ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) SPAZI VETTORIALI SU R

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) SPAZI VETTORIALI SU R"

Transcript

1 ISTITUZIONI DI MATEMATICA I (prof MPCavaliere) SPAZI VETTORIALI SU R Abbiamo visto parlando dei numeri complessi che i punti P del piano possono essere determinati da coppie di numeri reali, se è dato un sistema di coordinate cartesiane (o con la distanza dall origine O e l angolo formato dalla retta OP con l asse x se usiamo le coordinate polari) Nello spazio possiamo dare un punto usando una terna ordinata di numeri (x, y, z) Se poi ci serve indicare anche il tempo possiamo aggiungere una quarta coordinata t e cosí via In fisica non ci sono soltanto grandezze scalari, cioè rappresentate da un numero (lunghezza,temperatura etc), ma anche altre che richiedono anche una direzione e un verso e che si dicono vettoriali Per esempio se mi sposto tra un punto P e un altro Q non basta dire di quanto mi sposto, ma anche che vado nella direzione della retta per i due punti e se mi sposto da P a Q o in verso opposto Si denota (Q P) il vettore applicato in P la cui lunghezza P Q detta modulo è la distanza di P da Q ( (x Q x P ) 2 + (y Q y P ) 2 + (z Q z P ) 2 se siamo nello spazio), la direzione è quella della retta per i due punti e il verso da P a Q: Se v è un vettore di modulo 1, allora v sarà detto versore Se poi identifichiamo tutti i vettori che hanno stessa direzione (cioè su rette parallele) stesso modulo e stesso verso) possiamo scegliere come rappresentante di tutti questi vettori equivalenti quello applicato nell origine e considerare cosí quello che si chiama vettore libero Per i nostri scopi sarà piú utile considerare i vettori liberi (per cambiare punto di applicazione basta poi spostare l origine) Allora un vettore v = (P O) è dato semplicemente quando si conoscono le coordinate del punto P, quindi possiamo associare ai vettori nello spazio le terne di numeri reali con una funzione bigettiva I vettori si sommano con la regola del parallelogramma, il che equivale a sommare le coppie o terne di numeri componente per componente Un vettore che ha la stessa direzione di v ma ha lunghezza λ volte quella di v si ottiene moltiplicando per λ la terna che definisce v Tale operazione si dice moltiplicazione esterna Con queste due operazioni definite componente per componente nel modo seguente: Q P (x 1,,x n ) + (y 1,,y n ) = (x 1 + y 1,,x n + y n ) a(x 1,,x n ) = (ax 1,,ax n ) R 3 e piú in generale R n costituisce uno spazio vettoriale V su R Le operazioni sono caratterizzate dalle seguenti condizioni: a) (v 1 + v 2 ) + v 3 = v 1 + (v 2 + v 3 ) (associativa); b) v 1 + v 2 = v 2 + v 1 (commutativa) c) Detto 0 il vettore che ha tutte le componenti nulle si ha 0 + V = v + 0 = v 1

2 2 ISTITUZIONI DI MATEMATICA I d) Per ogni vettore v V esiste l opposto ( v) tale che v + ( v) = 0 e) a(v 1 + v 2 ) = av 1 + av 2, per ogni a K e per ogni v 1,v 2 V f) (a + b)v = av + bv, per ogni a, b K e per ogni v V g) a(bv) = b(av) = (ab)v per ogni a, b K e per ogni v V h) 1v = v per ogni v V Gli elementi di uno spazio vettoriale V saranno detti vettori mentre gli elementi di R saranno detti scalari Proprietà aritmetiche negli spazi vettoriali: a) 0v = 0, per ogni v V b) a0 = 0 per ogni a K c)( 1)v = v per ogni v V Osservazione: L insieme F = {f : R R} delle funzioni di R in R con le operazioni cosí definite: (f + g)(x) = f(x) + g(x) e (af)(x) = af(x) è uno spazio vettoriale su R perchè le operazioni soddisfano le proprietà elencate Pure C è uno spazio vettoriale su R dove la somma è quella usuale e il prodotto esterno per elementi di R è il prodotto definito in C (infatti R C) Un altro esempio di spazio vettoriale reale sono i polinomi a coefficienti reali R[X] con la somma già definita e la moltiplicazione esterna cf(x) = ca 0 + ca 1 X + ca 2 X ca n X n Prodotto scalare in R n Dati due vettori v = (x 1,x 2,,x n ) e w = (y 1,y 2,,y n ), si definisce prodotto scalare di v e w il numero reale v w = x 1 y x n y n Il nome viene dal fatto che è un prodotto di vettori che dà come risultato uno scalare L importanza geometrica del prodotto cosí definito viene evdenziata dal seguente teorema: Teorema di rappresentazione del prodotto scalare Sia θ l angolo compreso tra i due vettori (0 θ π) Allora v w = v w cosθ Dimostrazione Proviamo il teorema solo nel caso n = 2, ma la prova può essere estesa a ogni n, considerando il piano su cui giacciono i due vettori Se α e β sono gli angoli formati con l asse x rispettivamente da v e w (e quindi θ = β α oppure θ = α β) possiamo esprimere le coordinate di v e w nella forma v = ( v cosα, v senα), w = ( w cosβ, w senβ), risulta allora, tenendo conto della formula del coseno della differenza di angoli, v w = v w (cosβcosα + senβsenα) = v w cosθ Questo teorema dà un informazione geometrica molto importante: infatti se v e w sono vettori non nulli si ha: v w = 0 cosθ = 0 θ = π 2 + kπ v w Osservazione: La proiezione ortogonale di un vettore v su un vettore w è tw = v w w w w Infatti se u w è tale che tw + u = v, si ha v = (tw + u) w = tw 2 + u w = tw 2 e quindi t = v w w 2

3 Proprietà del prodotto scalare 1 commutativa: v w = w v 2 distributiva: (v 1 + v 2 ) w = v 1 w + v 2 w 3 a(v w) = av w = v aw 4 v v = v 2 0 e vale l uguaglianza se e solo se v = 0 Le verifiche sono lasciate per esercizio Vale inoltre: ISTITUZIONI DI MATEMATICA I 3 Disuguaglianza di Cauchy Schwarz: v w v w Essa è immediata conseguenza del teorema di rappresentazione del prodotto scalare, ma si può anche provare in maniera algebrica usando solo le proprietà precedenti Usando il prodotto scalare si prova anche la Disuguaglianza triangolare: v 1 + v 2 v 1 + v 2 infatti ( v 1 + v 2 ) 2 = (v 1 + v 2 ) (v 1 + v 2 ) = v v 12 + v 22 v v 1 v 2 + v 2 2 = ( v 1 + v 2 ) 2 e estraendo le radici si ha la tesi Sottospazi Un sottoinsieme W dello spazio vettoriale V si dirà un sottospazio vettoriale di V se W è uno spazio vettoriale rispetto alle operazioni indotte su W da quelle di V Ciò significa che v 1 + v 2 W v 1,v 2 W e av W a R, v W o equivalentemente av 1 + bv 2 W a, b R, v 1,v 2 W Vedremo che geometricamente i sottospazi di R 2 sono le rette per l origine e quelli di R 3 sono le rette e i piani per l origine Abbiamo già visto che le funzioni continue e le funzioni derivabili sono sottospazi dello spazio delle funzioni Esercizi: 1 Dire quali dei seguenti sottoinsiemi di R 2 sono sottospazi vettoriali: W = {(x, y) R 2 x 2 = y 2 } Z = {(x, y) R 2 x = πy} 2 Dire quali dei seguenti sottoinsiemi di R 3 sono sottospazi vettoriali: V 1 = {(x, y,z) x + y + z 1 = 0} V 2 = {(x, y,z) x + y + z = 0} V 3 = {(x, y,z) xz = 0} V 4 = {(t,t, t) t R} V 5 = {(t, t 2, t 3 ) t R} V 6 = {(a,0, 0) a R} V 7 = {(a,1,1) a R} V 8 = {(a,a + c, c) a, c R} V 9 = {(a,a + c + 1, c) a,c R} 3 Dire quali dei seguenti sottoinsiemi sono sottospazi di F = {f : R R} : (a) {f : R R f(3) = 0}; (b) {f : R R f(3) = 3}; (c) {f : R R f(0) + 2f(1) = 0}; (d) {f : R R f(x + 2kπ) = f(x),k N}; (e) {f : R R f(x) = f( x)} 4 Siano u,v vettori non nulli di un R-spazio vettoriale V e sia U = {w V w=cu + v,c R} Provare che U è un sottospazio vettoriale di V se e solo se v è proporzionale a u 5 Sia V un sottospazio di R n Provare che l insieme V = {u R n u v = 0 v V } è un sottospazio di R n Tale sottospazio si dice ortogonale di V

4 4 ISTITUZIONI DI MATEMATICA I Intersezione e somma Se W e Z sono due sottospazi di V allora W Z è un sottospazio di V (la prova, molto facile, è lasciata per esercizio) Invece l unione di due sottospazi W e Z di V è un sottospazio di V se e solo se i due sottospazi sono uno contenuto nell altro e quindi l unione coincide col piú grande Infatti se W / Z e Z / W esistono in W Z un elemento w W,w / Z e un elemento z Z,z / W, la cui somma w + z / W Z (altrimenti, se w + z W si avrebbe che anche z ci sta e analogamente se w + z Z, w starebbe in Z) Dati due sottospazi W e Z di V definiamo allora somma di W e di Z l insieme W + Z := {w + z w W,z Z} (1) Provare che W + Z W Z; (2) provare che W + Z è un sottospazio di V ; (3) provare che W + Z è il piú piccolo sottospazio di V che contiene W e Z e quindi W Z Se W 1,,W n è un insieme finito di sottospazi di V possiamo definire induttivamente W W n ; si ha che W W n è l insieme dei vettori che si possono scrivere w w n con w i W i per ogni i = 1,, n Generatori, elementi linearmente indipendenti, basi Se v è un vettore di V denotiamo con < v > l insieme {av a R} È facile vedere che < v > è un sottospazio vettoriale di V che chiameremo il sottospazio generato da v Se v 1,, v n V indicheremo con < v 1,,v n > lo spazio < v 1 > + + < v n > e lo chiameremo il sottospazio generato da v 1,,v n Gli elementi di tale sottospazio sono i vettori del tipo a 1 v a n v n al variare di a 1,,a n R Un tale vettore sarà detto una combinazione lineare di v 1,,v n e gli scalari a 1,,a n sono detti i coefficienti della combinazione lineare Se i vettori v 1,,v n V sono tali che < v 1,, v n >= V diremo che v 1,,v n V sono un sistema di generatori per V Ciò significa che ogni vettore v V si può scrivere come una combinazione lineare di v 1,, v n Per esempio tutti i vettori (x, y) del piano possiamo scriverli come combinazione lineare dei versori (cioè vettori di modulo 1) degli assi: (1,0) e (0,1) Diciamo che uno spazio vettoriale è finitamente generato se ha un sistema di generatori costituito da un numero finito di elementi (esistono anche spazi vettoriali non finitamente generati, per esempio lo spazio vettoriale di tutte le funzioni di R in R, ma noi considereremo per lo piú quelli con un numero finito di generatori) Osservazione: Se V = < v 1,,v n > e W = < w 1,,w r >, allora V W se e solo se v i W per ogni i = 1,,n In particolare V = W se e solo se v i W per ogni i = 1,,n e w i V per ogni i = 1,,r Diciamo che i vettori v 1,,v n V sono linearmente indipendenti se nessuno di essi sta nello spazio generato dai rimanenti o equivalentemente se a 1 v a n v n = 0 = a 1 = a 2 = = a n = 0

5 ISTITUZIONI DI MATEMATICA I 5 Ciò significa che una combinazione lineare di v 1,, v n è nulla solo quando tutti i coefficienti della combinazione lineare sono nulli Una base per lo spazio vettoriale V è un insieme di vettori v 1,,v n V tali che a) v 1,, v n sono linearmente indipendenti b) < v 1,,v n >= V, ossia v 1,,v n sono generatori per V Esempi: 1 Una base per lo spazio vettoriale R n è la cosiddetta base canonica di R n che è l insieme degli n vettori e 1 := (1,,0), e 2 := (0, 1,,0),, e n := (0,,1) 2 I vettori (1,1),(1, 2),(1,3) generano R 2, ma non sono una base 3 I vettori (1,1,0),(1,2,0) sono linearmente indipendenti, ma non sono una base di R 3 ; sono tuttavia una base del sottospazio W = {(x,y, 0) R 3 } 4 R[X] ha su R una base infinita costituita dagli elementi 1,X,X 2,,X n, cioè {X n n N } 5 Le funzioni polinomiali f n (x) = x n, n N sono un insieme infinito di vettori linearmente indipendenti di F = {f : R R}, ma non sono una base perché per esempio la funzione sen(x) non si scrive come loro combinazione lineare e quindi non sono un insieme di generatori Esercizi: 1 Determinare una base per ogni sottospazio visto negli esercizi precedenti 2 Determinare una base del sottospazio W = {(x, y,z,t) x + y = z t = 0} di R 4 3 Sia W il sottospazio di R 3 generato da (1,2, 1) e (1,2,3); dire quali dei seguenti vettori stanno in W: (1, 1, 1), (0,0,1), (3, 2,1), (2,4,2) 4 Esiste una base di R 3 contenente i vettori (1,2, 1) e ( 2, 4,2)? 5 Siano u = (1,1,3) e V = (2, 4,0) Dire quali dei seguenti vettori sono combinazione lineare di u e v: (3, 5,3), (4,2,6),(1,5,6),(0, 0,0) 6 Sia V un K-spazio vettoriale Provare che se u, v, w sono vettori di V linearmente indipendenti su K, allora anche u + v,u + w,v + w lo sono, mentre u + v,v + w, v w sono linearmente dipendenti 7 Siano V lo spazio vettoriale reale delle funzioni di R in R e W il sottospazio generato dalle funzioni senx e cosx Provare che senx e cosx sono una base di W e che la funzione sen (x + π 3 ) sta in W 8 Sia V = {f : R R} Dire quali dei seguenti insiemi di vettori di V sono linearmente dipendenti: (a) 2,4sen 2 x,cos 2 (b) x,cosx (c) 1,senx, sen2x (d) cos2x, sen 2 x, cos 2 x (e) (1 + x) 2,x 2 + 2x, 3 (f) 0,x,x 2

6 6 ISTITUZIONI DI MATEMATICA I 9 Sia V lo spazio generato da sen 2 x e cos 2 x Dire quali delle seguenti funzioni appartengono a V : cos2x,3 + x 2, 1, senx 10 Dire se sono linearmente indipendenti i seguenti insiemi di vettori: (a) {(0,1, 1)} in R 3 su R (b) {1,senx, cosx, sen2x} in {f : R R} su R (c) {1,x + 1,x 2 + 2,x 3 + 3,, x n + n} in {f : R R} su R (d) {f : R R f(0) = f(1) = 0} in {f : R R} (e) {(x, y,z,t) R 4 x + y = z t = 0} in R 4 su R Dire inoltre se tali insiemi sono sottospazi e in caso contrario determinare i sottospazi generati 11 Dati i vettori u 1 = (0,0,1), u 2 = (1, 1,2), u 3 = ( 2,2,4) di R 3 : (a) dire perché u 1,u 2,u 3 sono linearmente dipendenti; (b) è vero che ognuno dei vettori u i (i = 1,2,3) è combinazione lineare dei rimanenti? (c) se v = (2,4,758), i vettori v,u 1,u 3 sono indipendenti? 12 Siano u = (1,2, 2), v = (2,0,1), w = (1, 2,3) vettori di R 3 : (a) determinare una base di V =< u, v, w > ; (b) determinare un sistema di generatori di V che non sia una base; (c) provare che (3,2, 0) / V e (0, 4,5) V ; (d) determinare tutti i modi possibili di scrivere (0, 4, 5) come combinazione lineare di u,v, w 13 Sia {u,v,w} una base di uno spazio vettoriale V Provare che {u, u + v, u + v + w} è base di V 14 Determinare una base dei seguenti spazi vettoriali: (a) {(x, y,z,t) R 4 3x + y + z + t = 5x y + z t = 0} (b) {(x, y,z,t) R 4 x 4y + 3z t = 2x 8y + 6z 2t = 0} (c) {(a, b, c) R 3 b = a + c} (d) {(a, b, c, d) R 4 d = 0} (e) {(x, y,z,t) R 4 t = x + y,z = x y} (f) {(a, b, c, d) R 4 a = b = c = d} (g) {(x, y,z) R 3 x + y z = 2x y + 2z = x + z = 0} (h) {(x, y,z) R 3 2x + y + 3z = x + 5z = y + z = 0} (i) < u = (1,1,0), v = (2, 1,4), w = (1, 2,4) > 15 Siano u 1,u 2,u 3 vettori linearmente indipendenti di un k-spazio vettoriale U Per quali c k i vettori u 1 + cu 2,u 2 + cu 3,u 1 + cu 3 sono linearmente indipendenti? 16 Siano V =< (1,2,1), ( 1, 0,3), (1,4,5) > e W = {(x,y, z) R 3 x y + z = 0} Determinare una base di V, una di W e una di V W 17 Sia V = {(x,y, z,t) R 4 x y + z t = 2x + 3y z + 2t = 5y 3z + 4t = 0} Determinare una base di V Proposizione Se v 1,,v n sono una base di V allora ogni vettore v V si scrive in modo unico come combinazione lineare di v 1,,v n Dimostrazione Se v = a 1 v 1 + +a n v n e v = b 1 v 1 + +b n v n, allora a 1 v 1 + +a n v n = b 1 v 1 + +b n v n da cui (a 1 b 1 )v 1 + +(a n b n )v n = 0 e poiché v 1,, v n sono una base di V e quindi linearmente indipendenti, si ha a 1 = b 1 a n = b n È facile dimostrare il seguente risultato

7 ISTITUZIONI DI MATEMATICA I 7 Lemma di scambio Se v 1,, v n sono una base di V e w / < v 2,,v n > allora w, v 2,, v n sono una base di V Dimostrazione Se w = a 1 v a n v n si ha a 1 0 perché w / < v 2,,v n > Allora v 1 = 1 a 1 (w a 2 v 2 a n v n ) sta in < w, v 2,,v n > e per l osservazione precedente V =< w,v 2,,v n > Inoltre w,v 2,,v n sono linearmente indipendenti perché se b 1 w+b 2 v 2 + +b n v n = 0 dev essere b 1 = 0, altrimenti w < v 2,,v n > e quindi anche b 2 = = b n = 0 perché v 2,,v n sono linearmente indipendenti in quanto parte di una base Si ha allora il seguente teorema di cui omettiamo la dimostrazione Teorema di equipotenza delle basi Due basi di uno spazio vettoriale V sono formate dallo stesso numero di vettori Se V è uno spazio che ha una base, allora si è visto che tutte le basi hanno lo stesso numero di vettori Tale numero intero si dirà la dimensione di V e si scriverà dim(v ) Per esempio dim(r n ) = n mentre F = {f : R R} ha dimensione infinita Ci chiediamo ora quando uno spazio vettoriale ha una base Teorema di estrazione-completamento di una base Se V =< v 1,, v n > e ad esempio v 1,,v k sono linearmente indipendenti allora si può estrarre una base da v 1,, v n V che contiene v 1,,v k La strategia è la seguente: si guarda se v k+1 < v 1,, v k > Se no lo si mantiene, se sí lo si cancella Procedendo in tale modo si arriva alla conclusione Come conseguenza si prova che : Teorema Ogni spazio vettoriale che è finitamente generato ha una base Come ulteriore applicazione del precedente teorema, si prova il Teorema di completamento di una base Se v 1,,v k sono vettori linearmente indipendenti nello spazio vettoriale V finitamente generato, allora si possono trovare vettori v k+1,,v n V tali che v 1,,v n sia una base di V Ne derivano i seguenti risultati : Corollario 1 Se dim(v ) = n e s > n, allora s vettori in V sono sempre linearmente dipendenti Corollario 2 Ogni sottospazio W di uno spazio finitamente generato V è finitamente generato e quindi ammette una base Inoltre si ha e vale l uguale se e solo se W = V dim(w) dim(v ) Corollario 3 Se dim(v ) = n, allora n vettori in V linearmente indipendenti sono una base

8 8 ISTITUZIONI DI MATEMATICA I Corollario 4 Se dim(v ) = n, allora n generatori di V sono una base Osservazione: Se W e Z sono due sottospazi di V allora: dim(w + Z) = dimw + dimz dim(w Z) La prova è lasciata per esercizio (suggerimento: si sceglie una base dell intersezione e la si completa a una base di W e a una di Z) Esercizi: 1 Sia V = < (2,0,1),( 1,3,1),(1,3,2), (4,0, 2) > Determinare: (a) una base di V e completarla a una base di R 3 ; (b) un sottospazio W di dimensione 2 di R 3 tale che V W = < (2, 0,1) > 2 Sia V = {(x,y,z,t) R 4 x + y z + 2t = 2x + 3y + z t = 0} e sia W = {(x, y,z, t) R 4 x 2y + z + 3t = 0} Determinare: (a) una base di V W; (b) una base di V + W 4 Siano V = {(x, y,z) R 3 x + y 2z = 0} e sia u = (1,0,0) (a) è vero che V + < u >= R 3? (b) determinare un sottospazio proprio W di R 3 tale che V + W = R 3 5 Siano V = {(x,y,z,t) R 4 2x y+z t = 0} e W =< (1, 2, 1, 0,(2, 0,1,1), (1,2, 0,0) > Determinare dim V+W e una una base di V + W Applicazioni lineari D ora in poi supporremo che tutti gli spazi vettoriali considerati abbiano dimensione finita Se V e W sono spazi vettoriali su R diciamo che una applicazione f : V W è lineare ( oppure che è un omomorfismo di spazi vettoriali) se rispetta le operazioni, cioè se sono verificate le seguenti proprietà a) f(v 1 + v 2 ) = f(v 1 ) + f(v 2 ), v 1, v 2 V b) f(av) = af(v), a R, v V o equivalentemente se f(av 1 + bv 2 ) = af(v 1 ) + bf(v 2 ), v 1,v 2 V e a, b R Si vede facilmente che: a) f(0) = 0 b) f( v) = f(v), v V Esempi: 1 L applicazione nulla è sicuramente lineare e se W = V l applicazione identica è sicuramente lineare 2 f : R 2 R 2 definita da f(a,b) = (a,b 2 ) non è lineare

9 ISTITUZIONI DI MATEMATICA I 9 3 f : R 2 R 2 definita da f(a,b) = (a + 1,b 2) non è lineare 4 f : R 2 R 2 definita da f(a,b) = (2a + 3b, a b) è lineare Data f : V W abbiamo già definito l immagine di f come l insieme: Imf = f(v ) = {w W v V, f(v) = w} Se f è lineare, Imf è un sottospazio di W (infatti comunque si scelgano due elementi f(v),f(u) in Imf si ha af(v) + bf(u) = f(av + bu) Imf) Ricordiamo che f è surgettiva se e solo se Imf = W Dal precedente Corollario 2 segue allora che f è surgettiva se e solo se dimimf = dimw Imf è generata dall immagine di una base v 1,,v n di V, infatti se v = a 1 v 1 + +a n v n allora f(v) = a 1 f(v 1 ) + + a n f(v n ), quindi dimimf min{dimv, dimw} Ogni volta che sono date le immagini di una base di V allora l applicazione lineare f è univocamente determinata Se f : V W è lineare definiamo nucleo di f, l insieme dei vettori controimmagine di zero: kerf = f 1 (0) = {v V f(v) = 0} È chiaro che 0 Kerf e che Kerf è un sottospazio vettoriale di V Teorema l applicazione lineare f : V W è iniettiva se e solo se Kerf = {0} Dimostrazione Se f è iniettiva allora Kerf = {0}, altrimenti due elementi distinti avrebbero immagine 0 Viceversa se Kerf = {0} e se f(v) = f(u), allora 0 = f(v) f(u) = f(v u) e quindi v u Kerf = {0}, da cui v = u e quindi f è iniettiva Proposizione Se f : V W è lineare e se w W e v V sono tali che f(v) = w allora: f 1 (w) = v + Kerf = {v + u u Kerf} Dimostrazione f 1 (w) v+kerf Infatti f(v+u) = f(v)+f(u) = w+0 = w u Kerf Viceversa se z f 1 (w) allora f(z) = w, cioè f(z) = f(v), allora 0 = f(z) f(v) = f(z v) e quindi z v = u Kerf, da cui z = v + u e quindi f 1 (w) v + Kerf Un importante risultato che lega il nucleo e l immagine di una applicazione lineare è il seguente Teorema di nullità e del rango Se f : V W è lineare allora vale: dim(v ) = dim(kerf) + dim(imf) Dimostrazione Sia v 1,,v r una base di Kerf Possiamo completarla con v r+1,, v n a una base di V, la cui immagine genera Imf, ma f(v 1 ) = f(v 2 ) = = f(v r ) = 0, e quindi f(v r+1 ),,f(v n ) generano Imf; proviamo che sono anche linearmente indipendenti Infatti se n j=r+1 b jf(v j ) = 0, allora f( n j=r+1 b jv j ) = 0 e quindi n j=r+1 b jv j Kerf, n cioè j=r+1 b jv j = r i=1 a iv i, da cui portando tutto a primo membro si ottiene una combinazione lineare nulla della base di V e quindi tutti i coefficienti a i e b j sono nulli, come volevasi dimostrare Cosí f(v r+1 ),,f(v n ) sono una base di Imf e quindi dim(imf) = n r = dim(v ) dim(kerf) Vedremo che la dimensione di Imf è il rango della matrice associata, questo spiega il nome del teorema (nullità viene dal Kerf) Come immediata conseguenza abbiamo

10 10 ISTITUZIONI DI MATEMATICA I Corollario Se f : V V è lineare, allora f è iniettiva f è surgettiva f è bigettiva Un applicazione lineare bigettiva si dice anche isomorfismo di spazi vettoriali Due spazi vettoriali su uno stesso corpo K sono isomorfi se e solo se hanno la stessa dimensione; quindi ogni spazio vettoriale di dimensione n è isomorfo a K n Esercizi: 1 Sia φ k : R 2 R 2 l applicazione lineare definita da φ(1, 1) = (1, k),φ(1,2) = (1,1) (a) Per quali valori k R φ k è bigettiva? (b) È possibile scegliere k in modo che (0,1) Kerφ k? (c) È possibile scegliere k in modo che (2, 1) Kerφ k? 2 Sia φ : R 3 R 4 l applicazione lineare definita da φ(x, y,z) = (x + y,x + y + z,0, z) (a) Determinare una base di Imφ e una di Kerφ (b) Scrivere la matrice associata a φ rispetto alle basi canoniche (c) È possibile definire un applicazione lineare ψ : R4 R 3 tale che Ker(ψ φ) sia il sottospazio generato da (1, 1, 0), (1, 0, 0)? 3 Siano V = {(x, y,z,t) R 4 x + y = z 2t = 0} e W = {(x, y,z,t) R 4 x = y + z 2t} (a) Determinare V W (b) Esiste un applicazione lineare surgettiva V W? (c) Esiste un applicazione lineare surgettiva W V? 4 Sia V il sottospazio di R 3 generato dai vettori (1, 1, 1) e ( 1,1, 1) (a) Calcolare dimv (b) Quante sono le trasformazioni lineari φ : R 3 V tali che φ(1,0,0) = (1, 1,1), φ(0,1,0) = ( 1,1, 1) e Kerφ sia generato da (1,1,0),(0,0,1)? 5 Sia V = {(x,y,z,t) R 4 x + y = z + t} (a) Determinare dimv (b) Dire se il vettore (1, 1, 1, 1) può essere completato a una base di V (c) Determinare un sottospazio proprio e non nullo di V (d) Definire un applicazione lineare ψ : R 4 R 3 tale che Kerψ = V 6 Siano V e W i sottospazi di R 4 generati rispettivamente da {(1,1,0,1),( 1,0,1,1)} e da {(0, 1,1,1), ( 1, 0,1, 1)} (a) Determinare una base di V W (b) Definire un applicazione lineare φ : R 4 R 4 tale che φ(v ) W 7 Esiste un applicazione lineare φ : R 3 R 3 tale che φ(1,0, 1) = (2, 0,0), φ(0, 1,0) = (1,1,1) e φ(1, 1,1) = (3,1,1)? Esiste un applicazione lineare ψ : R 3 R 3 tale che ψ(1,0,1) = (2,0,0), ψ(0, 1, 0) = (1, 1,1) e ψ(1,1,1) = (0,0,0)? 8 Sia φ : R 2 R 3 l applicazione lineare definita da φ(x, y) = (x + y,x + y,2y) (a) Determinare la dimensione e una base di Kerφ (b) Determinare φ 1 (1,1,1) e provare che non è sottospazio di R 2 (c) Scrivere la matrice associata a φ mediante le basi canoniche

11 ISTITUZIONI DI MATEMATICA I 11 9 Sia φ l applicazione lineare φ : R 3 R 3 definita da φ(1,0, 0) = (1, 2,3), φ(0, 1,0) = (4,5,6) e φ(0, 0,1) = (7,8,9) (a) Determinare una base di Imφ; (b) calcolare dimkerφ e determinarne una base; (c) determinare φ(1, 2, 3), φ(2, 1, 3) e φ(1, 1, 1); (d) determinare φ 1 (1,0,0), φ 1 (1, 2, 3), φ 1 (2,1,3) e φ 1 (1,1,1) Applicazioni lineari e sistemi Quanto visto sopra ci darà informazioni per la risoluzione dei sistemi lineari Per ora osserviamo che dato il sistema lineare omogeneo a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0 a m1 x 1 + a m2 x a mn x n = 0 se il numero n di incognite è maggiore del numero m di equazioni, allora il sistema ha una soluzione non banale (s 1,, s n ) (0,,0) Infatti le soluzioni del sistema costituiscono il nucleo dell applicazione lineare R n f R m (x 1,,x n ) (a 11 x 1 ++a 1n x n,,a m1 x 1 ++a mn x n ) ora dim(imf) m < n e quindi dal teorema precedente segue dim(kerf) > 0 Notiamo che se v = (x 1,, x n ) è una soluzione, anche av lo è per ogni a R; quindi se c è una soluzione non banale (cioè diversa da zero), ce ne sono infinite Le infinite soluzioni dipenderanno da tanti parametri quant è la dimensione di kerf, quindi da n dimimf parametri Analogamente risolvere il sistema lineare non omogeneo a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m equivale a determinare f 1 (b 1,,b m ) dove f è l applicazione lineare definita sopra Quindi il sistema avrà soluzione se e solo se (b 1,, b m ) Imf o equivalentemente se (b 1,,b m ) è combinazione lineare delle immagini della base canonica, cioè dei vettori f(1,,0) = (a 11,a 21,,a m1 ), f(0,1,,0) = (a 12,a 22,,a m2 ),, f(0,,1) = (a 1n, a 2n,,a mn ) Inoltre poiché per trovare la controimmagine di un vettore basta aggiungere gli elementi del nucleo a un elemento particolare la cui immagine è il vettore dato, per risolvere il sistema non omogeneo basta trovare una soluzione particolare e aggiungerla a tutte le soluzioni del sistema omogeneo

12 12 ISTITUZIONI DI MATEMATICA I Esercizi: 1 Risolvere il sistema x + y + z + 2t = 2 x t = 1 y + 2z = 0 determinando tutte le soluzioni del sistema omogeneo e aggiungendovi una soluzione particolare di quello non omogeneo 2 Sia V = {(a,b, a + b,a + b + c) R 4 a,b, c R} Determinare un sistema lineare omogeneo avente V come spazio delle soluzioni MATRICI Siano V e W due spazi vettoriali su R, tali che dim(v ) = n e dim(w) = m Sia poi f : V W un applicazione lineare Fissiamo una base E = {v 1,,v n } di V e una base F = {w 1,,w m } di W Allora per ogni i = 1,,n il vettore f(v i ) è un vettore di W e quindi si potrà scrivere f(v i ) = a 1i w a mi w m = In tal modo resta determinata la matrice (a ij ) = m a ji w j j=1 a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn di tipo m n (cioè a m righe e n colonne) ad elementi (o entrate) in R che chiameremo la matrice associata a f mediante le basi E e F e che indicheremo con M EF (f) Osserviamo che se f : V W è una applicazione lineare e {v 1,,v n } una base di V, per ogni v V possiamo scrivere in modo unico v = λ 1 v 1 + +λ n v n = n i=1 λ iv i, e quindi f(v) = λ 1 f(v 1 ) + + λ n f(v n ) = n λ i f(v i ) i=1 Quindi la f è completamente determinata quando si conoscano i trasformati di una base di V In genere considereremo f : R n R m e come basi su R fisseremo le basi canoniche Dati gli spazi vettoriali V e W su K e fissate le basi E = {v 1,,v n } di V e F = {w 1,,w m } di W, indichiamo con Hom(V,W) l insieme delle applicazioni lineari di V in W (il nome viene dal fatto che le applicazioni lineari sono dette anche omomrfismi di spazi vettoriali) Se f, g Hom(V,W) e α R definiamo (f + g) : V W (αf) : V W ponendo (f + g)(v) := f(v) + g(v) (αf)(v) := αf(v) per ogni v V È facile dimostrare che f + g e αf sono lineari e che, con tali operazioni, Hom(V, W) è un R-spazio vettoriale Definiamo anche sull insieme M mn (R) delle matrici m n a coefficienti in R una somma: (a ij ) + (b ij ) = (a ij + b ij )

13 e una moltiplicazione esterna: ISTITUZIONI DI MATEMATICA I 13 c(a ij ) = (ca ij ) Allora M mn (R) risulta un R-spazio vettoriale e l applicazione φ : Hom(V,W) M mn (R) definita ponendo φ(f) := M EF (f) è lineare e bigettiva, cioè è un isomorfismo di spazi vettoriali Infatti valgono le seguenti relazioni: M EF (f + g) = M EF (f) + M EF (g) M EF (αf) = αm EF (f) Siano dati ora tre spazi vettoriali V, W e Z su R e due applicazioni lineari V f W g Z Se E, F e G sono basi di V, W e Z ci possiamo chiedere come siano legate la matrice M EG (g f) associata all applicazione lineare composta g f e le matrici M FG (g), M EF (f) associate a g e f Abbiamo bisogno di definire un prodotto tra matrici in modo che la matrice prodotto sia quella associata all applicazione composta Siano A e B due matrici tali che il numero delle colonne di A sia uguale al numero delle righe di B Ad esempio sia A di tipo n m e B di tipo m p Sia A := (a ij ) e B := (b ij ) Definiamo allora il prodotto AB come la matrice C = (c ij ) ove si ponga c ij := a i1 b 1j + + a im b mj = m a ik b kj In altre parole al posto ij della matrice prodotto AB si mette il prodotto scalare tra la riga i-esima di A e la colonna j-esima di B Per questa ragione tale prodotto si dice il prodotto righe per colonne di A con B Fissate E, F e G, risulta M EG (g f) = M F G (g)m EF (f) Notiamo che il prodotto righe per colonne che abbiamo sopra definito non è commutativo quando, come nel caso di matrici n n, è possibile calcolare AB e BA (nel caso di una matrice A di tipo m n e una B di tipo n m si ha che AB è di tipo m m mentre BA è di tipo n n e quindi sono necessariamente diverse) ( ) ( ) Esempio Date le matrici due righe e due colonne A = e B = risulta ( ) ( ) 0 2 ( 1 ) ( 1) AB = = mentre BA = ( 1) Limitiamoci per il momento al caso di matrici quadrate n n ad elementi in R che denoteremo M n (R) Allora il prodotto sopra definito gode delle seguenti proprietà: a) Proprietà associativa b) Esistenza di un elemento neutro, ossia tale che AI = IA = A, A M n (R) Questo è la matrice che chiameremo matrice identica I = Inoltre vale la proprietà distributiva della somma rispetto al prodotto Osserviamo ( ) che il prodotto ( di) due matrici non( nulle può ) essere nullo, per esempio date A = e B = risulta AB = ; in tal caso tali matrici si dicono zerodivisori Quindi in M n (R) non tutte le matrici quadrate sono invertibili, perché gli elementi invertibili non sono mai zerodivisori, infatti se AB = 0 e A 0 è invertibile, moltiplicando AB = 0 per A 1 si ha A 1 (AB) = A 1 0 = 0; allora (A 1 A)B = 0 e quindi IB = B = 0 k=1

14 14 ISTITUZIONI DI MATEMATICA I Se A e B sono matrici invertibili si ha B 1 A 1 AB = ABB 1 A 1 = I e quindi anche AB è invertibile e vale la formula (AB) 1 = B 1 A 1 Ciò significa che l insieme delle matrici invertibili di M n (R), insieme che denoteremo con Gl n (R), è chiuso rispetto al prodotto e inoltre verifica le proprietà seguenti: a) Il prodotto gode della proprietà associativa b) Esiste un elemento neutro rispetto al prodotto c) Ogni elemento ha un inverso Per ogni matrice A = (a ij ) M mn (R), definiamo la trasposta di A e la indichiamo con t A la matrice che al posto ij ha a ji è chiaro che t A è la matrice che si ottiene da A scambiando le righe con le colonne Proprietà della trasposta: a) t (A + B) = t A + t B b) t (AB) = t B t A c) t (αa) = α t A d) Se A Gl n (R), allora t A Gl n (R) e si ha: ( t A) 1 = t (A 1 ) Una matrice si dice simmetrica se A = t A Supponiamo ora di avere una applicazione lineare f : V V Osserviamo che se f è un isomorfismo allora è iniettiva e surgettiva; quindi esiste una applicazione g : V V tale che f g = g f = id È facile provare che tale g è a sua volta una applicazione lineare Se A = (a ij ) M mn (R), indichiamo con A 1 := (a 11,a 12,,a 1n ) il vettore di R n formato con la prima riga di A Analogamente per A 2,,A m Il sottospazio di R n generato da A 1,, A m si dice lo spazio delle righe di A Allo stesso modo si definisce lo spazio delle colonne di A come il sottospazio di R m generato dai vettori A (1),, A (n), ove A (1) := (a 11,a 21,,a m1 ) e analogamente per A (2),,A (n) Con queste notazioni chiameremo caratteristica per colonne di A e la indicheremo con ρ c (A) la dimensione dello spazio delle colonne di A, mentre chiameremo caratteristica per righe di A e la indicheremo con ρ r (A) la dimensione dello spazio delle righe di A Il seguente teorema è evidente nel caso in cui W sia R n e F la base canonica, perché in tal caso le colonne della matrice sono proprio le immagini della base Teorema Se f : V W è una applicazione lineare, E e F sono basi di V e W e A = M EF (f), allora ρ c (A) = dim(im(f)) Non è difficile provare inoltre che: Teorema Se A M mn (R) e B Gl n (R), C Gl m (R) allora ρ c (A) = ρ c (CAB) Se poi V = W si ha: Teorema Sia V uno spazio vettoriale di dimensione n su R e siano E e F due basi di V Se f : V V è una applicazione lineare e A = M EF (f), sono fatti equivalenti: 1 f è iniettiva 2 f è surgettiva 3 f è un isomorfismo 4 A è invertibile 5 Esiste una matrice B M n (R) tale che AB = I 6 Esiste una matrice C M n (R) tale che CA = I 7 ρ c (A) = n 8 ρ r (A) = n L equivalenza tra le prime tre affermazioni l abbiamo già vista come corollario del teorema di nullità, l equivalenza di queste con le tre successive segue dall isomorfismo tra matrici

15 ISTITUZIONI DI MATEMATICA I 15 e applicazioni lineari Il teorema ρ c (A) = dim(im(f)) prova l equivalenza tra 2 e 7 L equivalenza di 7 e 8 è corollario di un teorema piú generale: Teorema Per ogni matrice A M mn (R) si ha: ρ c (A) = ρ r (A) Poiché per ogni matrice A M mn (R) risulta ρ c (A) = ρ r (A), chiameremo rango o caratteristica di A tale numero intero e lo indicheremo con ρ(a) Osserviamo esplicitamente che ρ(a) = ρ( t A) Infatti si ha ρ(a) = ρ c (A) = ρ r ( t A) = ρ( t A) Determinanti Per studiare la caratteristica di una matrice quadrata A di ordine n a elementi in R e per vedere quando A è invertibile è fondamentale la nozione di determinante Ci sono varie definizioni di determinante di una matrice quadrata, tutte equivalenti Ne diamo ora una induttiva che ove il determinante è definito diversamente si chiama regola di Laplace ( o Primo Teorema di Laplace) Se n = 1, cioè se A = (a) definiamo determinante di A, denotato con det(a) o con A, il numero det(a) = a Se A è una matrice quadrata di ordine n ad elementi in R, diciamo complemento algebrico dell elemento a ij, l elemento A ij definito come ( 1) i+j per il determinante della matrice che si ottiene da A eliminando la riga i-esima e la colonna j-esima Allora se n > 2 definiamo det(a) = n a 1j A 1j ( ) a11 a Per esempio se n = 2, cioè se A = 12 dalla definizione data risulta a 21 a 22 det(a) = a 11 a 22 a 12 a 21 Si può provare che per ogni matrice quadrata A = (a ij ) e per ogni r = 1,,n si ha det(a) = j=1 n a rj A rj j=1 cioè il determinante non dipende dalla riga scelta Questo modo di esprimere il determinante di A si chiama lo sviluppo del determinante secondo la riga r-esima Analogamente abbiamo una formula per lo sviluppo del determinante secondo la colonna s-esima Precisamente si ha n det(a) = a js A js j=1 Le seguenti proprietà sono di facile verifica e sono molto utili per rendere piú agevole il calcolo del determinante, soprattutto nel caso di matrici di ordine grande: proprietà del determinante 1 Se una riga ( o una colonna) di A è nulla, allora det(a) = 0 2 det(a) = det( t A) 3 Se si scambiano in A due righe (o due colonne) il determinante cambia di segno 4 Se A ha due righe (o due colonne) eguali, det(a) = 0

16 16 ISTITUZIONI DI MATEMATICA I 5 Se allora a 11 a 1n A = a 1i + b i1 a in + b in a n1 a nn a 11 a 1n a 11 a 1n det(a) = det a 1i a in + det b i1 b in a n1 a nn a n1 a nn 6 Se moltiplichiamo una riga o una colonna di A per una costante λ R, il determinante della matrice cosí ottenuta è λdet(a) Ne segue che det(λa) = λ n det(a) 7 Se due righe (o due colonne) di A sono proporzionali, allora det(a) = 0 8 Se si aggiunge a una riga (o colonna) di A un altra riga (o colonna) moltiplicata per λ R, il determinante non cambia 9 Se si aggiunge a una riga ( o colonna) di A una combinazione linare delle rimanenti righe ( o colonne), il determinante non cambia 10 Se le righe (o le colonne) di A sono linearmente dipendenti come vettori di R n, allora det(a) = 0 11 Se la matrice A è triangolare o diagonale det(a) è il prodotto degli elementi sulla diagonale, ossia: a 11 a 1n 0 a det 22 a 2n 0 0 a nn = a 11 a nn Il calcolo di det(a) viene molto facilitato se, utilizzando le proprietà precedenti, si trasforma nel calcolo del determinante di una matrice triangolare o almeno di una matrice che ha righe con molti zeri Teorema di Binet Se A e B sono due matrici quadrate n n, si ha det(ab) = det(a)det(b) Dal teorema di Binet segue che se A è invertibile allora A A 1 = AA 1 = I = 1 e quindi A 0 e A 1 = 1 A Vediamo ora che A 0 è anche condizione sufficiente e non solo necessaria affinché A sia invertibile Occorre premettere il teorema seguente: Secondo Teorema di Laplace Per ogni matrice quadrata A se r e s sono due interi distinti si ha n n a sj A rj = 0 = a js A jr j=1 Dimostrazione Moltiplicare la riga (o colonna) s-esima per i complementi algebrici di un altra riga (o colonna) r-esima è come calcolare il determinante di una matrice ottenuta da A sostituendo alla riga (o colonna) r-esima la riga (o colonna) s-esima Risulta cosí una matrice con due righe (o colonne ) uguali e quindi ha determinante nullo j=1

17 ISTITUZIONI DI MATEMATICA I 17 Mettendo insieme questo teorema e la definizione di determinante data prima, si ha quindi: n { det(a) se s = r ( ) a sj A rj = 0 se s r j=1 Se A è una matrice quadrata diciamo aggiunta di A e denotiamo con A la matrice A = t ((A ij )) e cioè la matrice che al posto ij ha il complemento algebrico dell elemento di posto ji Dalla formula ( ) segue allora immediatamente: AA = det(a)i Ne consegue il seguente criterio di invertibilità per una matrice quadrata A Teorema Una matrice quadrata A è invertibile se e solo se det(a) 0 Infatti avevamo già notato che una matrice invertibile ha determinante non nullo, d altra parte se det(a) 0 si ha A 1 1 = det(a) A Osserviamo che det(a) = 0 la matrice A è zerodivisore Ricordiamo che se A è una matrice m n abbiamo indicato con ρ(a) la caratteristica di A, ossia la dimensione dello spazio delle righe ( o delle colonne) di A Abbiamo già visto che una matrice A M n (R) è invertibile se e solo se ρ(a) = n Possiamo allora concludere che det(a) 0 ρ(a) = n Se A è una matrice m n e t è un intero 1 t min{n, m} diciamo minore di ordine t di A il determinante di una qualunque sottomatrice quadrata di A che si ottiene fissando t righe e t colonne In particolare i minori di ordine 1 1 sono gli elementi di A e se A è una matrice quadrata n n c è un solo minore di ordine n di A ed è il det(a) Teorema di Kronecker Se A è una matrice m n consideriamo l intero t=ordine massimo di un minore non nullo di A Se esiste un minore di ordine s di A che è non nullo ma che orlato in tutti i modi possibili con l aggiunta di una riga e una colonna di A è nullo, allora si ha : ρ(a) = t = s L idea della dimostrazione è che i vettori colonna della sottomatrice quadrata corrispondente a tale minore sono linearmente indipendenti (perché tale sottomatrice è invertibile in quanto il suo determinante è non nullo e quindi l immagine dell applicazione lineare associata ha dimensione uguale all ordine della sottomatrice) Perciò anche le corrispondenti colonne lunghe della matrice A sono linearmente indipendenti Le altre colonne dipendono da queste, altrimenti troveremmo un minore non nullo di ordine maggiore Esempio: ρ = 2, infatti , mentre i due minori di ordine 3 che lo orlano sono nulli (si noti che i minori di ordine 3 sono 4, mentre orlando il minore non nullo basta considerarne 2, il teorema di Kronecker garantisce che anche gli altri due sono nulli)

18 18 ISTITUZIONI DI MATEMATICA I SISTEMI LINEARI Sia dato il sistema lineare di m equazioni ed n incognite: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 (1) a m1 x 1 + a m2 x a mn x n = b m Se indichiamo con A la matrice dei coefficienti A = (a ij ), e con x 1 b 1 x X = 2 B = x 2 x n b m il sistema si può riscrivere come una equazione matriciale AX = B Teorema di Cramer Se m = n e A è invertibile allora il sistema dato ha una e una sola soluzione: X = A 1 1 B = det(a) A B Notiamo che A B è una matrice n 1 che al posto i ha come elemento A i1 b 1 + A i2 b A in b n = A 1i b 1 + A 2i b A ni b n Questo è il determinante della matrice che si ottiene da A sostituendo la colonna i ma con la colonna dei termini noti Dunque si ha la seguente formula per la soluzione del sistema : a 11 a 12 b 1 a 1n a 21 a 22 b 2 a 2n det a i = 1,,n x i = n1 a n2 b n a nn det(a) Consideriamo ora un sistema lineare AX = B in m equazioni e n incognite Sia f : R n R m l applicazione lineare tale che M EF (f) = A, dove E e F sono le basi canoniche di R n e R m rispettivamente Si ha n n f(x 1,,x n ) = x i f(e i ) = x i A i = i=1 i=1 = (a 11 x 1 + a 12 x a 1n x n,,a m1 x 1 + a m2 x a mn x n ) Dunque il sistema dato è risolubile se e solo se (b 1,,b m ) Im(f), cioè se si può scrivere come combinazione lineare delle immagini della base canonica che sono appunto le colonne della matrice Dato il sistema AX = B diciamo matrice completa del sistema la matrice C = (A B) che si ottiene da A aggiungendo come ultima colonna la colonna dei termini noti È chiaro che C è una matrice m (n + 1) Allora (b 1,,b m ) Im(f) se e solo se l ultima colonna della matrice C è combinazione lineare delle precedenti, ovvero se la matrice C ha la stessa caratteristica di A Abbiamo cosí provato:

19 ISTITUZIONI DI MATEMATICA I 19 Teorema di Rouchè-Capelli Il sistema AX = B ha soluzione se e solo se ρ(a) = ρ(c) Ora se il sistema AX = B è risolubile in accordo con il precedente teorema, sia r = ρ(a) = ρ(c) Allora si consideri un minore r r non nullo di A Il sistema dato è equivalente al sistema che si ottiene trascurando le equazioni che non corrispondono al minore scelto, in quanto esse sono combinazione lineare delle altre Per risolvere il sistema si può allora portare a termine noto le incognite che non corrispondono al minore scelto, ottenendo cosí un sistema r r la cui matrice dei coefficienti ha per determinante il minore non nullo scelto Otteniamo dunque un sistema di Cramer che sappiamo risolvere In tal modo si esprimeranno r delle incognite in funzione delle rimanenti n r Si dirà allora che il sistema ha n r soluzioni, nel senso che le soluzioni del sistema si ottengono attribuendo ad arbitrio valori alle incognite libere che sono appunto n r Esempi: 1 Dato il sistema x + y 2z = x 2y + z = 2, la matrice dei coefficienti A = x 5y + 4z = ha determinante nullo Si ha r(a) = r(c) = 2 perché il minore = 3 0 e tutti i minori che lo orlano sono nulli; allora il sistema è equivalente a { x + y = 2z + 1 x 2y = z + 2 le cui soluzioni con la regola di Cramer sono x = cioè {(z + 4 3, z + 1, z)} 2 Dato il sistema x + 2y + z t = 1 2x 2y + t = 2 3x + y + z = a 2z z + 2 2, y = 3 1 2z z + 2, z = z, con a R, la matrice dei coefficienti A = ha rango r(a) = 2 r(c) perché il minore = 1 0 e tutti i minori di A che lo orlano sono nulli; se invece lo orliamo usando la colonna B si ha = 3 + a 1 0 a Quindi se a 3 il sistema non ha soluzione perché r(c) = 3 > r(a), se invece a = 3 allora il sistema è equivalente a { 2x y + t = 2 3x + y + z = 3 e portando a secondo membro x e y si ottengono 2 soluzioni (x, y,3 3x y,2 2x + y)

20 20 ISTITUZIONI DI MATEMATICA I Se in particolare si deve studiare il sistema omogeneo AX = 0 allora chiaramente ρ(a) = ρ(c), il che corrisponde al fatto che un tale sistema ha sempre la soluzione banale ossia la soluzione x 1 = 0, x 2 = 0,,x n = 0 In tale situazione è chiaro che, con le notazioni precedentemente introdotte, le soluzioni del sistema sono i vettori di ker(f) Sia r = ρ(a); se r = n allora il sistema ha solo la soluzione banale, se invece r < n allora lo spazio delle soluzioni del sistema ha dimensione n r e una base si può ottenere nel seguente modo Supponiamo per comodità che il minore non nullo di ordine r di A sia quello formato con le prime r righe e le prime r colonne Allora si ponga x r+1 = 1,x r+2 = 0,,x n = 0 e si risolva il corrispondente sistema di Cramer ottenendo un vettore Analogamente si ponga v 1 = (s 11,s 12,,s 1r,1,0,,0) x r+1 = 0,x r+2 = 1,x r+3 = 0,,x n = 0 e si risolva il corrispondente sistema di Cramer ottenendo un vettore v 2 = (s 21,s 22,,s 2r,0, 1, 0,,0) Procedendo cosí si ottengono gli n r vettori v 1,,v n r che costituiscono una base di ker(f), ossia una base dello spazio delle soluzioni Osserviamo che se il sistema non è omogeneo le sue soluzioni sono date da f 1 (b 1,,b m ) (dove f è l applicazione lineare associata alla matrice dei coefficienti del sistema mediante la base canonica) e, poiché la controimmagine di un elemento in un applicazione lineare si ottiene sommando a un suo particolare elemento gli elementi del nucleo, tutte le soluzioni del sistema si possono trovare aggiungendo a una sua soluzione particolare tutte le soluzioni del sistema omogeneo associato Un metodo molto importante per la soluzione di un sistema, soprattutto dal punto di vista computazionale, è il cosí detto metodo di riduzione di Gauss Dato il sistema AX = B il metodo consiste nel considerare la matrice completa A e trasformarla mediante operazioni elementari sulle righe, ossia sulle equazioni del sistema, in modo tale che il sistema che si ottiene sia equivalente al sistema dato, e inoltre sia facilmente risolubile La forma della matrice che ci si propone di ottenere è la forma echelon ( a scalini) ossia di una matrice con questa proprietà: In ogni riga il primo elemento da sinistra non nullo è un 1 al di sotto del quale, nella corrispondente colonna, ci sono solo degli 0 Una matrice in forma echelon si presenta ad esempio cosí:

21 Ora è chiaro che il corrispondente sistema ha soluzione immediata: ISTITUZIONI DI MATEMATICA I 21 x 1 + 2x 2 + 3x 3 + 5x 4 = 2 x 3 + 4x 4 = 3 x 4 = 2 x 4 = 2,x 3 = 3 4x 4 = 11, x 1 = 2 2x 2 3x 3 5x 4 = 2x 2 25 ossia 1 soluzioni ( 2a 25,a,11, 2), a R L algoritmo per ottenere una matrice a scalini è il seguente: scambiando tra loro le righe si fa in modo che a 11 sia non nullo; si divide la prima riga per a 11 in modo che nella nuova matrice a 11 = 1; per ogni i = 2,, n si sottrae alla riga i-esima la prima moltiplicata per a i1 e si ottiene cosí una matrice della forma 1 a 12 a 1n 0 a A = 22 a 2n 0 a n2 a nn ripetendo il procedimento a partire dalla seconda riga in modo che si abbia a 22 = 1 e tutti zeri sotto e cosí via fino all ultima riga si ottiene una matrice a scalini

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

3 Applicazioni lineari e matrici

3 Applicazioni lineari e matrici 3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 4 Applicazioni lineari 1. Definizioni ed esempi. In questo capitolo ci proponiamo di studiare le funzioni tra spazi

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W LEZIONE 16 16.1. Applicazioni lineari iniettive e suriettive. Ricordo le seguenti due definizioni valide per applicazioni di qualsiasi tipo ϕ: X Y fra due insiemi. L applicazione ϕ si dice iniettiva se

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Geometria I A. Algebra lineare

Geometria I A. Algebra lineare UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali Geometria I A. Algebra lineare Prof.ssa Silvia Pianta Anno Accademico 22/23 Indice Spazi vettoriali 7 Definizione

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof.

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Antonio Cigliola Prerequisiti Logica elementare. Principio di Induzione.

Dettagli

Applicazioni lineari

Applicazioni lineari CAPITOLO 8 Applicazioni lineari Esercizio 8.. Sia T : R 3 R 3 l applicazione definita da T(x,x,x 3 ) = (x,x,x 3 ). Stabilire se T è lineare. Esercizio 8.. Verificare che la funzione determinante definita

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio 1. Sia f: R 3 R 2 (x, y, z) (x + 2y + z, y + z). (1) Verificare che f è lineare. (2) Determinare una base di ker(f) e stabilire se f è iniettiva. (3) Calcolare w

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

II Spazi vettoriali ed applicazioni lineari

II Spazi vettoriali ed applicazioni lineari II Spazi vettoriali ed applicazioni lineari Nel capitolo precedente abbiamo visto come assumano un ruolo importante nello studio dello Spazio Euclideo la sua struttura di spazio affine e quindi di spazio

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007 Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

ALGEBRA I: MODULI. Abbiamo indicato con 0 A, 1 A lo zero e l unità nell anello A e con 0 M l elemento neutro del gruppo abeliano (M, +).

ALGEBRA I: MODULI. Abbiamo indicato con 0 A, 1 A lo zero e l unità nell anello A e con 0 M l elemento neutro del gruppo abeliano (M, +). ALGEBRA I: MODULI 1 GENERALITÀ SUGLI A-MODULI Il concetto di A-modulo generalizza quello di spazio vettoriale su un campo K Definizione 11 Sia A un anello commutativo con unità Un A-modulo è un insieme

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI 1. CLASSI DI RESTO E DIVISIBILITÀ In questa parte sarò asciuttissimo, e scriverò solo le cose essenziali. I commenti avete potuto ascoltarli a lezione.

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Esercizi risolti di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Esercizi risolti di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Esercizi risolti di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio Quest opera è stata rilasciata con licenza Creative Commons Attribuzione - Non commerciale- Non opere derivate 3.0

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali APPROFONDIMENTI DI ALGEBRA M. Chiara Tamburini Anno Accademico 2013/2014 Indice Prefazione iii I Moduli su un anello

Dettagli

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE 1. Operazioni algebriche binarie Dato un insieme M, chiamiamo operazione algebrica binaria definita su M una qualunque applicazione f che associa ad ogni coppia ordinata (a, b) di

Dettagli