APPLICAZIONI LINEARI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "APPLICAZIONI LINEARI"

Transcript

1 APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte le segueti proprietà: ) (v 1 + v 2 ) = (v 1 ) + (v 2 ) v 1, v 2 V; b) (α v) = α (v) α K, v V. TEOREA Si :V W u ppliczioe liere. Allor: (1) (0 V ) = 0 W ; (2) ( v) = (v); (3) ( 1 v v r v r ) = 1 (v 1 ) + 2 (v 2 ) + + r (v r ) DIOSTRAZIONE (1) (0 V ) = (0 v) = 0 (v) = 0 W ; (2) ( v) = (( 1) v) = 1 (v) = (v); (3) Poichè ( 1 v v 2 ) = ( 1 v 1 ) + ( 2 v 2 ) = 1 (v 1 ) + 2 (v 2 ) cilmete ( 1 v v r v r ) = 1 (v 1 ) + 2 (v 2 ) + + r (v r ) 2. NUCLEO E IAGINE DI UN APPLICAZIONE LINEARE. Si : V W u ppliczioe liere tr due spzi vettorili V, W (su u cmpo K). Si chim ucleo dell ppliczioe l isieme di vettori v V tli che (v) = 0 W. Il ucleo dell ppliczioe si idic co Ker ( KERNEL dell ppliczioe ): Ker = {v V : (v) = 0 W }. Si chim immgie dell ppliczioe l isieme di vettori w W che soo immgii di vettori di V. L immgie dell ppliczioe si idic co Im o co (V): Im = {w W : v V, (v) = w}. Poichè (0 V ) = 0 W, segue 0 V Ker, 0 W Im. TEOREA Si :V W u ppliczioe liere. Allor Ker è u sottospzio di V. DIOSTRAZIONE Dobbimo dimostrre che: 1) 0 V Ker ; 2) v 1, v 2 Ker v 1 + v 2 Ker ; 3) α K, v Ker αv Ker. 1) 0 V Ker poichè (0 V ) = 0 W. 2) Sio v 1, v 2 Ker, llor: (v 1 ) = 0 W, (v 2 ) = 0 W. Poiché (v 1 + v 2 ) = (v 1 ) + (v 2 ) = 0 W + 0 W = 0 W v 1 + v 2 Ker ;

2 3) Si α K, v Ker. Poiché (α v) = α (v) = α 0 W = 0 W αv Ker. TEOREA (di crtterizzzioe delle ppliczioi lieri iiettive) Si :V W u ppliczioe liere. è iiettiv Ker = {0 V }. DIOSTRAZIONE Se è iiettiv llor Ker = {0 V }. Itti, se v Ker, o può essere v 0 V poiché srebbe (v) = (0 V ) = 0 W e l o srebbe iiettiv. Duque Ker = {0 V }. Se Ker = {0 V } llor è iiettiv. Sio v 1, v 2 V co v 1 v? 2 (v 1 ) (v 2 ). Itti, se osse (v 1 ) = (v 2 ) llor (v 1 ) (v 2 ) = 0 W, duque (v 1 v 2 ) = 0 W v 1 v 2 Ker essedo Ker = {0 V } v 1 v 2 = 0 V e quidi v 1 = v 2, cotro l ipotesi v 1 v 2 TEOREA Si : V W u ppliczioe liere. Allor Im è u sottospzio di W. DIOSTRAZIONE Dobbimo dimostrre che: 1) 0 W Im ; 2) w 1, w 2 Im w 1 + w 2 Im ; 3) α K, w Im αw Im. 1) 0 W Im poichè (0 V ) = 0 W. 2) Sio w 1, w 2 Im, esistoo llor v 1, v 2 V tli che (v 1 ) = w 1, (v 2 ) = w 2. Cosiderimo v 1 + v 2 i V. poiché (v 1 + v 2 ) = (v 1 ) + (v 2 ) = w 1 + w 2, si h w 1 + w 2 Im 3) Si α K, w Im. Essedo w Im, esiste i V u v tle che (v) = w. Cosiderimo α v. Poiché (α v) = α (v) = α w α w Im. Si :V W u ppliczioe liere. Se l è biuivoc, llor ess è dett isomorismo di V i W e i due spzi V, W soo detti isomori. Evidetemete, se è biuivoc ess è iiettiv e suriettiv ((V) = W). I tl cso, teedo coto dei teoremi precedeti, si h: TEOREA :V W è u isomorismo se e solo se Ker = {0 V } e Im = W. (dim V = dim W è u isomorismo)

3 3. PROPRIETA RELATIVE A GENERATORI, INSIEI LIBERI, BASI Si :V W u ppliczioe liere tr due spzi vettorili V, W (su u cmpo K). TEOREA 1) Se v 1, v 2,, v r geero V llor (v 1 ), (v 2 ),, (v r ) geero (V) ( geertori di V corrispodoo geertori di (V)): V = L(v 1, v 2,, v r ) (V) = L((v 1 ), (v 2 ),, (v r )); 2) Se (v 1 ), (v 2 ),, (v r ) soo liermete idipedeti llor v 1, v 2,, v r soo liermete idipedeti (vettori idipedeti di W provegoo d vettori idipedeti di V) ((A NON E DETTO CHE A VETTORI INDIPENDENTI CORRISPONDANO VETTORI INDIPENDENTI)). DIOSTRAZIONE 1) Suppoimo che v 1, v 2,, v r sio dei geertori di V: duque ogi vettore v V è combizioe liere di v 1, v 2,, v r. Dobbimo dimostrre che (v 1 ), (v 2 ),, (v r ) geero (V): duque ogi vettore dell immgie è combizioe liere di (v 1 ), (v 2 ),, (v r ). Si, quidi, w (V) v V: (v) = w : v V v = 1 v v r v r Duque (v) = ( 1 v v r v r ) w = 1 (v 1 ) + 2 (v 2 ) + + r (v r ) 2) Suppoimo (v 1 ), (v 2 ),, (v r ) liermete idipedeti. Dobbimo dimostrre che v 1, v 2,, v r soo liermete idipedeti. Cosiderimo l equzioe: x 1 v 1 + x 2 v 2 + +x r v r = 0 V e vedimo per quli vlori degli sclri x 1, x 2,, x r ess è veriict. Si h: x 1 v 1 + x 2 v x r v r = 0 V (x 1 v 1 + x 2 v x r v r ) = (0 V ) = 0 W x 1 (v 1 )+x 2 (v 2 )+ +x r (v r ) = 0 W D quest, essedo (v 1 ), (v 2 ),, (v r ) liermete idipedeti, segue x 1 = 0, x 2 = 0,, x r = 0. Se l è iiettiv le impliczioi del teorem precedete si possoo ivertire: TEOREA Si :V W iiettiv. Si h: 1) Se (v 1 ), (v 2 ),, (v r ) soo geertori di (V) llor v 1, v 2,, v r soo geertori di V; 2) Se v 1, v 2,, v r soo liermete idipedeti llor (v 1 ), (v 2 ),, (v r ) soo ch essi liermete idipedeti. DIOSTRAZIONE 1) Suppoimo che (v 1 ), (v 2 ),, (v r ) geero (V), dobbimo dimostrre che V=L(v 1,v 2,, v r ), ossi che ogi vettore di V è combizioe liere di v 1, v 2,, v r. Si v V. Cosiderimo (v). Si h: (v) = 1 (v 1 ) + 2 (v 2 ) + + r (v r ) (v) = ( 1 v v r v r ) (per l iiettività dell ) (1) v = 1 v v r v r. (1) Se iiettiv: (v 1 ) = (v 2 ) v 1 = v 2

4 2) Cosiderimo l equzioe: x 1 (v 1 )+x 2 (v 2 )+ +x r (v r ) = 0 W e vedimo per quli vlori degli sclri ess è veriict. Si h: x 1 (v 1 )+x 2 (v 2 )+ +x r (v r ) = 0 W (x 1 v 1 +x 2 v 2 + +x r v r ) = 0 W (per l iiettività dell ) x 1 v 1 +x 2 v 2 + +x r v r =0 V (essedo v1, v2,, vr li. id.) x 1 = 0, x 2 = 0,, x r = 0. Abbimo, duque, l seguete situzioe: Si :V W u ppliczioe liere v 1, v 2,, v r soo geertori di V (v 1 ), (v 2 ),, (v r ) soo geertori di (V) se è iiettiv (v 1 ), (v 2 ),, (v r ) soo v 1, v 2,, v r soo liermete idipedeti liermete idipedeti Si h, quidi, il seguete teorem: se è iiettiv TEOREA Si :V W iiettiv. Allor: 1) {v 1, v 2,, v r } è u bse di V se e solo se (v 1 ), (v 2 ),, (v r ) è u bse di (V) = Im ; 2) dim V = dim Im. DIOSTRAZIONE L 1) segue di teoremi precedeti. L 2) segue dll 1). Più i prticolre: TEOREA Si :V W u isomorismo llor: 1) (v 1, v 2,, v r ) è u bse di V se e solo se (v 1 ), (v 2 ),, (v r ) è u bse bse di W; 2) dim V = dim W. 4. RELAZIONE TRA dim V, dim Ker, dim Im Si :V W u ppliczioe liere tr due spzi vettorili V, W (su u cmpo K). TEOREA Si V iitmete geerto. Allor: dim V = dim Ker + dim Im

5 5. ISOORFISO TRA GLI SPAZI V DI DIENSIONE E K TEOREA Si V u spzio vettorile di dimesioe. Esiste, llor, u isomorismo r V e K Se v V è u quluque vettore di V e B = { v 1, v 2,, v } u bse di V, llor v = 1 v v v e tle modo di scomporre v, come combizioe liere di v 1, v 2,, v, è uico. Cosider l ppliczioe ϕ : V K tle che v V è ϕ(v) = ( 1, 2,, ), si dimostr che tle ppliczioe ϕ è liere e biuivoc, pertto è u isomorismo. 6. APPLICAZIONI LINEARI E ATRICI Si :V W u ppliczioe liere tr due spzi vettorili V, W (su u cmpo K), co dim V = e dim W = m. Si B = { v 1, v 2,, v } u bse di V, C = { w 1, w 2,, w m } u bse di W. E possibile deiire u mtrice m, ssocit ll ppliczioe, rispetto lle bsi B, C, el modo seguete: per ogi vettore v i B, determiimo il corrispodete (v i ) W. Essedo C u bse di W, oguo di questi vettori si può scrivere come combizioe liere di w 1, w 2,, w m. Si h, quidi: v 1 (v 1 ) = 11 w w m1 w m = ( 11, 21,, m1 ) v 2 (v 2 ) = 12 w w m2 w m = ( 12, 22,, m2 ) v (v ) = 1 w w m w m = ( 1, 2,, m ) L mtrice: B,C 11 m1 12 m2 1 = K m, m si dice mtrice ssocit ll ppliczioe rispetto lle bsi B,C. Osservimo che l prim colo dell mtrice è ormt dlle compoeti del vettore (v 1 ) rispetto ll bse C, l secod colo è ormt dlle compoeti del vettore (v 2 ) rispetto ll bse C,, l ultim colo è ormt dlle compoeti del vettore (v ) rispetto ll bse C. Si u mtrice m. Sio V e W due spzi vettorili di dimesioe rispettivmete, ed m. Sio, iie, B, C due bsi, l u di V, l ltr di W. E possibile ssocire d u ppliczioe liere : V W, che si dirà ssocit d rispetto lle bsi B, C, el seguete modo: si v V e sio x 1, x 2,, x le compoeti di v rispetto B; cioè: v = x 1 v 1 + x 2 v x v (x 1, x 2,, x ) B.

6 Il vettore (v) è quel vettore di W le cui compoeti (y 1, y 2,, y m ) C soo determite el modo seguete: y 1 = 11 x x x y 2 = 21 x x x y m = m1 x 1 + m2 x m x essedo = m m2 1 2 m Duque, v (x 1, x 2,, x ) B (y 1, y 2,, y m ) C dove y 1, y 2,, y m soo determite i modo che m m2 L ppliczioe così deiit si idic co 1 2 m B,C. x x x 1 2 = y y y APPLICAZIONI LINEARI EDIANTE LE IAGINI DEI VETTORI DI UNA BASE Si B = (v 1, v 2,, v ) u bse di V. Suppoimo sio ssegti, secodo u cert legge, i vettori (v 1 ), (v 2 ),, (v ). I tl cso è deiit u ppliczioe liere g : V W, estesioe dell tutto V. TEOREA Se B = { v 1, v 2,, v } è u bse di V e w 1, w 2,, w soo vettori di W, l ppliczioe : B W tle che (v 1 ) = w 1, (v 2 ) = w 2,, (v ) = w deiisce, i modo uico, u ppliczioe liere di V i W DIOSTRAZIONE Si v V, co v = x 1 v 1 + x 2 v x v. Si può deiire: (v) = (x 1 v 1 + x 2 v x v ) = x 1 (v 1 ) + x 2 (v 2 ) + + x (v ). Si veriic cilmete che tle ppliczioe di V i W è liere ed è uic perché è l scomposizioe di v come combizioe liere di v 1, v 2,, v. 8. STUDIO DI Ker E Im Si :V W u ppliczioe liere. Per deiizioe Ker = {v V : (v) = 0 W }. Se B è u bse di V, C u bse di W, B, C l mtrice ssocit ll ppliczioe, rispetto B,C, posto X = (x 1, x 2,, x ) B llor Ker è l isieme dei vettori X tli che (X) = 0 W, ossi (x 1, x 2,, x ) B = (0, 0,, 0).

7 I modo equivlete, Ker è l isieme dei vettori X tli che B, C * X = 0 ossi le cui compoeti rispetto B soo soluzioi del sistem omogeeo ssocito lle mtrice B, C. Ricordimo, ioltre, che dimv = dim Ker + dim Im. Duque: dim Ker = dim V r essedo r il rgo (2) dell mtrice ssocit ll ppliczioe, rispetto B, C. 9. ENDOORFISO U ppliczioe liere di V i se stesso ( : V V ) si dice edomorismo. Si :V V u edomorismo ello spzio vettorile V su u cmpo K, diremo che λ K è u utovlore di se veriic quest proprietà: v V, v 0 V : (v) = λv, v si dice utovettore di ssocito ll utovlore λ. de Allor: v utovettore di ssocito ll utovlore λ (v) = λv λ (v) = (v) λv = 0 l isieme degli utovettori ssociti λ è il ucleo di λ deiito d λ (v) = (v) λv per cui è u sottospzio di V, chimto utospzio di ssocito ll utovlore λ e si deot co V λ V λ = Ker λ. 10. ENDOORFISO SEPLICE Si :V V u edomorismo deiito su V e si, ioltre, dim V =. Si dice che è u edomorismo semplice se mmette u bse di utovettori: semplice (o digolizzbile) de B = { v 1, v 2,, v } di utovettori, bse di V. Si dimostr che utovettori o ulli ssociti d utovlori distiti soo liermete idipedeti; d cui segue che, se il poliomio crtteristico (3) h rdici distite i K, esiste u bse di V ormt d utovettori di ed, i tl cso, si dice che è semplice. Si V = K e λ, utovlore di, si u rdice di molteplicità r del poliomio crtteristico di. Sppimo che dim V λ = ρ(() λi). Si dimostr che 1 dim V λ r. TEOREA U edomorismo :V V è semplice se e solo se esiste u bse B di V tle che B, B è digole. (2) Dt u mtrice A( m), il umero r, 0 r mi(,m), si dice rgo di A se esiste lmeo u miore di ordie r o ullo, e se tutti i miori di ordie mggiore di r soo ulli. (3) Si chim poliomio crtteristico il determite dell mtrice () λi

8 DIOSTRAZIONE Se è semplice, llor esiste u bse B = { v 1, v 2,, v } di V di utovettori. Duque: (v 1 ) = λ 1 v 1 λ 1 v 1 = λ 1 v v v (λ 1, 0,, 0) E (v 2 ) = λ 2 v 2 λ 2 v 2 = 0 v 1 + λ 2 v v (0, λ 2, 0,, 0) E (v ) = λ v λ v = 0 v v λ v (0, 0,, λ ) E (dove λ 1, λ 2,, λ o soo tutti ecessrimete distiti), λ 0 0 llor B,B gli utovlori dell ) 1 = 0 λ2 0 è u mtrice digole (e sull digole ppioo 0 0 λ Si :V V e si B = { v 1, v 2,, v } u bse di V tle che B, B è digole, λ 0 0 cioè: B,B 1 = 0 λ λ Per deiizioe: (v 1 ) = λ 1 v v v = λ 1 v 1 (v 2 ) = 0 v 1 + λ 2 v v = λ 2 v 2 (v ) = 0 v v λ v = λ v llor v 1, v 2,, v soo tutti utovettori è semplice. Ricordimo che u mtrice qudrt K, si dice digolizzbile se è simile d u mtrice digole. I ltre prole: è digolizzbile de P K,, P ivertibile: P -1 P = D (mtrice digole). TEOREA Si A = K, e si : K K l edomorismo ssocito d A. llor si h: A è digolizzbile se e solo se è semplice. DIOSTRAZIONE Itti: se è semplice si {v 1, v 2, v } u bse di K ormt d utovettori di e si P l mtrice vete per coloe v 1, v 2, v (P è ivertibile) llor D = P -1 AP è digole e gli elemeti di D soo gli utovlori di, ripetuti ciscuo co l su molteplicità (PD = AP). Vicevers se A è digole è ovvio che è semplice.

9 TEOREA è semplice teor 1) tutte le rdici del poliomio crtteristico di soo i K; 2) dim V λ = r λ (l molteplicità di λ) (ovvero, ρ(a λi) = r λ ). DIOSTRAZIONE Bst predere come bse ormt d utovettori l isieme F uioe delle bsi di ciscu utospzio E, F è u mtrice digole, cioè: λ1 0 0 co λ 1 ripetuto r 1 volte λ 2 ripetuto r 2 volte 0 λ2 0 λ m ripetuto r m volte ed r 1 + r r m = 0 0 λm Si V u K-spzio vettorile e : V V u edomorismo de λ K, λ u utovlore di v V, v 0 V : (v) = λv λ utovlore 11x x = λx1 h soluzioi o ulle; 1x1 + + x = λx ossi, se e solo se il determite del sistem liere omogeeo (11 - λ)x x = 0 1x1 + + ( - λ)x = 0 è ullo λ utovlore di λ è rdice dell equzioe i T: T T 2 A TI = = 0 dove A = (); T tle determite si chim poliomio crtteristico di A o di (4) ed è di grdo. Per cui, gli utovlori di soo le rdici del poliomio crtteristico di che pprtegoo K. (4) Sio A e B le mtrici ssocite rispetto lle bsi F ed H rispettivmete. Si dimostr che A e B ho lo stesso poliomio crtteristico.

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi)

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a 3 5 + 9 e b 2 4 6 + 6 ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Trasmissione del calore con applicazioni

Trasmissione del calore con applicazioni Corsi di Lure i Igegeri Meccic Trsmissioe del clore co ppliczioi umeriche: iformtic pplict.. 4/5 Teori Prte II Ig. Nicol Forgioe Diprtimeto di Igegeri Civile E-mil: icol.forgioe@ig.uipi.it; tel. 5857 Sistemi

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Proiettività della Retta e del Piano.

Proiettività della Retta e del Piano. Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo

Dettagli

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA GOMENTI INTODUTTIVI I COSI DI MTEMTIC DELL FCOLT DI INGEGNEI SEDE DI MODEN Espoimo i modo molto suito le deiizioi e le proprietà he verro riteute ote e utilizzte ei Corsi di Mtemti he seguiro Per u trttzioe

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet:

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet: - - Fuzioi Defiizioi fodmetli. Dti due isiemi o vuoti X e Y si chim ppliczioe o fuzioe d X Y u relzioe tr i due isiemi che d ogi X f corrispodere uo ed u solo y Y. Se y è l immgie di trmite f, si scrive

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

Si presentano qui alcune nozioni sugli anelli, sia come modello di. strutture con due operazioni binarie, sia per l importanza di queste strutture in

Si presentano qui alcune nozioni sugli anelli, sia come modello di. strutture con due operazioni binarie, sia per l importanza di queste strutture in NOZIONI ELEMENTARI SUGLI ANELLI Si presetao qui alcue ozioi sugli aelli, sia come modello di strutture co due operazioi biarie, sia per l importaza di queste strutture i tutte le sezioi della Matematica

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

VINCENZO AIETA Matrici,determinanti, sistemi lineari

VINCENZO AIETA Matrici,determinanti, sistemi lineari VINCENZO AIETA Mtrici,determiti, sistemi lieri 1 Mtrici 1.1 Defiizioe di cmpo. Dto u isieme A, dotto di due operzioi itere (, ), A Φ, si dice che l struttur lgebric A(, ), di sostego A, è u cmpo se: (1)

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

Calcolo combinatorio. Definizione

Calcolo combinatorio. Definizione Clcolo comitorio Lortorio di Bioiformtic Corso A 5-6 Defiizioe Il Clcolo Comitorio è l isieme delle teciche che permettoo di cotre efficietemete il umero di possiili scelte, comizioi, lliemeti etc. di

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

L operazione di Convoluzione,

L operazione di Convoluzione, Revisioe mg 015 L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe Cludio Mgo wwwcm-physmthet CM_Portble MATH Notebook Series L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe

Dettagli

Riassunto di GEOMETRIA - Autore Fabrizio Medici + fabrizio.medici@tiscalinet.it

Riassunto di GEOMETRIA - Autore Fabrizio Medici + fabrizio.medici@tiscalinet.it Rissto di GEOMETRIA - Atore Friio Medii friio.medii@tisliet.it GEOMETRIA Spio Vettorile Modelli di spi vettorili Geometri elemetre fisi Spio Vettorile VK delle -ple di meri Spio Vettorile V{f: K; f ppliioe}

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Algebra Lineare, Geometria Affine e Euclidea.

Algebra Lineare, Geometria Affine e Euclidea. Formulario Algebra Lieare, Geometria Affie e Euclidea c 2004 M Cailotto, Vedi ota fiale v0304 commeti a maurizio@mathuipdit Corpi umerici Defiizioe U corpo C è u isieme dotato di due operazioi biarie,

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

3.1 Il principio di inclusione-esclusione

3.1 Il principio di inclusione-esclusione Capitolo 3 Calcolo combiatorio 3.1 Il pricipio di iclusioe-esclusioe Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota il umero di elemeti. Questo può dar luogo ad iteressati

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni ELEMENTI DI CALCOLO COMBINATORIO Il clcolo comitorio h come oggetto il clcolo del umero dei modi co i quli possoo essere ssociti, secodo regole stilite, gli elemeti di due o più isiemi o di uo stesso isieme.

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Disposizioni semplici. Disposizioni semplici esercizi

Disposizioni semplici. Disposizioni semplici esercizi Disposizioi semplici Ua disposizioe (semplice) di oggetti i k posti (duque 1 < k < ) è ogi raggruppameto di k oggetti, seza ripetizioi, scelti fra gli oggetti dati, cioè ciascuo dei raggruppameti ordiati

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Scietifico di Treiscce Esercizi per le vcze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri turli Primi ogi pgi del cpitolo Cpitolo Numeri turli Primi ogi pgi del cpitolo Per gli llievi promossi co

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

Lezione 22. Fattorizzazione di ideali.

Lezione 22. Fattorizzazione di ideali. Lezioe Peequisiti: Lezioi 0, Fattoizzazioe di ideali Teoema Sia A u domiio di Dedekid, e sia I u suo ideale popio o ullo Alloa esistoo uici ideali pimi o ulli P,, P a due a due distiti ed uici umei itei

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA ESAME DI STATO DI LICEO SCIENTIFICO.s. / CORSO SPERIMENTALE PNI e Progetto Brocc SESSIONE SUPPLETIVA Il cdidto risolv uo dei due problemi e 5 dei quesiti i cui si rticol il questiorio. PROBLEMA. I u pio,

Dettagli

INTEGRALI DI FUNZIONI CONTINUE

INTEGRALI DI FUNZIONI CONTINUE C Boccccio Apputi di Alisi Mtemtic CAP VIII CAP VIII INTEGRALI DI FUNZIONI CONTINUE Si [,] u itervllo chiuso e limitto di R e si Posto, per ogi k,,,, * N risult k k < < < < e per ogi k,,, ) k k L isieme

Dettagli

Calcolo delle Radici Veriano Veracini Veriano.Veracini@inwind.it

Calcolo delle Radici Veriano Veracini Veriano.Veracini@inwind.it Verio Vercii Clcolo delle rdici Clcolo delle Rdici Verio Vercii Verio.Vercii@iwid.it Premess Lo scopo di queste pgie è quello di descrivere lcui metodi prtici per il clcolo delle rdici, compresi lcui metodi

Dettagli

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI fior 5 esercizi sviluppti + molti limiti otevoli dimostrti di Leordo Clcoi Arevizioi: N = Numertore, D = Deomitore, sg = sego di L clssificzioe che segue è

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli:

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli: PROPOSTA DI UN PROTOCOLLO DI PROVE PER IL CONTROLLO DELLE CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE FINALITÀ Nel campo edile l utilizzo di rivestimeti esteri da riportare sulle

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

PROBLEMI DI TRASPORTO

PROBLEMI DI TRASPORTO Metod e modell per l supporto lle decso Prof Ferddo Pezzell - Ig Lug De Gov PROBLEMI DI TRSPORTO OFFERT IMPINTI UTENTI DOMND ( ) (org) (destzo) ( b ) (5) (8) (2) 2 2 (2) (3) 3 3 (9) 4 (9) c COSTO UNITRIO

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli