rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli:"

Transcript

1 Esme scritto di Elettromgnetismo del 15 Luglio proff. S. Gigu, F. Lcv, F. Ricci Elettromgnetismo 10 o 12 crediti: esercizi 1,3,4 tempo 3 h e 30 min; Elettromgnetismo 5 crediti: esercizio 3,4 tempo 2 h e 20 min; Elettricitá e Mgnetismo 5 crediti: esercizi 1,2, tempo 2 h, 20 min; Recupero di un esonero: esercizi corrispondenti 1,2,3, tempo 1h e 20 min. Esercizio 1 Un sfer conduttrice di rggio R=10 cm e cric Q=8 nc, è per metà immers in cqu (costnte dielettric reltiv ɛ r = 80 ), mentre l restnte metà si trov in ri (ɛ r =1). Ricordndo le condizioni di rccordo del cmpo elettrico E nell ttrversre l superficie di seprzione tr due dielettrici diversi, si clcoli: ) le densità di criche libere e di polrizzzione sull superficie dell sfer; b) l pressione elettrosttic sull superficie dell sfer, indicndo esplicitmente su qule delle due superfici (quell immers in cqu o quell in ri) ess risult mggiore; c) il lvoro necessrio portre l sfer dll posizione inizile quell in cui l sfer si trov distnz infinit nell regione in cui è presente l ri, trscurndo il contributo dovuto ll forz di grvità. Esercizio 2 In un tubo ctodico di un pprecchio televisivo un fscio di elettroni viene ccelerto d un differenz di potenzile V = 25 kv e ftto pssre ttrverso un sistem formto dlle due bobine identiche cossili di rggio = 100 mm, limentte d un ugul corrente i = 2 A che scorre nello stesso verso e seprte tr loro d un distnz pri l loro rggio. Il cmpo mgnetico così prodotto risult sostnzilmente diverso d zero solo nell zon tr le due spire ed è pressochè uniforme (bobine di Helmotz). Il fscio, ttrversndo l zon di cmpo ed incidendo perpendicolrmente ll sse comune delle bobine, subisce un deflessione e l direzione d uscit dll zon di spzio delle bobine form un ngolo di θ = π 4 rispetto ll direzione inizile. Ricordndo i vlori dell cric e dell mss dell elettrone, e = C e m e = kg, si clcoli: ) il vlore del cmpo di induzione mgnetic B; b) il numero di vvolgimenti N d cui le bobine sono composte che producono quel vlore di B nel punto centrle dell sse tr e due bobine; c) l impulso trsferito nell unità di tempo nell unità di superficie ll porzione di schermo del televisore colpit dl fscio di elettroni di densità di corrente J = 50 µa cm 2. Si suppong l urto completmente nelstico.

2 Esercizio 3 Un bcchett conduttrice di lunghezz L = 10 cm si può muovere senz ttrito su due lunghi binri orizzontli collegti tr loro d un cvo rigido prllelo ll bcchett in modo d formre in tutto un spir rettngolre. I binri, il cvo e l bcchett sono dello stesso mterile e hnno l stess sezione Σ = 2 mm 2. Al tempo t = 0 l bcchett è conttto del cvo rigido e viene post in moto velocità costnte v = 5 m/s. Un filo prllelo i binri, complnre con essi e distnte = 10 mm dl binrio più vicino, è percorso d corrente I = 110 A. Spendo che l tempo t 1 = 3 s l potenz dissipt nell spir è pri P (t 1 ) = W, si clcoli: ) l forz elettromotrice indott; b) l resistività del mterile di cui è costituit l spir; c) l espressione dell forz necessri per mntenere in moto l bcchett; d) l energi dissipt dopo che l bcchett h percorso 1 m. I L v Esercizio 4 Un condenstore fcce pine prllele circolri di rggio R = 10 cm è collegto d un genertore di tensione continu pri V o = 10 V. L distnz tr le rmture del condenstore vri secondo l legge d(t) = d o + d 1 sin(ωt), essendo ω 2π = 1.0 khz, d o = 10 mm e d 1 = 1 mm. Si chiede di clcolre ) l ndmento temporle dell corrente di spostmento ll interno del condenstore, b) l circuitzione di B l tempo t = 0, clcolt lungo un circonferenz, cossile l condenstore, dispost su pino prllelo lle sue rmture e pssnte tr esse, nei due csi in cui il suo rggio ssum i vlori R 1 = 5 cm e R 2 = 15 cm; d) l ndmento temporle dei contributi elettrico e mgnetico ll energi immgzzint tr le rmture del condenstore.

3 Soluzioni Esercizio 1 1) Dentro il conduttore E=0. Il cmpo elettrico è rdile ed h lo stesso vlore in cqu e nel vuoto, in qunto l componente prllel ll superficie di seprzione di E è continu nel pssggio tr i due dielettrici. Il vettore D vle D 0 = ɛ 0 E nel vuoto, e D = ɛ E = ɛ0 ɛ r E nell cqu. Applicndo il teorem di Guss su di un superficie sferic concentric ll sfer e di rggio r > R si ottiene: 2πr 2 (D 0 + D) = Q d cui si ottiene: E = Q/(2πɛ 0 (1 + ɛ r )r 2 ). 2) Per il teorem di Coulomb l densità di cric è dt d: σ + σ p = ɛ 0 E, vendo indicto con σ l densità di cric liber e con σ p quell delle criche di polrizzzione, ed è distribuit uniformemente. L densità di cric liber vle: σ = D, ed è mggiore nell cqu che nell ri. L densità di cric di polrizzzione vle: σ p = P = ɛ 0 (ɛ r 1)E ed è null sull superificie conttto con l ri. Numericmente: σ = D 0 = ɛ 0 E = ɛ 0 Q/(2πɛ 0 (1 + ɛ r )R 2 ) = C/m 2 nell ri. σ = D = ɛ0e = ɛ 0 Q/(2πɛ 0 (1 + ɛ r )R 2 ) = C/m 2 nell ri. σ p = ɛ 0 (ɛ r 1)Q/(2πɛ 0 (1 + ɛ r )R 2 ) = C/m 2. 3) L pressione elettrosttic sull superficie vle: p = u E = 1/2D 2 /ɛ = 1/2σE. Poiché σ nell superficie conttto con l cqu è mggiore di quell nell superficie in ri, l pressione è mggiore sull superficie dentro l cqu, producendo un forz totle verso il bsso. Numericmente: p = P nell ri p = P nell ri 4) Il lvoro è ugule ll differenz delle energie elettrosttiche: L = U ( cqu/ri) U ( ri) = ( ri 1 2 ɛ 0ɛ r E 2 2πr 2 dr) R ɛ 0ɛ r E 2 0 4πr2 dr. 1 2 ɛ 0E 2 dτ + 1 cqu 2 ɛ 0ɛ r E 2 dτ) 1 2 ɛ 0ɛ r E0 2dτ = ( 1 R 2 ɛ 0E 2 2πr 2 dr + Avendo indicto con E e E 0 = Q/4πɛ o r 2, rispettivmente il cmpo elettrico nell configurzione inizile e finle (sfer cric in ri). Si ottiene: L = Q 2 4πɛ 0 (ɛ r+1)r Q2 8πɛ 0 R = Q2 8πɛ 0 R ( 2 ɛ r+1 1) = J.

4 Esercizio 2 ) Ciscun elettrone h un velocità v = 2 e V m e = m/s Fcendo riferimento ll figur sopr riportt, si deduce con semplici considerzioni geometriche che il tringolo ACO è rettngolo in A e il suo ngolo in C è α = 3π 8. Quindi, essendo il rggio di curvtur dell triettori R = mev eb = tn( 3π 8 ) deducimo che il cmpo B è 1 2me B = tn( 3π 8 ) e V = T b) Il cmpo B s distnz z lungo l sse di un spir di rggio è B s (z) = µ o 2 2 ( 2 + z 2 ) 3/2 i Quindi nel punto di mezzo delle due bobine (z = 2 ) di N spire l un si h : B(z = 2 ) = ( 2 5 ) 3 N µ o i e ssumendo per B il vlore precedentemente clcolto, bbimo N = ( 5 2 )3 B µ o i = 123 c) Not densità di corrente J e l velocità degli elettroni possimo dedurre l densità del fscio di prticelle n n = J ev = J me 2e 3 V Nel cso di urto perfettmente nelstico, l impulso trsferito sull unità di superficie nell unità di tempo dl fscio risult pri P = nv(m e v) = nm e v 2 = J 2 m e V e = P

5 Esercizio 3 ) Si B = µ oi cmpo mgnetico generto dl filo con direzione ortogonlmente l pino dell spir e 2π r verso uscente. Su tutti i punti dell bcchett in movimento velocità v gisce un cmpo elettrico: per cui l forz elettromotrice indott si scrive: E = +L v B d r = +L E = v B µ o Iv 2π r dr = µ ( ) oiv + L 2π ln = V b) L potenz dissipt nell spir è dt d: P = E 2 / R(t) dove R(t) = 2 ρ( + v t)/σ per cui t 1 = 3 si h: P (t 1 ) = E 2 / R(t 1 ) d cui trovimo ρ: ρ = ΣE 2 / 2 P (t 1 )(L + v t 1 ) = Ω m c) Un elemento dr di bcchett risente di un forz: d F = i b d r B dove i b = E/R(t) che si oppone l suo moto. Integrndo su tutt l bcchett trovimo che l forz totle è: +L +L µ o I F = i b B(r)dr = i b 2π r dr = i ( ) biµ o + L 2π ln = v ( ( )) µo I + L 2 R(t) 2π ln d) L energi dissipt dopo che l bcchett h percorso d = 1 m è: E diss = d/v 0 E 2 d/v R(t) dt = Σ E ρ (L + v t) dt = Σ E2 2 ρ v ln ( ) L + d = J L

6 Esercizio 4 ) Il condenstore è mntenuto d un differenz di potenzile costnte pri V o ed il cmpo di induzione elettric ( o vettore spostmento) cmbi nel tempo secondo l legge V o D = ɛ o d o + d 1 sin ωt Ne segue che l corrente di spostmento è un vettore uniforme diretto perpendicolrmente lle rmture del condenstore pino e cmbi nel tempo secondo l legge J = D t = ɛ ωd 1 cos ωt ov o (d o + d 1 sin ωt) 2 b) Per rgioni di simmetri le line di forz di B sono circonferenze cossili l condenstore e quindi circuitzione del vettore B lungo un tle circonferenz di rggio R 1 < R é pri e per R 2 > R C R1 = B dl = µo πr 2 1 J(t = 0) L 1 C R2 = B dl = µo πr 2 J(t = 0) L 2 Essendo J(t = 0) = ɛ o V o ω d 1 d o 2 = A m 2 segue che C R1 = T m C R2 = T m c) Gli ndmenti temporli dell energi elettric W e è: W e = 1 2 πr2 ɛ o V o 2 (d o + d 1 sin ωt) Nel cso dell energi mgnetic occorre esplicitre l dipendenz del cmpo mgnetico dll distnz r dll sse del condenstore Applicndo il teorem dell circuitzione di Ampère si ottiene H2πr = J(t)πr 2 e quindi H = J(t) r 2 W m = µ o R o H 2 (d o + d 1 sin ωt)πrdr = µ oπ 4 (d o + d 1 sin ωt) R 0 J 2 r 3 dr W m = µ oπ (ɛ ov o ωd 1 cos ωt) 2 16 R4 (d o + d 1 sin ωt) 3

Compitino di Fisica II del 14/6/2006

Compitino di Fisica II del 14/6/2006 Compitino di Fisic II del 14/6/2006 Ingegneri Elettronic Un solenoide ssimilbile d un solenoide infinito è percorso d un corrente I(t) = I 0 +kt con k > 0. Se il solenoide h un lunghezz H, rggio, numero

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006 POLITECNICO DI MILANO IV FACOLTÀ Ingegneri Aerospzile I Appello di Fisic Sperimentle A+B 7 Luglio 6 Giustificre le risposte e scrivere in modo chiro e leggibile. Sostituire i vlori numerici solo ll fine,

Dettagli

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente Cmpo mgnetico generto d un lungo filo rettilineo percorso d corrente Sorgenti di cmpo mgnetico Ingegneri Energetic Docente: Angelo Crone Il cmpo mgnetico dovuto d un filo rettilineo è inversmente proporzionle

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura.

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura. 7.5. BAICENTI 99 P J Q Gli ssi HJ e PQ (che isecno i lti opposti del rettngolo) sono ssi di simmetri mterile. il ricentro dell lmin coincide con l intersezione dei due ssi: G, G H Esempio 7.18 (Bricentro

Dettagli

Esercizi 5 Campo magnetico

Esercizi 5 Campo magnetico Esercizi 5 mpo mgnetico 1. Due lunghi fili rettilinei e prlleli, posti istnz, sono percorsi correnti uguli e opposte. lcolre il cmpo mgnetico nei punti equiistnti i fili. I θ I1 L sol componente che soprvvive

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Corso di Laurea in Fisica Anno Accademico

Corso di Laurea in Fisica Anno Accademico Corso di Lure in Fisic Anno Accdemico 203-204 Compito di Fisic 2 (09/04/204) Un corrente superficile j = jẑ scorre lungo uno strto cilindrico di lunghe infinit, spessore trscurbile e rggio. L intensità

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

A Qual è la capacità dei due condensatori prima dell inserimento delle piastre? Quella dopo?

A Qual è la capacità dei due condensatori prima dell inserimento delle piastre? Quella dopo? 3 luglio 2008 II Prov di esonero di Fisic Generle per Edile-Architettur (esercizi 1, 2, 3) Prov scritt di Fisic Generle per Edile-Architettur (esercizi 1, 2, 3) Prov scritt di Fisic I per Automzione ed

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H eccnic Un bcino d cqu, profondo, e` contenuto d un prti verticle di lunghezz (orizzontle, lungo y) L, vincolt l terreno nel punto B. Per sostenere l prti si usno lcuni pli fissti d un estremit` sull prti,

Dettagli

Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche,

Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche, Corso i Lure in Mtemtic Prim prov in itinere i Fisic 2 (Prof. E. Sntovetti) 18 novemre 2016 Nome: L rispost numeric eve essere scritt nell pposito riquro e giustifict cclueno i clcoli reltivi. Prolem 1.

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V Esercizi 6 Legge di Frdy 1. Si consideri un spir ll qule si conceno un flusso mgneico vribile nel empo, il Φ, Φ. Clcolre l cric ole che e flui nell cui vlore due isni = e si ( ) () resisenz dell spir fr

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

Lo spettro di un segnale numerico

Lo spettro di un segnale numerico Lo spettro di un segnle numerico Abbimo visto che le prestzioni (P b (e) in funzione di E b /N 0 ) di un costellzione dipendono solo dll disposizione dei suoi segnli nello spzio Euclideo, non dlle forme

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Note sul moto circolare uniforme.

Note sul moto circolare uniforme. Note sul moto circolre uniforme. Muro Sit e-mil: murosit@tisclinet.it Versione proisori, ottobre 2012. Indice 1 Il moto circolre uniforme in sintesi. 1 2 L ide di Hmilton 2 3 Esercizi 5 3.1 Risposte.......................................

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

Esercizi sugli urti tra punti materiali e corpi rigidi

Esercizi sugli urti tra punti materiali e corpi rigidi Esercizi sugli urti tr punti mterili e corpi rigidi Un st omogene di mss 0.9 kg e di lunghezz 0. m è incerniert nel suo punto di mezzo in un pino orizzontle ed è inizilmente erm. Un proiettile di mss m100g

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE Esercizio B. Anlisi del processo di fonderi Si deve fricre un getto in ghis del peso di 50 kg e densità pri 7, kg/dm. Dimensionre il dimetro del cnle di colt spendo che il dislivello fr il cino e gli ttcchi

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz.

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz. Un punto mterile si muove luno un circonferenz di rio cm con frequenz di 5, Hz. Clcolre l velocità tnenzile ed il numero di iri compiuti in s. R L velocità tnenzile l clcolimo ttrverso l su definizione:

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 9 Luglio 2010 Parte 1 Esercizio 1 Un astronauta di massa m=80 Kg atterra su un pianeta dove il suo peso vale P=200 N.

Dettagli

Fisica Tecnica Ambientale

Fisica Tecnica Ambientale Università degli Studi di Perugi Sezione di Fisic Tecnic Fisic Tecnic Ambientle Lezione del 11 mrzo 2015 Ing. Frncesco D Alessndro dlessndro.unipg@cirif.it Corso di Lure in Ingegneri Edile e Architettur

Dettagli

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli curvilinei di prim specie (integrli di densità) 15 Dicembre 215 Indice 1 Integrli di line di prim specie

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico LE GRANDEZZE FISICHE estensive dipendono dll quntità di mteri mss, volume, lunghezz Grndezze intensive non dipendono dll quntità di mteri tempertur, peso specifico LA MISURA DI UNA GRANDEZZA FISICA Per

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

FLESSIONE E TAGLIO (prof. Elio Sacco)

FLESSIONE E TAGLIO (prof. Elio Sacco) Cpitolo FLESSIONE E TALIO (prof. Elio Scco). Sollecitzione di flessione e tglio Si esmin il cso in cui l risultnte delle tensioni genti sull bse dell trve x = L consist in un forz tglinte V, tlechev e

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

LEZIONE 9-6 maggio 2016 Campi vettoriali

LEZIONE 9-6 maggio 2016 Campi vettoriali LEZIONE 9-6 mggio 216 mpi vettorili 1. Introduzione DEFINIZIONE 1.1. Dto un insieme S R 3, un cmpo vettorile F su S è un legge che ssoci d ogni punto di S un vettore F(x,y,z) di componenti (F 1 (x,y,z),f

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

3. Modellistica dei sistemi dinamici a tempo continuo

3. Modellistica dei sistemi dinamici a tempo continuo Fondenti di Autotic 3. Modellistic dei sistei dinici tepo continuo Esercizio 1 (es. 10 del Te d ese del 18-9-2002) Si consideri il siste dinico elettrico riportto in figur, i cui coponenti ssuono i seguenti

Dettagli

N.B.: E consentito, se ritenuto opportuno, mantenere il numero dei bulloni indicato nel disegno e le dimensioni delle squadrette.

N.B.: E consentito, se ritenuto opportuno, mantenere il numero dei bulloni indicato nel disegno e le dimensioni delle squadrette. ESONERO DI TECNICA DELLE COSTRUZIONI DEL 6/0/007 Esercizio n Si dt un trve di cciio HEA 600 sull qule ppoggi, con un vincolo cernier, un trve secondri del tipo IPE. Sull trve secondri è pplicto un crico

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Fisica II. 1 Esercitazioni

Fisica II. 1 Esercitazioni isic II Esecizi svolti Esecizio. Clcole l foz che gisce sull cic Q µc, dovut lle ciche Q - µc e Q 7 µc disposte come ipotto in figu Q Q α 5 cm 6 cm Q Soluzione: L foz che gisce sull cic Q è dt dll composizione

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

UTILIZZO DEL PRINCIPIO DEI LAVORI VIRTUALE PER ANALISI DI STRUTTURE IPERSTATICHE CALCOLO DI SPOSTAMENTI ESERCIZIO 1

UTILIZZO DEL PRINCIPIO DEI LAVORI VIRTUALE PER ANALISI DI STRUTTURE IPERSTATICHE CALCOLO DI SPOSTAMENTI ESERCIZIO 1 UTILIZZO DEL RINIIO DEI LVORI VIRTULE ER NLISI DI STRUTTURE IERSTTIHE LOLO DI SOSTMENTI ESERIZIO L struttur indict in fig., compost d un unic st sezione circolre pien di dimetro d, simmetric rispetto ll

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportmento meccnico dei mterili rtteristiche di sollecitione inemtic ed equilirio del corpo rigido rtteristiche di sollecitione efiniione delle crtteristiche Esempio 1: trve rettiline Esempio : struttur

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G Liceo Scientifico Sttle Leonrdo d Vinci Vi Possidone 14 8915 Reggio Clbri Anno Scolstico 008/009 Clsse III Sezione G Dirigente scolstico: Preside Prof. ss Vincenzin Mzzuc Professore coordintore del progetto:

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

Classe Il candidato risolva uno dei due problemi; il problema da correggere è il numero

Classe Il candidato risolva uno dei due problemi; il problema da correggere è il numero Ministero dell Istruzione, dell Università e dell Ricerc M557 EAME DI TATO DI ITRUZIONE ECONDARIA UPERIORE IMULAZIONE DELLA II PROVA A.. 06-7: Liceo Fermi, 6 mggio 07 Indirizzi: LI0 CIENTIFICO, LI0- CIENTIFICO

Dettagli

Università degli Studi di Roma La Sapienza Ingegneria Elettrotecnica

Università degli Studi di Roma La Sapienza Ingegneria Elettrotecnica Università egli Stui i om L Spienz Ingegneri Elettrotecnic Prov scritt i Fisic 2-17 Gennio 2014 Esercizio 1 8 punti Un lstr pin i ielettrico omogeneo, i costnte ε r, ininitmente estes nel vuoto e spess,

Dettagli

4.7 RETICOLO RECIPROCO

4.7 RETICOLO RECIPROCO 4.7 RETICOLO RECIPROCO L teori clssic dell elettromgnetismo mostr che qundo un ond elettromgnetic (e.m.) di un dt lunghezz d ond λ incontr un ostcolo di dimensioni confrontbili con λ si verific il fenomeno

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

StereoPIV in un getto in crossflow

StereoPIV in un getto in crossflow Second Giornt di Studio su Tecniche Ottiche e Termogrfiche in Termofluidodinmic StereoPIV in un getto in crossflow T. Astrit, F. G. Nese e G. M. Crlomgno Università degli studi di Npoli Federico II DETEC

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

z σrdr Il campo E(z) è nullo per z = 0, è una funzione dispari di z, cresce con z e per z diventa, come da aspettarsi, E = σ

z σrdr Il campo E(z) è nullo per z = 0, è una funzione dispari di z, cresce con z e per z diventa, come da aspettarsi, E = σ Esame scritto di Elettromagnetismo del 4 Luglio 20 - a.a. 200-20 proff. S. Giagu, F. Lacava, F. Ricci Elettromagnetismo 0 o 2 crediti: esercizi,3,4 tempo 3 h e 30 min; Elettromagnetismo 5 crediti: esercizio

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

3 Esercizi. disegno in scala

3 Esercizi. disegno in scala olitecnico di orino eem ispositivi e istemi Meccnici Esercizio 3 Un utocrro con cmio "in olle" viene rento su tutte le ruote l limite dell'derenz in rettilineo orizzontle. oto il peso totle e l posizione

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Capitolo 12. Dinamica relativa

Capitolo 12. Dinamica relativa Cpitolo 12 Dinmic reltiv 12.1 Le forze pprenti 1. Sppimo dll cinemtic reltiv che l ccelerzione di un punto P in un riferimento K e l ccelerzione ' di P in un riferimento K ' sono legte l un ll ltr dll

Dettagli

P8 Ponti radio terrestri e satellitari

P8 Ponti radio terrestri e satellitari P8 Ponti rdio terrestri e stellitri P8.1 Un collegmento in ponte rdio 11 GHz impieg due ntenne prboliche uguli venti gudgno G 40 db ed efficienz η 0,5. Gli pprti di ricetrsmissione sono collegti lle rispettive

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure

Dettagli

(n r numero di registro) n r numero di registro =17

(n r numero di registro) n r numero di registro =17 Clcolo dell riprtizione dell portnz tr superficie lre e impennggio orizzontle di cod per lcun punti crtteristici del digrmm d inviluppo in diverse condizioni di peso. Punti: A- C- D- E- F- G- K- H- C -

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

SOLUZIONI GARA DI MATEMATICA ON-LINE (9/10/2017)

SOLUZIONI GARA DI MATEMATICA ON-LINE (9/10/2017) SOLUZIONI GARA DI MATEMATICA ON-LINE (9/10/017) 1. INSONNIA [04] L operzione richiest equivle sommre 01 volte 017 messo in colonn e spostto sempre di un csell come in figur. Nell prte finle del numero

Dettagli