LE CARTE DI CONTROLLO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LE CARTE DI CONTROLLO"

Transcript

1 ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata da tre rette parallele all'asse delle ascsse che esprono, quella centrale o eda, l valore edo della statstca o la sua sta ottenuta n base a pr capon, e quelle esterne, dette d controllo, gl estre della banda d apezza par a se volte la devazone standard F, o la sua sta s. Le carte d controllo possono essere d due tp: 1) carte d controllo per attrbut S usano quando la qualtà può essere espressa dalla dentfcazone d una o pù caratterstche qualtatve. 2) carte d controllo per varabl S usano quando la qualtà può essere espressa da caratterstche quanttatve. Le prncpal carte d controllo per varabl sono: a) carta d controllo per la eda b) carta d controllo per l range

2 Carta d controllo per la eda (Mean Chart) Per la costruzone d questa carta d controllo vene consderata una successone d capon tutt d apezza n. La glor sta della devazone standard della popolazone vale: s ' n j (x &x) 2 '1 n&1 Lo statore della eda µ della popolazone vale: x ' n x j j '1 n ' '1 x La carta d controllo della eda sarà allora, rcordando le propretà della dstrbuzone d caponaento, caratterzzata dalle seguent rette: y ' x retta centrale y ' x ± 3 s n rette d controllo

3 Carta d controllo per l range (Range Chart) Vene usata quando occorre verfcare la varabltà d un processo. La range chart vene realzzata n odo del tutto analogo alla carta d controllo della eda. 1) Per ogn capone s deterna l range R ; 2) s deternano l valore centrale e lt superore e nferore della carta trate l valore edo del range. R ' j R '1 UCL ' R D 4 LCL ' R D 3 I valor d D 4 e D 3 sono tabellat n funzone della nuerostà n de capon. 1 1 Il range è uno statore dstorto d F. Il valore atteso d R e la devazone standard del range caponaro possono essere espress n funzone della F. E(R) ' d 2 F F R ' d 3 F dove d 2 e d 3 sono costant tabellate n funzone d n (nuerostà caponara). La glor sta d F è: s ' n j (x 1 &x) 2 '1 n&1 La lnea centrale sarà defnta da d 2 s, entre lt superor e nferor saranno defnt dalle seguent relazon: UCL ' d 2 s % 3d 3 s LCL ' d 2 s & 3d 3 s Il valore atteso del range può anche essere stato dal suo valore edo. In tal caso le lnee caratterstche saranno dentfcate dalle seguent relazon: Lnea centrale: R UCL: R % 3 d 3 d 2 R ' R 1%3 d 3 d 2 ' R D 4 LCL: R & 3 d 3 d 2 R ' R 1&3 d 3 d 2 ' R D 3

4 CARTE DI CONTROLLO PER ATTIBUTI (p-chart) In alcun cas, oltre alla sura quanttatva d deternate cartterstche, può essere portante ntorare la proporzone p d prodott che presentano alcun dfett. Coe nel caso delle x-chart, capon casual d n prodott sono selezonat n odo casuale dalla lnea d produzone a specfcat ntervall d tepo. Per cascun capone vene deternato la proporzone d eleent dfettos p y = n dove con y s ndca l nuero d pezz dfettos present nel capone -eso. Le proporzon caponare p vengono po rportate su un grafco sulle cu ascsse sono rportat tep. La lnea centrale (CL) e lt superor (UCL) e nferor (LCL) sono poszonate coe segue: p CL = p = = 1 UCL = p + 3σ$ = p + 3 p p( 1 p) n LCL = p 3σ$ = p 3 p p( 1 p) n

5 ESEMPIO CARTE DI CONTROLLO PER VARIABILI Alla fne d ogn ora, per un perodo d 20 ore, vengono esanat daetr d quattro alber costtuent l capone d controllo oraro. Le sure ottenute sono rportate n tabella1. S costruscano le carte d controllo della eda e del range e se ne dscutno rsultat. Nuerostà caponara (4) Y n Nuero d capon (20) Y Tabella 1 SN Saple Measureents

6 Indcata con x la sura del daetro s ha: x n = 1 x = = Indcato con R l range (R = x ax - x n ) dell -eso capone s ha: R n = 1 R = = La sta della devazone standard caponara s vale: $ σ x S = = 2 n 2 n = 1 ( x x) 2 n( n ) 2 1 = I valor d UCL e LCL per la Meda valgono: UCL = x + 3σ$ x = LCL = x 3σ$ x = I valor d UCL e LCL per l Range sono funzone de valor tabellat D 3 e D 4. In ancanza d tabelle, n pra approssazone valor d D 3 e D 4 possono rcavars dalle seguent relazon: per n <= 6 D 3 = 0 per n > 6 D 3 = n n D 4 = n n Per n=4 s ha: D 3 =0 D 4 =2.297 da cu: UCL = LCL = 0

7 Control Chart for MEANS UCL Saple ean daeter (nch) LCL Te (hours)

8 Control Chart for Process Varaton: R-CHART UCL Saple range (nch) LCL Te (hours)

9 ANALISI DELLE CARTE L anals delle due carte non segnalano anoale del processo d produzone d enttà tale da rchedere ntervent correttv. Non eergono altresì eleent tal avvalorare la presenza d una tendenza d processo non casuale 1. 1 Anche se n odo puttosto scheatco e seplcstco, possao statstcaente sospettare la presenza d una tendenza non casuale quando s verfcano una o pù delle seguent condzon: G G sette o pù punt consecutv sono post al d sopra o al d sotto della lnea centrale aleno (10/11o 12/14 o 14/17) punt sono post tutt al d sopra o al d sotto della lnea centrale

10 INTERPRETAZIONE STATISTICA DELL ANALISI DELLE CARTE DI CONTROLLO Lo scopo delle carte d controllo è d evdenzare anoale ne process produttv. Se l processo produttvo è controllato, la probabltà che la eda caponara cada entro lt d controllo è olto elevata. Cò è dovuto al Teorea del Lte Centrale che asscura che la dstrbuzone caponara delle ede possa essere approssata, per capon d nuerostà suffcenteente elevata, da una dstrbuzone norale con eda concdente con la eda della popolazone e devazone standard caponara par al rapporto tra la devazone standard del capone e la radce quadrata della nuerostà caponara. Conseguenteente la probabltà che una eda caponara cada entro lt d controllo defnt a punt precedent è approssatvaente par a Pertanto quando una eda caponara esce da lt d controllo sao quas cert che qualche eleento sa ntervenuto ad alterare l processo produttvo. In tern statstc, defnta l potes nulla H 0 (l processo produttvo è n controllo), qualora una eda caponara esca da lt, possao rtenere d avere eleent suffcent per rfutare l potes nulla. Tuttava l rfuto dell potes nulla, essendo parte d un processo statstco nferenzale, plca sepre la possbltà d un errore d pro tpo (l rfuto dell potes nulla quando essa è n realtà vera). Con lt d controllo defnt n precedenza tale errore è olto basso, ntorno al 3 per lle 2. Quando tutte le ede caponare cadono all nterno de lt d controllo possao concludere d non avere eleent suffcent per rfutare l potes nulla. Anche questo tpo d conclusone plca la possbltà d un errore (che questa volta chaereo d secondo tpo) conseguente al non rfuto dell potes nulla quando questa è nella realtà falsa. Nell esae delle carte d controllo, la probabltà d copere un errore d secondo tpo rane ndefnta 3, per cu l ancato rfuto dell potes nulla deve essere accettato con estrea cautela.. 1 Infatt lt sono stablt dalle seguent relazon: UCL = x + 3 σ$ x LCL = x 3 σ$ x = La probabltà d coettere un errore d secondo tpo è nfatt funzone oltre che della nuerostà caponara e della probabltà d copere un errore d pro tpo anche della quantfcazone dell potes alternatva che n questa tpologa d proble rane ndefnta.

11 ESEMPIO CARTE DI CONTROLLO PER VARIABILI (p-chart) Con rferento a dat d tabella s costrusca e s nterpret la p-chart. Tutt capon hanno nuerostà 50 Day N. Defectve Day N. Defectve CL UCL LCL

12 p-chart Saple percentage Te (day) L esae della carta evdenza che l gorno 12 l processo è fuor controllo. Non segn d presenza d tendenza non casuale. S rendono percò necessar opportun ntervent att a gustfcare e/o correggere l anoala segnalata.

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Esercizio statistica applicata all ingegneria stradale pag. 1

Esercizio statistica applicata all ingegneria stradale pag. 1 ESERCIZIO STATISTICA APPLICATA ALLA PROGETTAZIONE STRADALE SINTESI S supponga d avere eseguto 70 sure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal sure

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA Notazone: x = -esma modaltà della varable X Nel caso d dstrbuzon n class: x = Lmte superore della classe -esma x -1 = Lmte nferore della classe

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl Le Inferenze sul modello d regressone PREVEDONO: Assunzone d normaltà degl error e nferenza su parametr Anals della Varanza Inferenza per la rsposta meda e la prevsone Anals de resdu Valor anomal Captolo

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Newsletter "Lean Production" Autore: Dott. Silvio Marzo

Newsletter Lean Production Autore: Dott. Silvio Marzo Il concetto d "Produzone Snella" (Lean Producton) s sta rapdamente mponendo come uno degl strument pù modern ed effcac per garantre alle azende la flessbltà e la compettvtà che l moderno mercato rchede.

Dettagli

La tua area riservata Organizzazione Semplicità Efficienza

La tua area riservata Organizzazione Semplicità Efficienza Rev. 07/2012 La tua area rservata Organzzazone Semplctà Effcenza www.vstos.t La tua area rservata 1 MyVstos MyVstos è la pattaforma nformatca rservata a rvendtor Vstos che consente d verfcare la dsponbltà

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

ANALISI DI TABELLE DI CONTINGENZA

ANALISI DI TABELLE DI CONTINGENZA ANALISI DI TABELLE DI CONTINGENZA 91 TABELLE DI CONTINGENZA Una tabella d contngenza è una tabella d frequenza a doppa entrata n cu vengono ncrocate due varabl qualtatve. Esempo SESSO INTERESSE PER STATISTICA

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Esame di Statistica Corso di Laurea in Economia

Esame di Statistica Corso di Laurea in Economia Esame d Statstca Corso d Laurea n Economa 9 Gennao 0 Cognome Nome atr. Teora S dmostr la propretà d lneartà della meda artmetca. Eserczo Una casa edtrce è nteressata a valutare se tra lettor d lbr esste

Dettagli

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS Delberazone 20 ottobre 2004 Approvazone delle condzon general d accesso e d erogazone del servzo d rgassfcazone d gnl predsposte dalla socetà Gnl Itala Spa (delberazone n. 184/04) L AUTORITÀ PER L ENERGIA

Dettagli

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000 Gennao 006 classe A VERIFICA DI STATISTICA fla A )Nel Lceo scentfco G.Bruno c sono 5 class seconde, cu alunn sono dstrbut per sezone e per sesso n base alla seconda tabella: Sesso\ A B D E F sezone Calcola

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA Unverstà degl Stud d Bresca Poltecnco d Mlano Unverstà degl Stud d Pava Unverstà degl Stud d Lecce Dottorato d Rcerca n TECNOLOGIE E SISTEMI DI LAVORAZIONE XII CICLO METODI BAYESIANI PER IL CONTROLLO STATISTICO

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione OTOE AD INDUZIONE ODEI ATEATICI E ODEI PE A IUAZIONE otore ad nduzone: odell ateatc e odell per la sulazone. odell ateatc del otore ad nduzone Nello studo degl azonaent ndustral è necessaro rappresentare

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

Corso di Automazione Industriale 1. Capitolo 7

Corso di Automazione Industriale 1. Capitolo 7 1 Corso d Automazone Industrale 1 Captolo 7 Teora delle code e delle ret d code Introduzone alla Teora delle Code La Teora delle Code s propone d svluppare modell per lo studo de fenomen d attesa che s

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

COMUNE DI SESTU. Vigilanza SETTORE : Deiana Pierluigi. Responsabile: DETERMINAZIONE N. 04/12/2015. in data

COMUNE DI SESTU. Vigilanza SETTORE : Deiana Pierluigi. Responsabile: DETERMINAZIONE N. 04/12/2015. in data COMUNE D SESTU SETTORE : Responsable: Vglanza Deana Perlug DETERMNAZONE N. n data 1926 04/12/2015 OGGETTO: Affdamento dretto alla dtta Racca Umberto & C. s.n.c. per la forntura d 6 chav elettronche per

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

McGraw-Hill. Tutti i diritti riservati. Caso 11

McGraw-Hill. Tutti i diritti riservati. Caso 11 Caso Copyrght 2005 The Companes srl Stma d un area fabbrcable n zona ndustrale nella cttà d Ferrara. La stma è effettuata con crter della comparazone e quello del valore d trasformazone. Indce Confermento

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema B Corso d Laurea n Economa Prof.ssa Gordano Appello del 15/07/011 Cognome Nome Matr. Teora Dmostrare la propretà assocatva della meda artmetca. Eserczo 1 L accesso al credto è sempre

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata Grafca opterzzata URVE & UPERFII copo: fornre na rappresentazone ateatca per rappresentare 2D e 3D del oett Unversty of Ferrara opter slaton rop http://www.d.nfe.t/~cs Grafca opterzzata Bsona scelere na

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100 Dstrbuzon d frequenza Varable x Frequenze Frequenze Frequenze Frequenze % cumulate relatve x 1 n 1 n 1 n 1 / n 1 /*100 x n n 1 +n n / n /*100 x k n k n 1 +.+n k = n k / n k /*100 totale 1 100 Indc sntetc

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

Campionamento a grappoli

Campionamento a grappoli Caponaento a grappol Caponaento a grappol a stratfcazone è uno struento per auentare la precsone, col quale dvdao una popolazone n sottopopolazon strat, cascuna delle qual vene po caponata separataente

Dettagli

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L.

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L. MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura d L.Bernard) 3.3. Dsegn d camponamento d Lorenzo Bernard 3.3.1. Una defnzone per ntrodurre

Dettagli