Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)"

Transcript

1 Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ; A è smplicmnt connsso (cioè A è connsso d inoltr ogni curva gnralmnt rgolar chiusa contnuta in A è la frontira di un dominio intramnt contnuto in A ) Allora il campo F (, y) è dotato di potnzial Inoltr un suo potnzial è (vidntmnt) U(, y) = F dr, γ (( 0, y,(, y)) ssndo ( 0, y un fissato punto di A γ una (qualunqu) curva ch passa pr i punti ( 0, y (, y ) Ossvazion: Gli insimi R \{(0,} l coron circolari sono vidntmnt insimi connssi, ma non smplicmnt connssi Nlla dimostrazion dl torma si utilizza il sgunt important risultato, ch può anch ssr visto com una gnralizzazion agli intgrali doppi, dl scondo torma dl calcolo pr funzioni di una variabil, Torma (Formula di Gauss-Grn): Sia un dominio rgolar limitato di R (cioè la frontira di è l union di curv chius gnralmnt rgolari) f : R una funzion continua con l su drivat parziali Allora sussistono l sgunti uguaglianz: f ddy = fdy f ddy = fd ( ) y imostrazion: Intanto si prova la prima uguaglianza nl caso in cui dominio all ass y Sia dunqu Allora si ha: {(, ), δ( ) γ( )} = y R c y d y è normal risptto d γ ( y) d d f f ddy dy (, y) d dy f (, y) f ( ( y), y) f ( ( y), y)) dy f (, y) dy = γ ( y) = = [ ] = [ γ δ ] = = δ ( y) c δ ( y) c c (l ultima uguaglianza è immdiata non appna si scriv la paramtrizzazion dll quattro curv rgolari la cui union è la frontira di si utilizza la dfinizion di intgral curvilino) La prova dlla sconda uguaglianza, quando è normal all ass è dl tutto simil La ( ) Qui sta a indicar ch l curv chius ch costituiscono la frontira di sono orintat in snso antiorario s i punti dl dominio sono intrni alla curva, in snso orario s sono strni 6

2 Campi Vttoriali Form iffrnziali-sconda Part prova dl torma sgu allora facilmnt dal sgunt risultato dl qual si omtt la dimostrazion: Ogni dominio rgolar è l union di un numro finito di domini ch sono normali sia risptto all ass ch risptto all ass y imostrazion (dlla sconda condizion sufficint pr i campi consrvativi piani): Sia γ una curva chiusa contnuta in A Essndo A smplicmnt connsso sist un dominio A tal ch = γ allora F dr = F d F dy = ddy ddy = γ 0 y L assrto sgu a qusto punto dalla prima condizion sufficint Pr concludr si sgnala, snza darn la dimostrazion, un risultato in qualch modo simil al prcdnt ma valido anch in R Torma (sconda condizion sufficint pr i campi consrvativi in R ): Sia F (, yz, ) un campo vttorial dfinito in un aprto A di R si supponga ultriormnt: rot = 0 (cioè =, =, = y z z y ); F A è convsso Allora il campo F (, yz, ) è dotato di potnzial Inoltr un suo potnzial è dato da U(, y, z) dr = F = F(( 0 t(, ) ( (, ) dt s(( 0, y0, z,(, y, z)) 0 ssndo ( 0, y0, z un fissato punto di A s il sgmnto congiungnt i punti ( 0, y0, z (, yz, ) Esrcizi: ) E assgnato il sgunt campo vttorial piano: y F( y, ) = i j y y i) Il campo è irrotazional? (O quivalntmnt la forma diffrnzial associata è chiusa?) ii) Con l sol informazioni sul campo vttorial fin qui disponibili in bas ai risultati noti, si può affrmar ch sso è (oppur no) consrvativo nl suo insim di dfinizion? E nll insim {(, ) 0} A= y R >? Nl caso il campo dovss ssr consrvativo, individuar un potnzial iii) Calcolar F dr con R un fissato numro ral positivo; Γ ((0,; R) è la Γ((0,; R) 7

3 Campi Vttoriali Form iffrnziali-sconda Part circonfrnza di cntro (0, raggio R iv) Utilizzando anch quanto acquisito in iii), la risposta alla prima domanda in ii) dv ssr modificata? Soluzion: i) notat l du coordinat dl campo con F(, y) F (, y) rispttivamnt, si ha ( y ) y y = = y y y F ( y ) y = = y y ssndo l du drivat parziali uguali il campo è irrotazional (pr dfinizion) ii) L insim di dfinizion dl campo è R \{(0,} ch vidntmnt non è smplicmnt connsso; con la sola informazion ch il campo è irrotazional nulla si può dir sulla vntualità ch sso possa ssr consrvativo Mntr ssndo l insim smplicmnt connsso ( il campo irrotazional) pr il torma, dnominato sconda condizion sufficint, il campo (su A ) è consrvativo Pr il calcolo di un potnzial, si fissa innanzitutto un arbitrario punto in A (pr smpio (, ) A ; Sia ora (, y) A (com suggrito dal torma) si considra una curva γ congiungnt (, (, y ) (dl tutto arbitraria, con la sola condizion ch sia contnuta in A ) Quando è possibil (com in qusto caso) risulta convnint scglir la spzzata congiungnt i du punti con i sgmnti parallli agli assi coordinati; dunqu s : r( t) = (, t (, (, = t( ) i s : r ( t) = (, t (, y) (, = i tyj { [ ]( ( ) ) { [ ]( ) Allora si ha: y y y U(, y) = F dr = dt = dt = arctg yt γ ((,,( y, )) 0 0 yt iii) Una paramtrizzazion dlla circonfrnza è rt ( ) = Rcosti Rsin tj t 0, π Allora (a mno dl sgno) si ha π Rsin( t Rsin) t Rcos( t Rcos) t F dr = dt = π R R Γ((0,; R) 0, [ ] iv) Essndo l intgral lungo una curva chiusa non nullo, il campo non è consrvativo nl suo insim di dfinizion ) E assgnato il campo F(, y) = y yi yj i) Provar ch il campo è irrotazional ii) Il campo è dotato di potnzial nl suo insim di dfinizion? 8

4 Campi Vttoriali Form iffrnziali-sconda Part iii) S la risposta alla prcdnt domanda è affrmativa, individuar un potnzial utilizzando du divrsi modi pr congiungr (0, con il gnrico punto (, y ) (sugg con il sgmnto oppur con un prcorso paralllo agli assi cartsiani, la cui ammisibilità si vrifica facilmnt non appna si rapprsnta graficamnt il dominio di dfinizion) ) Vrifivar ch il campo F(, yz, ) = yzi z ( y) j ( y( y) z) k è consrvativo individuar un potnzial 4) Calcolar, utilizzando la dfinizion, l intgral curvilino dl campo = F(, y) y i yj lungo la curva γ costituita dai sgmnti congiungnti conscutivamnt i punti dl piano (0,), (,), (0,) (,) opo avr ossrvato ch il campo è consrvativo calcolar il prcdnt intgral utilizzando una procdura più brv y 5) E assgnato il campo F( y, ) = i j Provar ch il campo è consrvativo y y individuar un potnzial (Sugg Ossrvar ch il campo è irrotazional Fissar una rgion smplicmnt connssa nl insim di dfinizion dl campo individuar un potnzial Notar ch qust ultimo, ch è una funzion lmntar, ha lo stsso insim di dfinizion dl campo in tal rgion è un suo potnzial) Riptr l srcizio tnndo conto dll ossrvazion ch sgu Ossrvazion: In taluni casi è immdiato riconoscr ch il campo è consrvativo altrttanto immdiato costruir un potnzial; nl sgunt smpio è prsntata una class important di tali campi Esmpio: Un campo si dic radial s ha una rapprsntazion dl tipo F(, yz, ) = g(( yz,, ))[ i yj zk ] dov g: ( a, b) [ 0, [ R è continua (il trmin radial driva dal fatto ch in ogni punto la dirzion dl campo è parallla al vttor congiungnt l origin con il punto) notato con una primitiva di ϕ ( r) = rg( r) si ha ch il campo scalar U(, y, z) =Φ (, y, z ) =Φ ( y z ) { } dfinito nll insim (, yz, ) R ( yz,, ) ( ab, ) cntro l origin raggi a b rispttivamnt) è un potnzial dl campo Infatti si ha Φ ( r) (rgion comprsa tra l sfr concntrich di 9

5 Campi Vttoriali Form iffrnziali-sconda Part U (, yz, ) =Φ (( yz,, )) = ( yz,, ) g( ( yz,, )) = F ( yz,, ), yz,, yz,, ( ) analogamnt pr l altr du drivat parziali, quindi l assrto Ni sgunti srcizi, utilizzar l formul di Gauss-Grn ( ) ) Calcolar il lavoro dl campo di forz 4 F(, y) = yi yj nllo spostamnto lungo la curva chiusa prcorsa in snso antiorario costituita nll ordin da parti dll sgunti curv con rapprsntazion cartsiana rispttivamnt: = y, y =, y = 5, y = 0 ) Calcolar l ara dlla rgion di piano dl primo quadrant comprsa tra l rtt di quazion y = 4 y = / 4 l iprbol di quazion y = ) Calcolar ( y) d ( y y ) dy dov è il triangolo con vrtici ni punti (0,, (,), (,, utilizzando diffrnti stratgi 4) Calcolar yddy, dov è il triangolo con vrtici ni punti ( 0,, (,), (,, Soluzion: Intanto al fin di utilizzar l formul di Gauss-Grn si ossrva ch quindi Ora la frontira di allora = = yddy y ddy ydy y = y è l union di tr sgmnti con rapprsntazion paramtrica rispttivamnt = t = = t s:, t 0, ; s :, t 0, ; s:, t 0, y = 0 y = t y = t [ ] [ ] [ ] 0 ydy = ydy ydy ydy = 0 tdt t dt = s((0,,(,) s((,,(,)) s((,),(0,) 0 0

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

VERIFICA DI MECCANICA

VERIFICA DI MECCANICA Data: 25/10/2013 - Class 3 BEN alunno : alunno 1 1 ) 2 ) 3 ) 4 ) 5 ) 6 ) Convrtir 20 in giri al minuto Esprimr in MN/m 2 la prssion di 400 kpa Convrtir in unità di misura dl SI la conduttività trmica di

Dettagli

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N. TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Deliberazione n. 246 del 10 aprile 2014

Deliberazione n. 246 del 10 aprile 2014 Dlibrazion n. 246 dl 10 april Dirttor Gnral Dr. Robrto Bollina Coadiuvato da: Giancarlo Bortolotti Dirttor Amministrativo Carlo Albrto Trsalvi Dirttor Sanitario Giuspp Giorgio Inì Dirttor Social Il prsnt

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE. Estensore TENNENINI MASSIMO. Responsabile del procedimento TENNENINI MASSIMO

INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE. Estensore TENNENINI MASSIMO. Responsabile del procedimento TENNENINI MASSIMO REGIONE LAZIO Dirzion Rgional: Ara: SVILUPPO ECONOMICO E ATTIVITA PRODUTTIVE INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE N. G09834 dl 08/07/2014 Proposta n. 11437 dl 01/07/2014 Oggtto: Attuazion

Dettagli

COMUNE DI CASLANO MESSAGGIO MUNICIPALE N. 1116

COMUNE DI CASLANO MESSAGGIO MUNICIPALE N. 1116 CANTON z j J COMUNE DI CASLANO CONFEDERAZIONE SVIZZERA - TICINO MESSAGGIO MUNICIPALE N. 1116 Modifica parzial dii art. 56 di Rgolamnto organico i dipndnti comunali (ROD) con l insrimnto di nuov funzioni

Dettagli

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Cntro Rgional di Programmazion I n t r POR Sardgna FESR 2007/2013 - ASSE VI COMPETITIVITÀ Lina di attività 6.1.1.A Promozion

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO APPUNTI DI CALCOLO NUMERICO Mawll Equazioni non linari: probla di punto isso Sisti di quazioni non linari Introduzion Il probla di punto isso è un probla ch si prsnta spsso in oltissi applicazioni Esso

Dettagli

Parte IV: Spin e fisica atomica

Parte IV: Spin e fisica atomica Part IV: Spin fisica atomica Atomo in un campo magntico Esprinza di Strn Grlach Spin dll lttron Intrazion spin orbita doppitti spttrali Spin statistica 68 Atomo in un campo magntico Efftto classico: prcssion

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

p(e 3 ) = 31 [R. c) e d)]

p(e 3 ) = 31 [R. c) e d)] CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ - ESERCIZI I.) Anna, Batric Carla fanno una gara di corsa. Stimo ch Anna Carla siano ugualmnt vloci ch Batric abbia probabilità doppia dll altr du di vincr la

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

Trasformate di Laplace e risoluzione di sistemi lineari di Equazioni Differenziali Ordinarie

Trasformate di Laplace e risoluzione di sistemi lineari di Equazioni Differenziali Ordinarie Trasformat di Laplac risoluzion di sistmi linari di Equazioni Diffrnziali Ordinari Flaviano Battlli 1 Trasformat di Laplac di funzioni a valori in R Una funzion f : R R si dic un original o anch L-trasformabil,

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

ITALMOBILIARE SOCIETA PER AZIONI

ITALMOBILIARE SOCIETA PER AZIONI ITALMOBILIARE SOCIETA PER AZIONI COMUNICATO STAMPA Informazioni rlativ ai piani di stock option di ITALMOBILIARE S.p.A. ITALCEMENTI S.p.A. già sottoposti alla dcision di rispttivi organi comptnti antcdntmnt

Dettagli

U N I V E R S I T À D E G L I S T U D I D I M A C E R A T A. AREA PERSONALE Ufficio Personale tecnico amministrativo

U N I V E R S I T À D E G L I S T U D I D I M A C E R A T A. AREA PERSONALE Ufficio Personale tecnico amministrativo U N I V E R S I T À D E G L I S T U D I D I M A C E R A T A AREA PERSONALE Ufficio Prsonal tcnico amministrativo Macrata, li 30.10.2008 Prot. N. 11694 IPP/29 d Ai Magnifici Rttori dll Univrsità Ai Dirttori

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico AZIONI ANALISI STRUTTURALE sistma STRUTTURA STATO I modlli mccanici possono suddividrsi in: MODELLI CONTINUI Forz Coazioni STRUTTURA = modllo mccanico IDEALIZZAZIONE DELLA STRUTTURA Posizion Vlocità Acclrazion

Dettagli

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci Consumatori in cifr Tariff dll prstazioni sanitari nll divrs rgioni italian Laura Filippucci La rcnt proposta dl Govrno di aggiornar il tariffario dll prstazioni sanitari di laboratorio ha sollvato un

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI STUDI DI VERONA, L UNIVERSITA IUAV DI VENEZIA, L UNIVERSITA CA FOSCARI E L AZIENDA REGIONALE PER

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) :

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) : Ystudio Corsi lzioni d srcizi on lin di Matmatica, Statica Scinza dll costruzioni www.studio.it/sit. Dominio : Poichè la unzion è pari, lo studio vin itato al smipiano dll asciss positiv. Intrszion assi

Dettagli

Circolare n. 1 Prot. n. 758 Roma 29/01/2015

Circolare n. 1 Prot. n. 758 Roma 29/01/2015 Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

Per quanto riguarda le procedure di nulla osta bisogna rivolgersi direttamente alla direzione delle scuole.

Per quanto riguarda le procedure di nulla osta bisogna rivolgersi direttamente alla direzione delle scuole. INTRODUZIONE Il prsnt opuscolo contin una raccolta di indirizzi informazioni sull scuol stranir prsnti a Roma. Pr i contatti si suggrisc di utilizzar gli indirizzi in intrnt. Un sito util é anch www.romschools.org

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

ISTRUZIONE OPERATIVA

ISTRUZIONE OPERATIVA Documnto: OPQTA20120001 ISTRUZIONE OPERATIVA Data: 19/03/2012 Prparato: Ufficio CPI Guida di rifrimnto rapido compilazion FORMAT COMAP pr PMI La prsnt guida dscriv l modalità di dtrminazion di costi orari

Dettagli

PROTOCOLLO D INTESA. tra. Prefettura di Roma. Università di Roma La Sapienza. Università degli Studi di Roma Tor Vergata

PROTOCOLLO D INTESA. tra. Prefettura di Roma. Università di Roma La Sapienza. Università degli Studi di Roma Tor Vergata PROTOCOLLO D INTESA tra Prfttura di Roma Univrsità di Roma La Sapinza Univrsità dgli Studi di Roma Tor Vrgata Univrsità dgli Studi Roma Tr 1 PREMESSO ch con dcrto dl Prsidnt dl Consiglio di Ministri dl

Dettagli

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse

1. Condizioni di arbitraggio internazionale delle merci e dei titoli. Le teorie de la Parità dei poteri d acquisto la Parità dei tassi d interesse . Condizioni di arbitraggio intrnazional dll rci di titoli L tori d la Parità di otri d acuisto la Parità di tassi d intrss 5_Andic_G.GAROFALO L arbitraggio è un'orazion ch consist nll'acuistar un bn o

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata Istituti Tcnici Industriali L curvatur di prcorsi scolastici vrso Robotica/Mccatronica avanzata MACRO-COMPETENZE IN USCITA VERSO LA ROBOTICA/MECCATRONICA AVANZATA Quattro Macro-Comptnz Spcialistich: 1.

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

per tutti i visitatori disponibile tutti i giorni gratuito con il biglietto della mostra Contiene un album una matita una gomma questo manuale

per tutti i visitatori disponibile tutti i giorni gratuito con il biglietto della mostra Contiene un album una matita una gomma questo manuale pr tutti i visitatori disponibil tutti i giorni gratuito con il biglitto dlla mostra Contin un album una matita una gomma qusto manual Un manual pr visitar la mostra ossrvar 1 chi è già un po sprto chi

Dettagli

Prot. n. AOODGEFID/7724 Roma, 12/05/2016. Al Dirigente Scolastico I.C. 1^ CASSINO VIA BELLINI, 1 03043 CASSINO FROSINONE LAZIO

Prot. n. AOODGEFID/7724 Roma, 12/05/2016. Al Dirigente Scolastico I.C. 1^ CASSINO VIA BELLINI, 1 03043 CASSINO FROSINONE LAZIO Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr la Programmazion la gstion dll risors uman, finanziari strumntali Dirzion Gnral pr intrvnti in matria di dilizia scolastica, pr la gstion

Dettagli

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT.

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT. Coordinamnto tra l protzioni dlla rt MT dl Distributor la protzion gnral 1. PREMESSA. dgli Utnti MT. ll rti di distribuzion a mdia tnsion (MT), l unico organo di manovra automatico è l intrruttor di lina

Dettagli

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006 Matematica II - Prova Scritta - 09/06/2006 f(x, y) = (y x)e x2 y 2, 2. Risolvere le seguenti equazioni differenziali: y 2 = 1 1 (2x y) 2, y 2y + y 2y = e x (x 1). 3. Calcolare il seguente integrale curvilineo

Dettagli

EUCENTRE. European Centre for Training and Research in Earthquake Engineering

EUCENTRE. European Centre for Training and Research in Earthquake Engineering Europan Cntr for Rsarch in Earthquak Enginring Parr sulla vntual obbligatorità di un intrvnto di adguamnto sismico nll ambito dll intrvnto di ristrutturazion, adguamnto ampliamnto dlla Casa Albrgo pr Anziani

Dettagli

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015 LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2015 SPECIALE MOSTRA FRITZ. UN ELEFANTE A CORTE! 20 Maggio 13 sttmbr 2015 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Anch nlla

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

Regolamento per il controllo della pubblicità

Regolamento per il controllo della pubblicità Rgolamnto pr il controllo dlla Rgolamnto pr il controllo dlla pu bbliciià. Introduzion: Qusto Rgolamnto vin applicato pr il controllo dlla pubbliciti su: Indumnti d quipaggiamnto di ginnasti, giudici diuignti;

Dettagli

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace...

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace... Appunti di Controlli Automatici Capitolo - part I Traformata di aplac Introduzion ai gnali (cauali, rgolari, di ordin ponnzial)... Il gnal di Havyid... 3 Dfinizion di traformata di aplac... 3 PROPRIETÀ

Dettagli

CLASSIFICAZIONE DEI PRODOTTI DA COSTRUZIONE

CLASSIFICAZIONE DEI PRODOTTI DA COSTRUZIONE ALLEGATO A CLASSIFICAZIONE DEI PRODOTTI DA COSTRUZIONE Quando la condizion di uso final di un prodotto da costruzion è tal da contribuir alla gnrazion alla propagazion dl fuoco dl fumo all intrno dl local

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB In rlazion a quanto prvisto dall art.2120 C.C., dall norm di lgg dagli accordi collttivi vignti, convngono ch, in aggiunta alla casistica sprssamnt prvista, il dipndnt possa chidr la anticipazion dl proprio

Dettagli

REPORT DELLA VALUTAZIONE COLLETTIVA

REPORT DELLA VALUTAZIONE COLLETTIVA CONCORSO DI PROGETTAZIONE UNA NUOVA VIVIBILITA PER IL CENTRO DI NONANTOLA PROCESSO PARTECIPATIVO INTEGRATO CENTRO ANCH IO! REPORT DELLA VALUTAZIONE COLLETTIVA ESITO DELLE VOTAZIONI RACCOLTE DURANTE LE

Dettagli

730, Unico 2014 e Studi di settore

730, Unico 2014 e Studi di settore 730, Unico 2014 Stu sttor Pillol aggiornamnto N. 39 27.06.2014 Il prosptto Dati bilancio in Unico2014 ENC. La riconciliazion dati dllo Stato Patrimonial nl prosptto Dati bilancio. Catgoria: Dichiarazion

Dettagli

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga Provvdimnto di Prdisposizion dl Programma Annual dll'srcizio finanziario 2014 Il Dsga Visto Il Rgolamnto crnnt l istruzioni gnrali sulla gstion amministrativotabil dll Istituzioni scolastich Dcrto 01 Fbbraio

Dettagli

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà.

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà. Corpo di Polizia Provincial 3 Corso di Formazion pr Opratori Volontari pr Cntri di Primo Soccorso Cntri di Rcupro Animali Slvatici Friti o in difficoltà. (Opratori da impigar prsso il Cntro di Rcupro Animali

Dettagli

ACCORDO DI COLLABORAZIONE

ACCORDO DI COLLABORAZIONE ACCORDO DI COLLABORAZIONE TRA EXPO 2015 S.p.A. Rgion Lombardia il Ministro dll Istruzion, dll Univrsità dlla Ricrca Ufficio Scolastico Rgional pr la Lombardia in accordo con ANCI Lombardia Rgion Ecclsiastica

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO)

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) 10.11.2010 IT Gazztta ufficial dll'union uropa C 304 A/1 V (Avvisi) PROCEDIMENTI AMMINISTRATIVI UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) BANDO DI CONCORSI GENERALI EPSO/AST/109-110/10 CORRETTORI

Dettagli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli

visto il Protocollo d Intesa tra Regione Campania e Università degli Studi di Napoli UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA DI MEDICINA E CHIRURGIA BANDO DI SELEZIONE PER L AFFIDAMENTO DI INRICHI DIDATTICI NEI CORSI DI LAUREA DELLE PROFESSIONI SANITARIE PER L ANNO ACDEMICO

Dettagli

P I A N O D I L A V O R O

P I A N O D I L A V O R O ISTITUTO STATALE di ISTRUZIONE SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO: Amministrazion, Finanza Markting/IGEA Costruzioni, Ambint Trritorio/Gomtri Lico Linguistico/Linguistico

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO PRIMO BIENNIO/SECONDO BIENNIO ULTIMO ANNO In cornza con i critri di validazion dlla programmazion di ass (o

Dettagli

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione Committnt /o Rsponsabil di lavori Imprsa affidataria, Imprs scutrici Lavoratori autonomi 1 Committnt CHI E : soggtto pr conto dl qual l intra opra vin ralizzata, indipndntmnt da vntuali frazionamnti dlla

Dettagli

SCUOLE PRIMARIE CLASSI QUINTE

SCUOLE PRIMARIE CLASSI QUINTE ISTITUTO COMPRENSIVO N 5 SANTA LUCIA UNITÀ DI APPRENDIMENTO 1 o QUADRIMESTRE SCUOLE PRIMARIE CLASSI QUINTE UNITA DI APPRENDIMENTO Dnominazion Compito-prodotto Comptnz mirat Comuni /cittadinanza LA CIVILTA

Dettagli

Lezione 24: Equilibrio termico e calore

Lezione 24: Equilibrio termico e calore Lzion 4 - pag. Lzion 4: Equilibrio trmico calor 4.. Antich spigazioni: il calorico Abbiamo visto ch, mttndo in contatto un corpo caldo con uno frddo, si avvia un procsso ch ha trmin quando i du corpi raggiungono

Dettagli