Cross section and top view

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cross section and top view"

Transcript

1 The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n + p+ Cross section

2 Modello del primo ordine del transistore nmos I ds /V ds al variare di V gs e V bs =0 transistore nmos nmos W = 0.8 um L = 0.35 um Linear Relationship

3 Ids/Vgs nmos con W=3.4um e L=0.35um al variare di Vgs per differenti valori di Vds con Vsb = 0 Vgs Vgs Limiti principali del modello del primo ordine Il modello quadratico sovrastima la corrente in saturazione In regione di saturazione la corrente varia con Vds La mobilità è funzione delle tensioni Vgs e Vds Ids(Vgs < Vtn ) è non nulla Tutti questi effetti crescono di importanza al calare della lunghezza di canale (L) Nel simulatore circuitale è utilizzato un modello compatto (Model 9, descritto nel corso di progettazione analogica LS)

4 Processo CMOS n-well 0.35 µm V dd =3.3 V, t ox = 74 Å Transistore nmos simulazioni Ids/Vgs con Vds = 0.1 V e Vsb = 0 W= 0.8 µm L=Lmin Lmin

5 simulazioni Ids/Vgs con Vds = Vgs e Vsb = 0 W= 0.8 µm L=Lmin Lmin Imax = (Isat/w) 0.8 = 424 ua simulazioni Ids/Vds al variare di Vgs con Vsb = 0 W= 0.8 µm L=Lmin Lmin Linear Relationship

6 simulazioni Ids/Vds per differenti valori di Vgs con Vsb = 0 W= 3.4 µm L=Lmin Lmin Linear Relationship Imax = (Isat/w) 3.4 = 1.8 ma Ids/Vgs nmos con W=3.4um e L=0.35um al variare di Vgs per differenti valori di Vds con Vsb = 0 Vgs Vgs

7 Processo CMOS n-well 0.35 µm V dd =3.3 V, t ox = 74 Å Transistore pmos simulazioni transistore pmos Isd/ Vgs con Vds Vds = 0.1 V e Vbs = 0 W= 0.8 µm L=Lmin Lmin

8 simulazioni transistore pmos Isd/ Vgs con Vds Vds = Vgs e Vbs = 0 W= 0.8 µm L=Lmin Lmin Imax = (Isat/w) 0.8 = 200 ua simulazioni transistore pmos Isd/ Vds per differenti valori di Vgs Vgs con Vbs = 0 W= 4.7 µm L=Lmin Lmin Imax = (Isat/w) 4.7 = 1.17 ma

9 Tecnologia MIETEC 0.35 um Transistore nmos L= Lmin Imax/W = Isat(Vgs=Vds=Vdd, Vsb=0)/W 530 ua/um Transistore pmos L= Lmin Imax/W = Isat(Vgs=Vds=Vdd, Vsb=0)/W 250 ua/um a parità di W Imax(nMOS) / Imax(pMOS) = 2.12 Vgs = 0 Vds = Vdd Vbs = 0 varia la temperatura I off I ss (W/L)e -(Vtn/nVth)

10 SOG utilizzato nelle esercitazioni Transistore nmos W = 3.4 um L= Lmin Imax = Isat(Vgs=Vds=Vdd, Vsb=0) 1.8 ma Ioff = Ids(Vgs =0, Vds =Vdd, Vsb =0) < 10 pa (T = 27ºC) Imax/Ioff Transistore pmos W = 4.7 um L= Lmin T=27C Imax = Ids(Vgs=Vds=Vdd, Vsb=0) 1.17 ma Ioff = Ids(Vgs =0, Vds =Vdd, Vsb =0) < 10 pa (T = 27ºC) Imax/Ioff Imax(nMOS)/Imax(pMOS) = 1.5 Modello semplificato I max e I off I max v sat W C ox (V dd V tn ) I off I ss (W/L)e -(Vtn/nVth) Processo tecnologico di generazione più recente Imax/Ioff cala Ioff cresce Potenza statica diventa sempre più critica

11 Processo CMOS 0.13um V dd = 1.2 V t ox = 2 nm Transistori nmos HS (High Speed) Vtn = 315 mv Imax/W = 670 ua/um Ioff/W = 58 na/um Imax/Ioff 10 4 LL (Low Leakage) Vtn = 450 mv Imax/W = 535 ua/um Ioff/W = 500 pa/um Imax/Ioff 10 6 ULL (Ultra Low Leakage) Vtn = 630 mv Imax/W = 360 ua/um Ioff/W = 10 pa/um Imax/Ioff I max v sat W C ox (V dd V tn ) I off I ss (W/L)e -(Vtn/nVth) Transistori nmos Caratteristiche W = 0.15 um L= 0.13 um Ids / Vgs con Vds = 0.01 V e Vbs = 0 scala lineare e log Ids / Vgs con Vds = Vgs e Vbs = 0 Ids / Vds a step di Vgs con Vbs = 0 transistore HS Caratteristiche W = 10 um L = 0.13 um Ids / Vds a step di Vgs con Vbs = 0 transistore HS

12 Espressione tensione di soglia V tno = V FB + 2? F + γ (2? F ) ½? F = KT/q ln N sub /n i γ = 1/C ox (2 e si q N sub ) 1/2 C ox = e ox / t ox V tn = V tno + γ [(Vsb + 2? F ) ½ - (2? F ) ½ ] W = 0.15 um L = 0.13 um I ds /V gs con V ds = 0.01 V e V bs =0

13 W = 0.15 um L = 0.13 um I ds /V gs con V ds = 0.01 V e V bs =0 I ds /V ds al variare di V gs e V bs =0 transistore HS nmos nmos W = 0.15 um L = 0.13 um Linear Relationship

14 I ds /V ds al variare di V gs e V bs =0 transistore HS nmos nmos W = 10 um L = 0.13 um Linear Relationship Confronto caratteristiche I ds / V ds transistori HS con V gs = V dd ds

15 Vgs = 0 Vds = Vdd Vbs = 0 varia la temperatura I ds (Vgs =0, Vds=Vdd) I ss (W/L)e -(Vtn/nVth) + I DB Corrente associata alle giunzioni DB in inversa

16 The Gate Capacitance Polysilicon gate Source n + W Drain n + C gate,tot» C ox WL t ox L L Top view Gate oxide n + L n + Gate-bulk overlap = C ox L 2 (W/L) = C g (W/L) C g = C ox L 2 = (e ox /t ox ) L 2 Cross section

17 Capacità di gate SOG utilizzato nelle esercitazioni Cox 4.6 ff/um 2 Cg = Cox L ff Transistore MOS W =Wmin = 0.8 um Cgate,tot 1.28 ff Transistore nmos W = 3.4 um L= Lmin (W/L 10) Cgate,tot 5.5 ff Transistore nmos W = 4.7 um L= Lmin (W/L 13.5) Cgate,tot 7.5 ff

18 Junction Capacitance Source W Bottom Side wall x j Side wall Channel Z C SB = C bottom + C sw = C j Area + C jsw Perimeter = C j W Z + C jsw (2Z +W)

19 Espressione capacità di giunzione per unità di area e di perimetro Capacità di giunzione dei transistori nel SOG utilizzato nelle esercitazioni al variare della polarizzazione in inversa C jp C jn

20 Processo tecnologico di generazione più recente C ox cresce ma si riducono le dimensioni e quindi C g e C gate,tot calano Il rapporto Cd/Cg si mantiene circa costante (γ 1) Considerando solo gli effetti capacitivi associati ai transistori: Tp calano Potenza dinamica cala Processo CMOS 0.13 um Cox 17.2 ff/um 2 (tox = 2nm) Cg = Cox L ff Transistore MOS W = Wmin = 0.3 um (con un contatto nell area di S/D) stima Cgate,tot 0.66 ff Cgate,tot,0.35um/ Cgate,tot,0.13um 1.28/ Transistore nmos W = 1.3 um L= Lmin (W/L = 10) stima Cgate,tot 2.9 ff Transistore nmos W = 4.7 um L= Lmin (W/L = 13.5) stima Cgate,tot 3.9 ff

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

I dispositivi elettronici. Dispense del corso ELETTRONICA L

I dispositivi elettronici. Dispense del corso ELETTRONICA L I dispositivi elettronici Dispense del corso ELETTRONICA L Sommario I semiconduttori La giunzione pn Il transistor MOS Cenni sul principio di funzionamento Modellizzazione Fenomeni reattivi parassiti Top-down

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore MOS

Dispositivi e Tecnologie Elettroniche. Il transistore MOS Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

Elettronica dei Sistemi Digitali Le porte logiche CMOS

Elettronica dei Sistemi Digitali Le porte logiche CMOS Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Tecnologia CMOS. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Tecnologia CMOS. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Tecnologia CMOS Lucidi del Corso di Elettronica Digitale Modulo 3 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Transistor MOS IltransistorMOSèundispositivoa4terminali(drain,gate,source,body

Dettagli

Elettronica I Porte logiche CMOS

Elettronica I Porte logiche CMOS Elettronica I Porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali Elettronica

Dettagli

10. Transistor a effetto di campo. Corso di Fondamenti di Elettronica Fausto Fantini a.a

10. Transistor a effetto di campo. Corso di Fondamenti di Elettronica Fausto Fantini a.a 10. Transistor a effetto di campo Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Transistor a effetto di campo Transistor a effetto di campo MOSFET: Metal/Oxide/Semiconductor/Field/Effect/Transistor

Dettagli

Il Sistema Metallo Ossido Semiconduttore (MOS)

Il Sistema Metallo Ossido Semiconduttore (MOS) Il Sistema Metallo Ossido Semiconduttore (MOS) E una struttura simile ad un condensatore, con queste differenze: A polarizzazione nulla la concentrazione dei portatori nel semiconduttore è assai minore

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Transistore MOSFET Struttura Equazioni caratteristiche Curve caratteristiche Funzionamento come amplificatore

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007 ircuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/007 Il circuito di figura è statico o dinamico? Illustrare la funzione del transistore TR Il transistor TR ha il compito di mantenere

Dettagli

Circuiti con diodi e resistenze: Analisi e Progetto

Circuiti con diodi e resistenze: Analisi e Progetto Circuiti con diodi e resistenze: Analisi e Progetto Esercizio 1: Calcolare e descrivere graficamente la caratteristica di trasferimento del seguente circuito: 1 D 3 110 KΩ 5 KΩ 35 KΩ V z3 5 V Svolgimento

Dettagli

Porte logiche in tecnologia CMOS

Porte logiche in tecnologia CMOS Porte logiche in tecnologia CMOS Transistore MOS = sovrapposizione di strati di materiale con proprietà elettriche diverse tra loro (conduttore, isolante, semiconduttore) organizzati in strutture particolari.

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenuti del corso Parte I: Introduzione e concetti fondamentali richiami di teoria dei circuiti la simulazione circuitale con SPICE elementi di Elettronica dello stato solido Parte II: ispositivi Elettronici

Dettagli

Consumo di Potenza nell inverter CMOS. Courtesy of Massimo Barbaro

Consumo di Potenza nell inverter CMOS. Courtesy of Massimo Barbaro Consumo di Potenza nell inverter CMOS Potenza dissipata Le componenti del consumo di potenza sono 3: Potenza statica: è quella dissipata quando l inverter ha ingresso costante, in condizioni di stabilità

Dettagli

Transistori a effetto di campo.

Transistori a effetto di campo. Transistori a effetto di campo. Sommario Introduzione... 2 Transistor Metal Oxide Semiconductor (MOS)... 2 Capacità dell ossido per unità di superficie C OX... 3 Introduzione del concetto di tensione di

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte A: Transistori in commutazione Lezione n. 3 - A - 3: Transistori MOS in commutazione Elettronica II - Dante Del Corso - Gruppo A - 8 n.

Dettagli

4 STRUTTURE CMOS. 4.1 I componenti CMOS

4 STRUTTURE CMOS. 4.1 I componenti CMOS 4.1 4 STRUTTURE CMOS 4.1 I componenti CMOS Un componente MOS (Metal-Oxide-Silicon) transistor è realizzato sovrapponendo vari strati di materiale conduttore, isolante, semiconduttore su un cristallo di

Dettagli

canale n canale p depletion enhancement

canale n canale p depletion enhancement FET: Field Effect Transistor FET JFET MOSFET canale n canale p depletion enhancement canale n canale p canale n canale p A.Nigro Laboratorio di Segnali e Sistemi II - FET March 17, 2017 1 / 95 MOSFET Struttura

Dettagli

MOSFET o semplicemente MOS

MOSFET o semplicemente MOS MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:

Dettagli

Elettronica Funzionamento del transistore MOS

Elettronica Funzionamento del transistore MOS Elettroica Fuzioameto del trasistore MOS Valetio Liberali Dipartimeto di Fisica Uiversità degli Studi di Milao valetio.liberali@uimi.it Elettroica Fuzioameto del trasistore MOS 13 maggio 2015 Valetio Liberali

Dettagli

Stima della Potenza a livello sistema

Stima della Potenza a livello sistema July 31, 2009 Individuazione formule Bacpac Analisi Potenza Introduzione Potenza Totale Effetto scaling sulla Potenza Corrente di Leakage Contributo BTBT e GIDL con le nuove tecnologie Modifica formula

Dettagli

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min)

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min) 14 Giugno 2006 M3 M4 M2 M1 R Nel circuito in figura determinare: 1) trascurando l effetto di modulazione della lunghezza di canale, il legame tra la corrente che scorre nella resistenza R e i parametri

Dettagli

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET Dispositivi e Tecnologie Elettroniche Modelli di ampio e piccolo segnale del MOFET Modello di ampio segnale Le regioni di funzionamento per ampio segnale sono: interdizione quadratica saturazione I D =

Dettagli

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazione Analogica e Blocchi Base Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Blocchi base

Dettagli

MOS Field-Effect Transistors (MOSFETs)

MOS Field-Effect Transistors (MOSFETs) MOS Field-Effect Transistors (MOSFETs) A. Ranieri Laboratorio di Elettronica A.A. 2009-2010 1 Struttura fisica di un transistore NMOS ad accrescimento. Tipicamente L = 0.1 a 3 m, W = 0.2 a 100 m e lo spessore

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/2010 Filtri Filtri del secondo ordine In generale la funzione di trasferimento è: H(s) = a 2 s 2 + a 1 s + a 0

Dettagli

Corso di Circuiti Integrati Anno Accademico 2012/2013. Esercitazione 6 Progetto di un amplificatore a Due Stadi (di Miller) in tecnologia CMOS 0.

Corso di Circuiti Integrati Anno Accademico 2012/2013. Esercitazione 6 Progetto di un amplificatore a Due Stadi (di Miller) in tecnologia CMOS 0. Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica Corso di Circuiti Integrati Anno Accademico 2012/2013 Esercitazione 6 Progetto di un amplificatore

Dettagli

Esame di Elettronica I 2º compitino 4 Febbraio

Esame di Elettronica I 2º compitino 4 Febbraio Esame di Elettronica I 2º compitino 4 Febbraio 2003 0870061666 Simulazione al calcolatore con PSpice Melzani Yari Matricola: 634009 Crema 12 febbraio 2003 Figura 1: Schema circuitale di una porta OR tracciato

Dettagli

Laboratorio di Elettronica T Esperienza 5 PSPICE

Laboratorio di Elettronica T Esperienza 5 PSPICE Laboratorio di Elettronica T Esperienza 5 PSPICE Postazione N Cognome Nome Matricola 1) Misura della resistenza La corrente nel circuito che dovrete analizzare nel seguito verrà misurata indirettamente

Dettagli

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n Esercizio U3. - Tensione di soglia del MOSFET a canale n Si ricavi dettagliatamente l espressione per la tensione di soglia di un MOSFET ad arricchimento a canale p e successivamente la si calcoli nel

Dettagli

Amplificatori elementari con carico attivo MOSFET E connesso a diodo

Amplificatori elementari con carico attivo MOSFET E connesso a diodo Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/200 Filtri Filtri del primo ordine Passa basso R 2 C 2 R H(s) = R 2 H(0) = R 2 R sr 2 C 2 R f p = φ = 0 90 2πR

Dettagli

Elaborato di Elettronica Digitale C.d.L. in Ingegneria Elettronica Anno accademico 02/ 03

Elaborato di Elettronica Digitale C.d.L. in Ingegneria Elettronica Anno accademico 02/ 03 Elaborato di Elettronica Digitale C.d.L. in Ingegneria Elettronica Anno accademico 0/ 03 Alfredo Caferra 58/463 OGGETTO DELL ELABORATO Per una SRAM con celle di memoria NMOS a 4 transistori con bit lines

Dettagli

Capitolo IV. Transistori ad effetto di campo

Capitolo IV. Transistori ad effetto di campo Capitolo IV Transistori ad effetto di campo In questo capitolo si tratteranno i transistori ad effetto di campo (FET). Come nel caso dei BJT la tensione tra due terminali del FET controlla la corrente

Dettagli

Memorie a semiconduttore e tecnologia

Memorie a semiconduttore e tecnologia Memorie a semiconduttore e tecnologia Memorie a semiconduttore e tecnologia Architettura di una memoria Memorie non volatili Memorie a scrittura e lettura Tecnologia dei semiconduttori Processi di base

Dettagli

Esame di Elettronica I 1º compitino 23 Gennaio

Esame di Elettronica I 1º compitino 23 Gennaio Esame di Elettronica I 1º compitino 23 Gennaio 2003 0956267308 Simulazione al calcolatore con PSpice Melzani Yari Matricola: 634009 Crema 28 gennaio 2003 Lo schema circuitale in figura rappresenta un Inverter,

Dettagli

Interruttori Digitali

Interruttori Digitali Interruttori Digitali Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In questa dispensa verranno presentati gli interruttori digitali. In particolar modo si parlerà delle possibili realizzazioni mediante

Dettagli

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLE CURVE CARATTERISTICHE DI USCITA DI UN TRANSISTOR JFET A CANALE N SCHEMA

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLE CURVE CARATTERISTICHE DI USCITA DI UN TRANSISTOR JFET A CANALE N SCHEMA ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 6 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLE CURVE CARATTERISTICHE DI USCITA DI UN TRANSISTOR JFET A CANALE N SCHEMA 1 STRUMENTI

Dettagli

Simulazione di porta logica Domino con SPICE

Simulazione di porta logica Domino con SPICE Università degli Studi di Bologna Seconda Facoltà di Ingegneria - Sede di Cesena C.d.L. in Ingegneria Elettronica e delle Telecomunicazioni Simulazione di porta logica Domino con SPICE Laboratorio di Elettronica

Dettagli

Dispositivi elettronici. Effect

Dispositivi elettronici. Effect ispositivi elettronici Metal-Oxide-emiconductoremiconductor Field Effect Transistor (MOFET) ommario Come è fatto un MOFET a canale n Principi di funzionamento Canale di inversione Calcolo di I vs V Curve

Dettagli

C. Musilli Cassino 30/6/2006

C. Musilli Cassino 30/6/2006 C. Musilli Cassino 30/6/2006 SDRAM Synchronus Dynamic Random Access Memory Accesso Casuale Tempo necessario per accedere ad un qualunque dato e indipendente dalla posizione che il dato stesso assume all

Dettagli

Laboratorio II, modulo Elettronica digitale (2 a parte) (cfr.

Laboratorio II, modulo Elettronica digitale (2 a parte) (cfr. Laboratorio II, modulo 2 2016-2017 Elettronica digitale (2 a parte) (cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html) Esempio (reale) di comparatore + V V in + R V out V ref - V out V ref V

Dettagli

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014 Esercizio : Con riferimento al circuito illustrato in Fig. e ai valori assegnati dei parametri si risponda ai seguenti quesiti: Parametri del problema V DD=V; n=00 A/V ; p=00 A/V ; V TN=0.5V; V TP=-0.5V;

Dettagli

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET 1 Contatti metallo semiconduttore (1) La deposizione di uno strato metallico

Dettagli

Fig. 1. Cella SRAM a 4 transistori.

Fig. 1. Cella SRAM a 4 transistori. NOTE SULLE MEMORIE. Dimensionamento della cella SRAM 4T La Fig. 1 mostra lo schema di una memoria SRAM a 4 transistori (4T). L elemento di memoria è realizzato con una coppia di invertitori NMOS con carico

Dettagli

Laboratorio di Strumentazione Elettronica

Laboratorio di Strumentazione Elettronica Laboratorio di Strumentazione Elettronica Proposte di attività per il Progetto Elettronico per gli studenti del Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni Pixel monolitici in tecnologia

Dettagli

Simulazione Spice. Simulazione Circuitale Spice. Netlist. Netlist

Simulazione Spice. Simulazione Circuitale Spice. Netlist. Netlist Simulazione Spice Simulazione Circuitale Spice Lucidi del Corso di Elettronica Digitale Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

Dettagli

{ v c 0 =A B. v c. t =B

{ v c 0 =A B. v c. t =B Circuiti RLC v c t=ae t / B con τ=rc e { v c0=ab v c t =B Diodo La corrente che attraversa un diodo quando questo è attivo è i=i s e v /nv T n ha un valore tra e. Dipende dalla struttura fisica del diodo.

Dettagli

Elettronica Analogica Prof. Marco Sampietro 1-15 Dicembre Anno accademico 2016/2017. Analisi della DISTORSIONE in uno stadio differenziale.

Elettronica Analogica Prof. Marco Sampietro 1-15 Dicembre Anno accademico 2016/2017. Analisi della DISTORSIONE in uno stadio differenziale. Politecnico di Milano Elettronica Analogica Prof. Marco Sampietro 1-15 Dicembre 016 - Anno accademico 016/017 Analisi della DISTORSIONE in uno stadio differenziale. Calcolo teorico: tensione di Early infinita

Dettagli

Elettronica I Funzionamento del transistore MOS

Elettronica I Funzionamento del transistore MOS Elettroica I Fuzioameto del trasistore MOS Valetio Liberali Dipartimeto di Tecologie dell Iformazioe Uiversità di Milao, 26013 Crema e-mail: liberali@dti.uimi.it http://www.dti.uimi.it/ liberali Elettroica

Dettagli

Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide

Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide Il transistor MOSFET MOSFET enhancement mode Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide Semiconductor Field Effect Transistor. La struttura di principio del dispositivo

Dettagli

separazione dei wafer processo di integrazione CMOS singola fetta testing su fetta inserimento nel package

separazione dei wafer processo di integrazione CMOS singola fetta testing su fetta inserimento nel package lingotto separazione dei wafer processo di integrazione CMOS singola fetta fette lavorate testing su fetta separazione dei dice inserimento nel package VENDITA testing sul dispositivo finito Figura 1.

Dettagli

Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso Consumo

Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso Consumo Università degli Studi di Padova Facoltà di Ingegneria Corso di Laurea in Ingegneria Dell Informazione Tesi di Laurea Triennale Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso

Dettagli

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Elettronica I Potenza dissipata dalle porte logiche CMOS

Elettronica I Potenza dissipata dalle porte logiche CMOS Elettronica I Potenza dissipata dalle porte logiche MOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 rema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS Esercizio Grandezze tipiche delle caratteristiche dei MOS Supponiamo di avere una tecnologia MOS con: ensione di alimentazione, dd 5 ensione di soglia, t Dimensione minima minlminfµm. I file di tecnologia

Dettagli

. Nota: le tensioni dono riferite all'ingresso ed all'uscita dello stesso circuito. G. Martines 1

. Nota: le tensioni dono riferite all'ingresso ed all'uscita dello stesso circuito. G. Martines 1 Invertitore logico (NOT) La caratteristica di trasferimento in tensione (VTC) Per un ingresso logico 0, cioè v I V IL l'uscita logica è 1, cioè v O V OH ; per ingresso 1 cioè v I V IH uscita 0, cioè v

Dettagli

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). a figura 1 mostra la sezione di una porzione di fetta di silicio in corrispondenza di un dispositio MOSFET a canale n. In condizioni di funzionamento

Dettagli

Equation Chapter 4 Section 1Capitolo IV. Transistori ad effetto di campo

Equation Chapter 4 Section 1Capitolo IV. Transistori ad effetto di campo Equation Chapter 4 Section 1Capitolo IV Transistori ad effetto di campo In questo capitolo si tratteranno i transistori ad effetto di campo (FET). Come nel caso dei BJT la tensione tra due terminali del

Dettagli

Elettronica digitale

Elettronica digitale Elettronica digitale Porte logiche a rapporto e a pass transistor Andrea Bevilacqua UNIVERSITÀ DI PADOVA a.a 2008/09 Elettronica digitale p. 1/22 Introduzione In questa lezione analizzeremo modalità di

Dettagli

Transistore ad effetto di campo (MOSFET)

Transistore ad effetto di campo (MOSFET) 1.1 Introduzione.......2 1.2 MOSFET ad arricchimento.......3 1.3 Funzionamento.......5 1.4 V GS 0...6 1.5 V GS > V TH e V S < V S sat......7 1.6 V GS > V TH, V S >V S sat.....9 1.6 Simbolo Circuitale e

Dettagli

Dispositivi elettronici. Transistor (MOSFET)

Dispositivi elettronici. Transistor (MOSFET) ispositivi elettronici Metal-Oxide- emiconductor Field Effect Transistor (MOFET) ommario Come è fatto un MOFET a canale n Principi di funzionamento Canale di inversione Calcolo di I vs V Curve I vs V e

Dettagli

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET Dispositivi e Tecnologie Elettroniche Stadi Amplificatori MOSFET Esercizio 1: si consideri il seguente circuito per la polarizzazione del MOSFET: VDD=15 V R2=560K RD=2.2 K G R1=180K D B VTn=1.5V Βn=20mA/V^2

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Corso di Circuiti Integrati Anno Accademico 2016/2017

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Corso di Circuiti Integrati Anno Accademico 2016/2017 Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Corso di Circuiti Integrati Anno Accademico 2016/2017 1 Introduzione In questo breve tutorial utilizzeremo il software

Dettagli

TRANSISTOR DI POTENZA

TRANSISTOR DI POTENZA TRANSISTOR DI POTENZA I transistor di potenza sono principalmente utilizzati nel controllo dei motori, in campo automobilistico, negli alimentatori, negli stadi finali degli amplificatori (audio, RF, ).

Dettagli

Logica cablata (wired logic)

Logica cablata (wired logic) Logica cablata (wired logic) Cosa succede quando si collegano in parallelo le uscite di più porte appartenenti alla stessa famiglia logica? Si realizza una ulteriore funzione logica tra le uscite Le porte

Dettagli

I transistor mosfet e jfet

I transistor mosfet e jfet Capitolo 7 I transistor mosfet e jfet 7.1 Struttura del transistor mosfet La sigla mosfet è un acronimo per Metal-Oxide-Semiconductor Field-Effect-Transistor (transistor ad effetto di campo di tipo metallo-ossido-semiconduttore).

Dettagli

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni T T i - TG2000 Generatore di Funzioni T T i - TG2000 Genera i segnali di tensione Uscita

Dettagli

I transistor mosfet e jfet

I transistor mosfet e jfet Capitolo 7 I transistor mosfet e jfet 7.1 Struttura del transistor mosfet La sigla mosfet è un acronimo per Metal-Oxide-Semiconductor Field-Effect-Transistor (transistor ad effetto di campo di tipo metallo-ossido-semiconduttore).

Dettagli

IL MOSFET.

IL MOSFET. IL MOSFET Il MOSFET è certamente il più comune transistor a effetto di campo sia nei circuiti digitali che in quelli analogici. Il MOSFET è composto da un substrato di materiale semiconduttore di tipo

Dettagli

Semiconductor Memories. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Paolo Spirito

Semiconductor Memories. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Paolo Spirito Semiconductor Memories Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Paolo Spirito Read-only memory cells Inserzione di opportuni elementi nei nodi della matrice nei quali si vuole codificare una

Dettagli

PARTE I: L USO DI SPICE PER LE ESERCITAZIONI DI ELETTRONICA DIGITALE

PARTE I: L USO DI SPICE PER LE ESERCITAZIONI DI ELETTRONICA DIGITALE Parte I: Esercitazioni nell uso dei software SPICE per l analisi delle porte logiche Rif.: P. Spirito, Elettronica Digitale, McGraw-Hill Italia, 1a Ed. (1998), 2a Ed. (2002). PARTE I: L USO DI SPICE PER

Dettagli

J e:gi UNZI ONEBASEEMETTI TORE J c:gi UNZI ONEBASECOLLETTORE IL TRANSISTOR AD EFFETTO DI CAMPO A GIUNZIONE, j FET (Shockley, 1951) E un componente che ha una sola giunzione p n. Geometria didattica

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

Relazione sulle esperienze di laboratorio

Relazione sulle esperienze di laboratorio Università degli Studi di Bergamo Facoltà di Ingegneria dell'informazione Elettronica dei sistemi digitali Relazione sulle esperienze di laboratorio Revisione Data Redatto 1.6 27/1/8 Silvio Moioli Indice

Dettagli

Dimensionamento di porte logiche connesse in cascata

Dimensionamento di porte logiche connesse in cascata Dimensionamento di porte logiche connesse in cascata I. Ritardo di propagazione dell invertitore A. Modello del ritardo di propagazione dell inverter utilizzabile in strumenti di simulazione e sintesi

Dettagli

INTRODUZIONE ALL USO DI SCHEMATICS

INTRODUZIONE ALL USO DI SCHEMATICS INTRODUZIONE ALL USO DI SHEMATIS Prima di cominciare l esercitazione è opportuno prendere confidenza con le potenzialità ed i meccanismi di operazione di SHEMATIS (l interfaccia grafica di SPIE), mediante

Dettagli

Amplificatore logaritmico

Amplificatore logaritmico Elettronica delle Telecomunicazioni Esercitazione 2 mplificatore logaritmico ev 1 981208 GV, S ev 2 990617 DDC Specifiche di progetto Progettare un amplificatore con funzione di trasferimento logaritmica

Dettagli

Elettronica dei Sistemi Digitali LA

Elettronica dei Sistemi Digitali LA Elettronica dei Sistemi Digitali LA Università di Bologna, sede di Cesena Processi microelettronici A.a. 2004-2005 Tecniche Litografiche per la Fabbricazione di Circuiti Integrati - Etching Il fotoresist

Dettagli

La simulazione e il programma SPICE. Marcello Salmeri

La simulazione e il programma SPICE. Marcello Salmeri La simulazione e il programma SPICE Marcello Salmeri 19 gennaio 2007 ii Capitolo 1 Modelli per la simulazione Effettuare la simulazione di un qualsiasi sistema, in particolare di un sistema elettronico,

Dettagli

Tensione di soglia Q C. x d. x d

Tensione di soglia Q C. x d. x d ensione di soglia In presenza di cariche nell ossido e/o di φms 0, la tensione di soglia viene odificata a causa del contributo di FB, che rappresenta la tensione che occorre applicare al gate per portare

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

L'INDUZIONE ELETTROSTATICA E IL COMANDO DI TENSIONE DEL GATE DEL MOSFET

L'INDUZIONE ELETTROSTATICA E IL COMANDO DI TENSIONE DEL GATE DEL MOSFET STRUTTURA COSTRUTTIVA DEL MOSFET (Adattamento da http://users.unimi.it/metis/metis-3mkb/courseware/fet/indice%20mosfet.htm ) Il transistor MOS si presenta costruito fisicamente come nella figura accanto.

Dettagli

CIRCUITI ELETTRONICI DIGITALI

CIRCUITI ELETTRONICI DIGITALI APPUNTI DI CIRCUITI ELETTRONICI DIGITALI Aprile - Giugno 2009 Appunti di elettronica digitale tratti dalle lezioni del corso di Circuiti Elettronici Digitali L-A alla facoltà di Ingegneria Elettronica

Dettagli

Pilotaggio high-side

Pilotaggio high-side Interruttori allo stato solido Introduzione Il pilotaggio high-side è più difficile da realizzare del low-side in quanto nel secondo un capo dell interruttore è a massa Non sempre è possibile il pilotaggio

Dettagli

Fondamenti di Elettronica

Fondamenti di Elettronica N ELENCO: Politecnico di Milano Facoltà di Ingegneria dell Informazione Fondamenti di Elettronica Anno Accademico 2004/2005 Nome: Cognome: Matricola: Aula: Banco: Data: Docente del corso: Lezione di laboratorio:

Dettagli

Coppia differenziale MOS con carico passivo

Coppia differenziale MOS con carico passivo Coppia differenziale MOS con carico passivo tensione differenziale v ID =v G1 v G2 e di modo comune v CM = v G1+v G2 2 G. Martines 1 Coppia differenziale MOS con carico passivo Funzionamento con segnale

Dettagli

Dispositivi a trasferimento di carica

Dispositivi a trasferimento di carica Dispositivi a trasferimento di carica CTD Charge Transfer Devices CCD Charge Coupled Devices Evoluzione tecnologica: 1967: array di fotodiodi/fototransistori MOS (pixel passivi) 1970: sensori CCD 1980:

Dettagli

Introduzione ai IC. CV = total chips per wafer. Y C wafer dies per wafer =

Introduzione ai IC. CV = total chips per wafer. Y C wafer dies per wafer = Introduzione ai IC Legge di Moore (1965) il n di transistor su un chip raddoppiava ogni 18/24 mesi, osservazione dalla quale Moore previse che l'efficienza della tecnologia sarebbe raddoppiata ogni 18

Dettagli

Dispositivi elettronici Esperienze di laboratorio

Dispositivi elettronici Esperienze di laboratorio Dispositivi elettronici Esperienze di laboratorio Universitá degli Studi di L Aquila Massimo Lucresi Luigi Pilolli Mariano Spadaccini maggio 2002 Esperienza n. 1 Analisi della risposta in frequenza di

Dettagli

Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1

Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1 Indice Cap. 1 Il progetto dei sistemi elettronici pag. 1 1.1 Oggetto dello studio 1 1.2 Concezione, progetto e produzione del sistema elettronico 5 1.3 Il circuito di interfaccia di ingresso 13 1.4 Il

Dettagli

Mercato delle memorie non-volatili

Mercato delle memorie non-volatili Memory TREE Mercato delle memorie non-volatili Organizzazione della memoria Row Address 1 2 M Row D e c o d e r M 2 rows 1 Bitline One Storage ell ell Array Wordline Row Decoder 2 M 1 2 N Sense Amplifiers

Dettagli

Lezione A3 - DDC

Lezione A3 - DDC Elettronica per le telecomunicazioni Unità A: Amplificatori, oscillatori, mixer Lezione A.3 Punto di funzionamento, guadagno e banda distorsioni, rumore, 1 Contenuto dell unità A Lezione A3 Informazioni

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni 1 Contenuto dell unità A Informazioni logistiche e organizzative Applicazione di riferimento caratteristiche e tipologie di moduli Circuiti con operazionali reazionati

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 ESERCIZIO 1 Un transistore n + pn + (N Abase = 10 16 cm 3, W = 4 µm, S = 1 mm 2,µ n = 0.11 m 2 /Vs, τ n = 10 6 s) è polarizzato come in gura

Dettagli

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn con N Abase = N Dcollettore = 10 16 cm 3, µ n = 0.09 m 2 /Vs, µ p = 0.035 m 2 /Vs, τ n = τ p = 10 6 s, S=1

Dettagli