficiente di correlazione.

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Modello di regressione lineare

Modello di regressione lineare Modello di regressione lineare a cura di Giordano dott. Enrico enrico.giordano@meliorbanca.com Nel presente lavoro viene descritto in modo dettagliato (attraverso anche un impatto visivo), l analisi di

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di indicatori sintetici che individuano, con un singolo valore, proprieta` statistiche di un campione/popolazione rispetto

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione2: 04-03-2005

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione2: 04-03-2005 esercitazione 2 p. 1/12 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione2: 04-03-2005 Luca Monno Università degli studi di Pavia luca.monno@unipv.it http://www.lucamonno.it

Dettagli

Esercizi di riepilogo Statistica III canale, anno 2008

Esercizi di riepilogo Statistica III canale, anno 2008 Esercizio 1 - Esercizio 5 esame 22 giugno 2004 Esercizi di riepilogo Statistica III canale, anno 2008 Data la seguente distribuzione di 100 dipendenti di un azienda in base al tempo impiegato (in minuti)

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIA INFORMATICA

UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIA INFORMATICA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIA INFORMATICA TESI DI LAUREA CONFRONTO TRA MODELLI STATISTICI NON PARAMETRICI :UNA APPLICAZIONE

Dettagli

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 COMPITO 4 (3 CREDITI) Nome: Cognome: Matricola: ISTRUZIONI Gli esercizi che seguono sono di tre tipi: Domande Vero/Falso: cerchiate V o

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Esperimenti in vaso: disegni a randomizzazione completa

Esperimenti in vaso: disegni a randomizzazione completa Esperimenti in vaso: disegni a randomizzazione completa Andrea Onofri 10 marzo 2015 Indice 1 Disegno sperimentale 2 2 Analisi dei dati 3 2.1 Analisi della varianza (ANOVA).................. 4 2.2 Errore

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

3) ANALISI DEI RESIDUI

3) ANALISI DEI RESIDUI 3) ANALISI DEI RESIDUI Dopo l analisi di regressione si eseguono alcuni test sui residui per avere una ulteriore conferma della validità del modello e delle assunzioni (distribuzione normale degli errori,

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

Regressione Lineare con un Singolo Regressore

Regressione Lineare con un Singolo Regressore Regressione Lineare con un Singolo Regressore Quali sono gli effetti dell introduzione di pene severe per gli automobilisti ubriachi? Quali sono gli effetti della riduzione della dimensione delle classi

Dettagli

Modelli statistici per l analisi dei dati e la valutazione d efficacia Il caso del Comune di Perugia

Modelli statistici per l analisi dei dati e la valutazione d efficacia Il caso del Comune di Perugia Modelli statistici per l analisi dei dati e la valutazione d efficacia Il caso del Comune di Perugia Alessandra Pelliccia Matteo Cataldi Matteo Filippo Donadi 0 AGENDA Fonti Descrizione dei dati Variabili

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD.

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Advanced level Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Sommario Toolbox finance Analisi dei portafogli Analisi grafica Determinate Date Toolbox statistics Analisi

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 8: 27-05-2004

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 8: 27-05-2004 esercitazione 8 p. 1/8 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 8: 27-05-2004 Luca Monno Università degli studi di Pavia luca.monno@unipv.it http://www.lucamonno.it

Dettagli

obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no?

obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no? 08.07.2014 - appello ENE - docente: E. Piazza obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no? il presente elaborato si compone di x (ics) pagine Cognome Nome matr.n.

Dettagli

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti)

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) del provider IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) 1 del provider - premessa (1) in merito alla fase di gestione ordinaria dell outsourcing sono state richiamate le prassi di miglioramento

Dettagli

Regressione logistica. Strumenti quantitativi per la gestione

Regressione logistica. Strumenti quantitativi per la gestione Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html#(1) 1/25 Metodi di classificazione I metodi usati per analizzare

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

Il BOOM degli ascolti dei programmi culinari. ha inciso sulle iscrizioni all istituto alberghiero???

Il BOOM degli ascolti dei programmi culinari. ha inciso sulle iscrizioni all istituto alberghiero??? Il BOOM degli ascolti dei programmi culinari ha inciso sulle iscrizioni all istituto alberghiero??? 60000 50000 40000 30000 20000 10000 0 2007 2008 2009 2010 2011 2012 2013 2014 gli ingredienti sono: Anno

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE 1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro)

Dettagli

Modelli con predittori qualitativi e modelli con interazioni. Strumenti quantitativi per la gestione

Modelli con predittori qualitativi e modelli con interazioni. Strumenti quantitativi per la gestione Modelli con predittori qualitativi e modelli con interazioni Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/3d_viq.html#(1) 1/26 Utilizzare

Dettagli

ANALISI DI CORRELAZIONE

ANALISI DI CORRELAZIONE ANALISI DI CORRELAZIONE Esempio: Dati raccolti da n = 129 studenti di Pavia (A.A. 21/2) Altezza (cm) Peso (Kg) Voto Algebra e Geometria Voto Fisica I Valutare la correlazione delle seguenti coppie: Peso

Dettagli

Verifica di ipotesi sui coefficienti di regressione. Verifica di ipotesi sul coefficiente angolare

Verifica di ipotesi sui coefficienti di regressione. Verifica di ipotesi sul coefficiente angolare Verifica di ipotesi sui coefficienti di regressione Per il momento supponiamo di muoverci nel contesto del modello gaussiano. Vogliamo capire se alcune nostre congetture sui coefficienti di regressione

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y.

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y. Lezione n. 5 5.1 Grafici e distribuzioni Esempio 5.1 Legame tra Weibull ed esponenziale; TLC per v.a. esponenziali Supponiamo che X Weibull(α, β). (i) Si consideri la distribuzione di Y = X β. (ii) Fissato

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0 Statistica per l azienda Esame del 19.06.12 COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Note introduttive Il software econometrico Easy Reg è scaricabile gratuitamente da internet (http://econ.la.psu.edu/~hbierens/easyreg.

Note introduttive Il software econometrico Easy Reg è scaricabile gratuitamente da internet (http://econ.la.psu.edu/~hbierens/easyreg. Note introduttive Il software econometrico Easy Reg è scaricabile gratuitamente da internet (http://econ.la.psu.edu/~hbierens/easyreg.htm) Per importare i dati in Easy Reg bisogna: 1. Cambiare le impostazioni

Dettagli

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELL ROLE Six Sigma Master lack elt Dicembre, 009 Introduzione Nell esecuzione dei progetti Six Sigma è di fondamentale importanza sapere se

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Esercizi: i rendimenti finanziari

Esercizi: i rendimenti finanziari Esercizi: i rendimenti finanziari Operazioni algebriche elementari Distribuzione e dipendenza Teoria di probabilità Selezione portafoglio p. 1/25 Esercizio I Nella tabella sottostante relativa all indice

Dettagli

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3

Dettagli

EMBA PART TIME 2012 ROMA I ANNO

EMBA PART TIME 2012 ROMA I ANNO BUSINESS STATISTICS: ASSIGNMENT II: EMBA PART TIME 2012 ROMA I ANNO PROF. MOSCONI ESERCIZIO 1: USO DEL MODELLO DI REGRESSIONE PER DETERMINARE IL VALORE DEGLI IMMOBILI. ESERCIZIO 2: PREVISIONE DI VARIABILI

Dettagli

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie Università del Piemonte Orientale Corso di dottorato in medicina molecolare aa 2002 2003 Corso di Statistica Medica Inferenza sulle medie Statistica U Test z Test t campioni indipendenti con uguale varianza

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli