Analisi di sospensioni attive e passive con Matlab-Simulink

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi di sospensioni attive e passive con Matlab-Simulink"

Transcript

1 Analisi di sospensioni attive e passive con Matlab-Simulink Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano

2 Miglioramento del comfort Iniziamo analizzando una sospensione passiva. Riferiamoci alla modellazione quarter-car a massa singola. La rappresentazione del modello è la seguente Xr k Figura 1. Sospensione passiva. Modello quarter car a massa singola. Il modello matematico è + + = + (1) dove, quota relativa della massa sospesa, è definita come segue = = (2) La funzione di trasferimento tra (ingresso) e (uscita) è la seguente = = (3) Impostiamo in Matlab i seguenti valori per i parametri % PARAMETRI DELLA SOSPENSIONE Mb=250; % massa 1/4 del veicolo [kg] c=8000; % smorzamento viscoso del damper [Ns/m] k=70000; % costante elastica dell ammortizzatore [N/m] Il file Simulink associato (Passiva1.mdl) è rappresentato nella seguente figura 2

3 Figura 3. File Passiva1.mdl. Modello Simulink di sospensione passiva (modello quarter car a massa singola). Nella parte sinistra vediamo i due blocchi in serie Signal Builder e Filtro del riferimento che generano un profilo per Xr associato ad un dosso stradale alto 25 centimetri. Figura 4. Il profilo stradale. La variabile riproduce abbastanza fedelmente il profilo della strada. Figura 5. La quota relativa della massa sospesa con sospensioni passive. 3

4 Mostriamo il grafico della accelerazione verticale, che mostra punte positive e negative di circa 2g nella fase di salita e circa 1g nella discesa dal dosso. Il motivo della asimmetria è la diversa pendenza del dosso in ingresso e in uscita. Figura 6. L accelerazione verticale della massa sospesa con sospensioni passive. Ora consideriamo la sospensione attiva. Riferiamoci sempre al modello quarter car single mass Lo schema a blocchi è SOSP. ATTIVA Xb Mb k F(t) Xr Figura 7. Sospensione attiva. Modello quarter car a massa singola. Il modello matematico è + = + (4) dove, quota relativa della massa sospesa, è definita sempre dalla (2). L attuatore, assunto ideale, viene pilotato con la seguente legge di controllo in retroazione = = (5) 4

5 La funzione di trasferimento tra (ingresso) e (uscita) è la seguente = = = 1 (6) Impostiamo in Matlab i seguenti valori per i parametri % PARAMETRI DELLA SOSPENSIONE attiva Mb=250; % massa 1/4 del veicolo [kg] c1=8000; % smorzamento viscoso nella legge di controllo [Ns/m] k=70000; % costante elastica dell ammortizzatore [N/m] m1=250; % feedback di accelerazione Lo schema Simulink (attiva1.mdl) è il seguente Figura 8. File Attiva1.mdl. Modello Simulink di sospensione attiva (modello quarter car a massa singola). L unica differenza dallo schema della sospensione passiva è il numeratore della funzione di trasferimento. La variabile riproduce ancora abbastanza fedelmente il profilo della strada (v. Figura 9). 5

6 Figura 9. La quota relativa della massa sospesa con sospensioni attive. L accelerazione verticale risulta pero circa dimezzata rispetto alle sospensioni passive (Figura 10), a conferma delle migliori prestazioni delle sospensioni attive in termini di miglioramento del comfort. Figura 10. L accelerazione verticale della massa sospesa con sospensioni attive. 6

7 Handling Ora consideriamo i modelli quarter-car che includono la forza verticale disturbante sulla massa sospesa d(t). Ripartiamo dalla sospensione passiva. Il modello matematico che include il disturbo d(t) è il seguente = + (7) Per convenzione, una forza disturbante positiva tende a schiacciare il veicolo sulla sede stradale. La Trasformata di Laplace dell uscita risulta espressa come segue = (8) Abbiamo due contributi distinti, la FdT relativa al profilo stradale (analoga a prima) e la FdT dovuta al disturbo. Impostiamo i seguenti valori dei parametri. % PARAMETRI DELLA SOSPENSIONE Mb=250; % massa 1/4 del veicolo [kg] c=8000; % smorzamento viscoso [Ns/m] k=70000; % costante elastica dell ammortizzatore [N/m] Lo schema Simulink (Passiva2_Handling.mdl) che realizza il legame descritto nella (8) è riportato nella Figura seguente. Figura 11. File Passiva2_Handiling.mdl. Modello Simulink di sospensione passiva (modello quarter car a massa singola) con disturbo esterno. Come profilo stradale si utilizza lo stesso dosso riportato in Figura 4. Si introduce una forza disturbante d(t) sinusoidale con valor medio pari a 1000 N, ampiezza della oscillazione 500 N, e frequenza 1 rad /sec (Figura 12) 7

8 Figura 12. Il disturbo esterno d(t) nelle prove di handling La posizione verticale della massa sospesa e la sua accelerazione sono riportati nelle due figure seguenti 13 e 14. Figura 13. La quota relativa della massa sospesa con sospensioni passive nella prova di Handling. Figura 14. L accelerazione verticale della massa sospesa con sospensioni passive nella prova di Handling Ora analizziamo i risultati corrispondenti alla sospensione attiva con la retroazione integrale. Il modello matematico che include il disturbo d(t) è il seguente + = + (9) Si considera la seguente legge di controllo in retroazione per l attuatore. == + = La legge di controllo (10) include anche l azione integrale, che abbiamo visto essere molto importante per quanto concerne l handling [1]. Uno schema a blocchi del sistema (9)-(10) è il seguente (10) 8

9 Figura 15. Sospensione attiva con regolatore integrale Lo schema a blocchi in Figura 15 è implementato nel seguente schema Simulink (Attiva2_Handling.mdl) Figura 16. File Attiva2_Handiling.mdl. Modello Simulink di sospensione attiva (modello quarter car a massa singola) con disturbo esterno e retroazione integrale. Sia il profilo stradale che il disturbo esterno sono scelti come nella prove precedente (Figure 4 e 12). Impostiamo i seguenti valori dei parametri. % PARAMETRI DELLA SOSPENSIONE ATTIVA CON AZIONE INTEGRALE Mb=250; % massa 1/4 del veicolo [kg] c1=8000; % smorzamento viscoso nella legge di controllo[ns/m] k=70000; % costante elastica dell ammortizzatore [N/m] m1=250; % feedback di accelerazione ki=500000; % guadagno dell azione integrale 9

10 Il valore del guadagno integrale ki è scelto sulla base delle seguenti considerazioni. Il valore critico per il guadagno integrale oltre il quale il sistema a ciclo chiuso viene destabilizzato è stato ricavato come segue (cfr. [1], eq (65)) = (11) Considerando i valori scelti per i parametri si ha = (12) Si è scelto pertanto per il guadagno integrale ki un valore (500000) sufficientemente al di sotto della soglia di instabilità. La posizione verticale della massa sospesa e la sua accelerazione sono riportati nelle due figure seguenti 17 e 18. Figura 17. La quota relativa della massa sospesa con sospensioni attive nella prova di Handling. Figura 18. L accelerazione verticale della massa sospesa con sospensioni attive nella prova di Handling Il confronto tra le figure 14 e 18 mostra come le accelerazioni verticali del veicolo siano anche stavolta dimezzate nel caso attivo rispetto al caso passivo. L azione integrale non interferisce pertanto con le proprietà di miglioramento del comfort. Il confronto tra le figure 13 e 17 mostra come la sospensione attiva con azione integrale mantenga la quota assoluta del veicolo pressoché costante. Il passeggero sperimenta quindi una traslazione verticale di ampiezza estremamente ridotta. La sospensione ha assorbito quasi completamente la variazione di quota della sede stradale. Consideriamo ancora i grafici della quota verticale della massa sospesa per il sistema con sospensione passiva e attiva (Figure 13 e 17), e facciamo per entrambi uno zoom sugli ultimi 10 secondi di simulazione per poter analizzare meglio come venga compensato il disturbo di forza d(t) dopo che il dosso è stato superato. I risultati sono mostrati nelle Figure 19 e 20. Il miglioramento delle prestazioni delle sospensioni attive è evidente. 10

11 Figura 19. La quota relativa della massa sospesa con sospensioni passive nella prova di Handling. Zoom a regime. Figura 20. a quota relativa della massa sospesa con sospensioni attive nella prova di Handling. Zoom a regime Spunti per ulteriori analisi Il lettore può ripetere i test implementando il modello quarter car a due masse (cfr [1], cap. 4). Si veda anche [2, par 19.3]. Si utilizzi per l elasticità del pneumatico il valore kt= N/m. [1] A. Pisano Modellistica, analisi e controllo di sospensioni attive per autoveicoli. Dispensa per gli studenti disponibile all indirizzo sezione Didattica->Controlli automatici [2] P. Bolzern, R. Scattolini, N. Schiavoni, Fondamenti di controlli automatici, terza edizione, McGraw Hill,

Modellistica, analisi e controllo di sospensioni attive per autoveicoli

Modellistica, analisi e controllo di sospensioni attive per autoveicoli Modellistica, analisi e controllo di sospensioni attive per autoveicoli Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO 1. Introduzione e generalità (3) 1.1 Un po di storia

Dettagli

Modellistica, analisi e controllo di sospensioni attive per autoveicoli Appunti di Controlli Automatici

Modellistica, analisi e controllo di sospensioni attive per autoveicoli Appunti di Controlli Automatici Modellistica, analisi e controllo di sospensioni attive per autoveicoli Appunti di Controlli Automatici Versione 1.1 - giugno 2011 Ing. Alessandro Pisano SOMMARIO 1. Introduzione e generalità (3) 1.1 Un

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

CORSO di AUTOMAZIONE INDUSTRIALE

CORSO di AUTOMAZIONE INDUSTRIALE CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469) APPELLO del 10 Novembre 2010 Prof. Emanuele Carpanzano Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Modulante Tracciare qualitativamente la risposta

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

Modellistica e Simulazione del Comportamento Dinamico di Beccheggio di un Trattore Agricolo

Modellistica e Simulazione del Comportamento Dinamico di Beccheggio di un Trattore Agricolo Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria Modellistica e Simulazione del Comportamento Dinamico di Beccheggio di un Trattore Agricolo Relatore: Prof. Roberto Zanasi Correlatori:

Dettagli

Sistemi con ritardo. Appunti di Controlli Automatici. Ing. Alessandro Pisano. Versione 1.0

Sistemi con ritardo. Appunti di Controlli Automatici. Ing. Alessandro Pisano. Versione 1.0 Sistemi con ritardo Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO 1. Introduzione (3) 2. Funzioni di trasferimento di sistemi con ritardo (4) 3. Stabilità a ciclo chiuso

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO Per errore a regime si intende quello rilevato dopo un intervallo sufficientemente lungo dal verificarsi di variazioni del riferimento o da eventuali

Dettagli

Progettazione e realizzazione di un manipolatore elettromeccanico

Progettazione e realizzazione di un manipolatore elettromeccanico Progettazione e realizzazione di un manipolatore elettromeccanico Hermes Giberti Politecnico di Milano u robotica u La progettazione di un sistema automatico richiede una collaborazione sinergica tra le

Dettagli

E1. IMPLEMENTAZIONE in MATLAB-SIMULINK del MODELLO e del CONTROLLO di un MOTORE ELETTRICO a CORRENTE CONTINUA

E1. IMPLEMENTAZIONE in MATLAB-SIMULINK del MODELLO e del CONTROLLO di un MOTORE ELETTRICO a CORRENTE CONTINUA E1. IMPLEMENTAZIONE in MATLAB-SIMULINK del MODELLO e del CONTOLLO di un MOTOE ELETTICO a COENTE CONTINUA 1. EQUAZIONI DEL MODELLO Equazioni nel dominio del tempo descrittive del Modello elettromagnetico

Dettagli

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla:

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla: Oscillatore semplice Vibrazioni armoniche libere o naturali k m 0 x Se il corpo di massa m è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiamo della

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab

Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab Università di Padova FACOLTÀ DI INGEGNERIA Corso di Laurea in Ing. dell' Informazione Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab Relatore: Prof. Alessandro Beghi Presentata

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Esercizi in MATLAB-SIMULINK

Esercizi in MATLAB-SIMULINK Appendice A Esercizi in MATLAB-SIMULINK A.1 Implementazione del modello e del controllo di un motore elettrico a corrente continua A.1.1 Equazioni del modello Equazioni nel dominio del tempo descrittive

Dettagli

Introduzione al corso

Introduzione al corso Controlli Automatici Introduzione al corso Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

Electrical motor Test-bed

Electrical motor Test-bed EM_Test_bed Page 1 of 10 Electrical motor Test-bed 1. INTERFACCIA SIMULINK... 2 1.1. GUI CRUSCOTTO BANCO MOTORE... 2 1.2. GUIDE... 3 1.3. GUI PARAMETRI MOTORE... 3 1.4. GUI VISUALIZZAZIONE MODELLO 3D MOTORE...

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm REGOLATORI STANDARD PID Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

CAPITOLO 8 PROCESSO DI IDENTIFICAZIONE E COMPENSAZIONE DELL ATTRITO INTRODUZIONE 8.1 IL PROBLEMA DEL CONTROLLO

CAPITOLO 8 PROCESSO DI IDENTIFICAZIONE E COMPENSAZIONE DELL ATTRITO INTRODUZIONE 8.1 IL PROBLEMA DEL CONTROLLO 80 CAPITOLO 8 PROCESSO DI IDENTIFICAZIONE E COMPENSAZIONE DELL ATTRITO INTRODUZIONE In questo capitolo è descritto un metodo teorico per l identificazione dell attrito, attraverso l impiego della normale

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

STUDIO DELLA SOSPENSIONE ATTIVA DI UN AUTOVEICOLO

STUDIO DELLA SOSPENSIONE ATTIVA DI UN AUTOVEICOLO UNIVERSITÀ DEL SALENTO FACOLTÀ DI INGEGNERIA CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA TESI DI LAUREA IN MECCANICA DEL VEICOLO STUDIO DELLA SOSPENSIONE ATTIVA DI UN AUTOVEICOLO RELATORE: Ing.

Dettagli

L idea alla base del PID èdi avere un architettura standard per il controllo di processo

L idea alla base del PID èdi avere un architettura standard per il controllo di processo CONTROLLORI PID PID L idea alla base del PID èdi avere un architettura standard per il controllo di processo Può essere applicato ai più svariati ambiti, dal controllo di una portata di fluido alla regolazione

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Scuola di Ingegneria Industriale e dell Informazione Corso di Studi in Ingegneria Informatica Allievi con cognome da E(incluso) a P(escluso)

Scuola di Ingegneria Industriale e dell Informazione Corso di Studi in Ingegneria Informatica Allievi con cognome da E(incluso) a P(escluso) Introduzione al corso Fondamenti di Automatica Scuola di Ingegneria Industriale e dell Informazione Corso di Studi in Ingegneria Informatica Allievi con cognome da E(incluso) a P(escluso) Informazioni

Dettagli

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione Lez. 7/2/3 unzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione consideriamo il risultato del filtro passa alto che si può rappresentare schematicamente nel

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Spiegare brevemente il principale beneficio del controllo in cascata (per sistemi a fase non minima).

Spiegare brevemente il principale beneficio del controllo in cascata (per sistemi a fase non minima). Spiegare brevemente il principale beneficio del controllo in cascata (per sistemi a fase non minima). Il controllo in cascata si usa per migliorare la risposta al setpoint, e soprattutto al disturbo di

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 6 Energia e Lavoro Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte

Dettagli

CONTROLLO A RETROAZIONE

CONTROLLO A RETROAZIONE Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica Elaborato finale in Controlli Automatici CONTROLLO A RETROAZIONE Anno Accademico 2011/2012 Candidato: Maffettone Sara matr. N46000474 A Marco,

Dettagli

Le sospensioni 22 R.T.A. 152. di Gianpaolo Riva

Le sospensioni 22 R.T.A. 152. di Gianpaolo Riva Le sospensioni di Gianpaolo Riva Sono elementi nascosti alla vista dell automobilista. Assicurano comfort e tenuta di strada e perciò la loro funzione è indispensabile e fondamentale per la sicurezza attiva.

Dettagli

Introduzione. Ing. Gianmaria De Tommasi A.A. 2008/09. Controllo Digitale. Introduzione. Sommario. Informazioni sul corso.

Introduzione. Ing. Gianmaria De Tommasi A.A. 2008/09. Controllo Digitale. Introduzione. Sommario. Informazioni sul corso. Controllo Ing. Gianmaria De Tommasi A.A. 2008/09 1 2 di un sistema di controllo digitale Segnali tempo continuo e segnali tempo discreto Metodologie di progetto di sistemi di controllo digitali Alcune

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

n matr.145817 23. 01. 2003 ore 8:30-10:30

n matr.145817 23. 01. 2003 ore 8:30-10:30 Matteo Vecchi Lezione del n matr.145817 23. 01. 2003 ore 8:30-10:30 Il Moto Esterno Con il termine moto esterno intendiamo quella branca della fluidodinamica che studia il moto dei fluidi attorno ad un

Dettagli

Oscillazioni: il pendolo semplice

Oscillazioni: il pendolo semplice Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per

Dettagli

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^ Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di segnali Unità di misura delle grandezze elettriche Simbologia

Dettagli

Influenza dei difetti superficiali sulla risposta in frequenza su pali di fondazione

Influenza dei difetti superficiali sulla risposta in frequenza su pali di fondazione Influenza dei difetti superficiali sulla risposta in frequenza su pali di fondazione E. Lo Giudice 1, G. Navarra 2, R. Suppo 3 1 Direttore del Laboratorio DISMAT s.r.l., C.daAndolina, S.S. 122 km 28 92024

Dettagli

Esercitazione 5 Soluzioni

Esercitazione 5 Soluzioni Esercitazione 5 Soluzioni. (Esercizio 5. del Ross) Sia X una variabile aleatoria la cui densità è c( 2 ) < < 0 altrimenti. (a) Qual è il valore di c? (b) Scrivere la funzione di ripartizione di X. 2. (Esercizio

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

VIBRAZIONE DELLE STRUTTURE DA PONTE Ing. Luca ROMANO, libero professionista - Albenga Direttore Tecnico I QUADRO INGEGNERIA GENOVA

VIBRAZIONE DELLE STRUTTURE DA PONTE Ing. Luca ROMANO, libero professionista - Albenga Direttore Tecnico I QUADRO INGEGNERIA GENOVA VIBRAZIONE DELLE STRUTTURE DA PONTE Ing. Luca ROMANO, libero professionista - Albenga Direttore Tecnico I QUADRO INGEGNERIA GENOVA Progettando una struttura flessibile si devono tener d occhio alcuni parametri,

Dettagli

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi)

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi) Domande per Terza prova di Sistemi Disegnare la struttura generale di un sistema di controllo retroazionato. (schema a blocchi) IN Amp. di Potenza Organo di Regolazione OUT ( ) Regolatore Attuatore Sistema

Dettagli

SETUP DI UN AUTOVEICOLO

SETUP DI UN AUTOVEICOLO Inizio 14.15 Proge&azione di sistemi di trasporto SETUP DI UN AUTOVEICOLO Ing. Mattia Strangi Università degli Studi di Bologna DiparBmento DICAM Ingegneria Civile, Ambientale e dei Materiali www.dicam.unibo.it

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

PROBLEMI E SISTEMI DI CONTROLLO. Ruolo della modellistica matematica. Sistemi di controllo in anello chiuso. Controllo, supervisione e automazione

PROBLEMI E SISTEMI DI CONTROLLO. Ruolo della modellistica matematica. Sistemi di controllo in anello chiuso. Controllo, supervisione e automazione PROBLEMI E SISTEMI DI CONTROLLO Problemi di controllo Sistemi di controllo Ruolo della modellistica matematica Sistemi di controllo in anello chiuso Controllo, supervisione e automazione Illustrazioni

Dettagli

Appendice Circuiti con amplificatori operazionali

Appendice Circuiti con amplificatori operazionali Appendice Circuiti con amplificatori operazionali - Appendice Circuiti con amplificatori operazionali - L amplificatore operazionale Il componente ideale L amplificatore operazionale è un dispositivo che

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

Laboratorio di Automazione. Azionamenti Elettrici: Generalità e Motore DC

Laboratorio di Automazione. Azionamenti Elettrici: Generalità e Motore DC Laboratorio di Automazione Azionamenti Elettrici: Generalità e Motore DC Prof. Claudio Bonivento DEIS - Università degli Studi di Bologna E-Mail: cbonivento@deis.unibo.it Indice Definizione Struttura Modello

Dettagli

Articolazione Elettronica. Specializzazione Elettronica ed Elettrotecnica Articolazione Elettronica. Elettronica ed Elettrotecnica - Classe 3^

Articolazione Elettronica. Specializzazione Elettronica ed Elettrotecnica Articolazione Elettronica. Elettronica ed Elettrotecnica - Classe 3^ Articolazione Elettronica Specializzazione Elettronica ed Elettrotecnica Articolazione Elettronica Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di Segnali Unità di misura delle grandezze

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Controllo Modulante. Wu(t) Una semplice modellazione matematica consente di scrivere le seguenti equazioni:

Controllo Modulante. Wu(t) Una semplice modellazione matematica consente di scrivere le seguenti equazioni: 38 Controllo Modulante Non tutti i sistemi possono essere descritti e controllati tramite il PLC poiché alcuni processi industriali non sono caratterizzati da modelli ad eventi discreti bensì da variabili

Dettagli

CENTRO DI LAVORO EC43 a 5 assi

CENTRO DI LAVORO EC43 a 5 assi Meccaniche Arrigo Pecchioli Via di Scandicci 221-50143 Firenze (Italy) - Tel. (+39) 055 70 07 1 - Fax (+39) 055 700 623 e-mail: pear@pear.it - www.pear.it Altri file a disposizione per informazioni complementari

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Esercizio T T V V on riferimento al circuito di figura, si assumano i seguenti valori: = = kω, =. µf, = 5 V. Determinare

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Esercitazioni di Controlli Automatici LS (Prof. C. Melchiorri) Si consideri il motore elettrico

Dettagli

Studio nel dominio del tempo. Le correnti sulla resistenza e sul condensatore, considerando che il punto M è a massa virtuale, valgono:

Studio nel dominio del tempo. Le correnti sulla resistenza e sul condensatore, considerando che il punto M è a massa virtuale, valgono: INTEGRATORE E DERIVATORE Oltre le quattro operazioni matematiche (addizione, sottrazione, moltiplicazione, divisione) l A.O. è in grado di compiere anche altre operazioni tra le quali parecchio importanti

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

I RICEVITORI IN FM Lo schema di principio di un semplice ricevitore è il seguente:

I RICEVITORI IN FM Lo schema di principio di un semplice ricevitore è il seguente: I RICEVITORI IN FM Lo schema di principio di un semplice ricevitore è il seguente: Questo sistema elementare si chiama ricevitore radio ad amplificazione accordata (TRF) o ad amplificazione diretta ed

Dettagli

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1) 1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni

Dettagli

I Filtri - Tipi di risposte in frequenza

I Filtri - Tipi di risposte in frequenza I Filtri - Tipi di risposte in frequenza Sommario argomenti trattati Appunti di Elettronica - Pasquale Altieri - I Filtri - Tipi di risposte in frequenza... Risposta alla Butterworth... Risposta alla Bessel...

Dettagli

Fig. 3: Selezione dell analisi: Punto di polarizzazione. Fig. 4: Errori riscontrati nell analisi

Fig. 3: Selezione dell analisi: Punto di polarizzazione. Fig. 4: Errori riscontrati nell analisi Elettronica I - Sistemi Elettronici I/II Esercitazioni con PSPICE 1) Amplificatore di tensione con componente E (file: Amplificatore_Av_E.sch) Il circuito mostrato in Fig. 1 permette di simulare la classica

Dettagli

REGOLATORI PID: TECNICHE DI SINTESI E PROBLEMATICHE IMPLEMENTATIVE

REGOLATORI PID: TECNICHE DI SINTESI E PROBLEMATICHE IMPLEMENTATIVE REGOLATORI PID: TECNICHE DI SINTESI E PROBLEMATICHE IMPLEMENTATIVE PID: DESIGN TECHNIQUES AND IMPLEMENTATION ISSUES Relatore: Laureando: Prof.ssa Maria Elena Valcher Davide Meneghel Corso di Laurea in

Dettagli

Indice. Università degli Studi di Brescia Dipartimento di Ingegneria Meccanica e Industriale

Indice. Università degli Studi di Brescia Dipartimento di Ingegneria Meccanica e Industriale Dottorato di Ricerca in Meccanica Applicata XXI Ciclo Relazione sull attività svolta nel secondo anno A.A. 2006/2007 Dottorando: Devid Gandini Tutor: Marco Gadola 1 Indice 1) Attività di Progettazione,

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti BARI Via Re David 186 - Tel : 080/5425512 080/5560840 Anno Scolastico : 2009/2010

Dettagli

Dinamica verticale del veicolo stradale

Dinamica verticale del veicolo stradale Corso di laurea Magistrale in Ingegneria Meccanica Tesi di laurea in Meccanica del Veicolo Dinamica verticale del veicolo stradale Relatori: Prof. Ing. Arcangelo Messina Ing. Giulio Reina Laureando: Antonio

Dettagli

teoresi studi&ricerche

teoresi studi&ricerche UN SISTEMA DI CONTROLLO PER ELICOTTERO Realizzazione con Simulink e Direct3D di M. CARIDI e L. DAGA Dipartimento di Informatica e Sistemistica Università degli Studi di Roma La Sapienza via Eudossiana

Dettagli

Principi di Automazione e Controllo

Principi di Automazione e Controllo Principi di Automazione e Controllo Ing. Fabio Piedimonte Corso IFTS per Tecnico Superiore di Produzione Ver 1.0 Indice 1 Introduzione al problema dell automazione 4 1.1 I processi..................................

Dettagli

Controllo del Differenziale e Dinamica del Veicolo

Controllo del Differenziale e Dinamica del Veicolo e Dinamica del Veicolo Funzione del differenziale 1) Svincolare cinematicamente tra loro gli alberi condotti ) Ripartire convenientemente la coppia motrice Differenziale autobloccante meccanico Tipi di

Dettagli

Titolo unità didattiche in cui è diviso il Ore previste modulo

Titolo unità didattiche in cui è diviso il Ore previste modulo PROGRAMMAZIONE MODULARE CLASSE IVAES INDIRIZZO:ELETTROTECNICA DISCIPLINA : SISTEMI ELETTRICI AUTOMATICI PROF. IANNETTA SIMONE PROF. SAPORITO ETTORE Ore settimanali previste: 4 Prerequisiti per l'accesso

Dettagli

Disciplina: SISTEMI AUTOMATICI Classe: 4Aes

Disciplina: SISTEMI AUTOMATICI Classe: 4Aes Programmazione modulare Indirizzo: ELETTROTECNICA Prof. Iannetta Simone Prof. SAPORITO ETTORE (lab.) Disciplina: SISTEMI AUTOMATICI Classe: 4Aes Ore settimanali previste: 4 (2) Prerequisiti per l'accesso

Dettagli

CORSO DI FORMAZIONE DOCENTI NEOIMMESSI IN RUOLO. a.s. 2011/12. Istituto attuatore: IPSEOA Duca di Buonvicino. Napoli

CORSO DI FORMAZIONE DOCENTI NEOIMMESSI IN RUOLO. a.s. 2011/12. Istituto attuatore: IPSEOA Duca di Buonvicino. Napoli CORSO DI FORMAZIONE DOCENTI NEOIMMESSI IN RUOLO a.s. 2011/12 Istituto attuatore: IPSEOA Duca di Buonvicino Naoli COGNOME MONE NOME Mariangela Assunta E-TUTOR : Guidotti Ugo AREA TEMATICA: Elettronica,

Dettagli

Progetto di Modelli Fisici per la Realtà Virtuale

Progetto di Modelli Fisici per la Realtà Virtuale Progetto di Modelli Fisici per la Realtà Virtuale di Cavenaghi Mattia matricola 640926 Indice Il modello fisico Descrizione del sistema pag. 1 Caratteristiche geometriche degli elementi pag. 1 L'equazione

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Modelli matematici e realtà:

Modelli matematici e realtà: Piano Lauree Scientifiche Matematica e Statistica 2010-11 Modelli matematici e realtà: sulle equazioni differenziali - prima parte R. Vermiglio 1 1 Dipartimento di Matematica e Informatica - Università

Dettagli

POLITECNICO DI MILANO FACOLTA DI INGEGNERIA INDUSTRIALE

POLITECNICO DI MILANO FACOLTA DI INGEGNERIA INDUSTRIALE POLITECNICO DI MILANO FACOLTA DI INGEGNERIA INDUSTRIALE Corso di Laurea Specialistica in Ingegneria Meccanica MODELLAZIONE MATEMATICA E IDENTIFICAZIONE DEI PARAMETRI PER LA SIMULAZIONE DELL INTERAZIONE

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli

Esempi di uso e applicazioni di Matlab e simulink. 1) Uso delle funzioni ode23 e ode45 per l'integrazione di equazioni differenziali con Matlab

Esempi di uso e applicazioni di Matlab e simulink. 1) Uso delle funzioni ode23 e ode45 per l'integrazione di equazioni differenziali con Matlab Esempi di uso e applicazioni di Matlab e simulink ) Uso delle funzioni ode23 e ode45 per l'integrazione di equazioni differenziali con Matlab Sia dato da integrare una equazione differenziale scalare di

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 5 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: ALGEBRA DEGLI SCHEMI A BLOCCHI

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

SPECIFICA TECNICA DELLE PROVE DA ESEGUIRE PER CARATTERIZZARE UN PANTOGRAFO

SPECIFICA TECNICA DELLE PROVE DA ESEGUIRE PER CARATTERIZZARE UN PANTOGRAFO SPECIFICA TECNICA Codifica: RFI/DI/TC.TE/ ST TE 74-C Foglio 1 di 25 PER CARATTERIZZARE UN PANTOGRAFO Parte Titolo PARTE I I. GENERALITÀ PARTE II II. PROVE AL BANCO PARTE III III. PROVE IN LINEA PARTE IV

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

SISTEMI DI CONTROLLO INTRODUZIONE

SISTEMI DI CONTROLLO INTRODUZIONE SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html SISTEMI DI CONTROLLO INTRODUZIONE Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli