Figure piane. Due figure sono congruenti se sovrapposte coincidono perfettamente. figure a contorno mistilineo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Figure piane. Due figure sono congruenti se sovrapposte coincidono perfettamente. figure a contorno mistilineo"

Transcript

1

2 Figure piane poigoni cerci figure a contorno curviineo figure a contorno mistiineo I due poigoni sono congruenti I due cerci non sono congruenti ue figure sono congruenti se sovrapposte coincidono perfettamente

3 F F F Le figure F, F ed F non anno a stessa forma, non sono quindi congruenti, ma sono formate dao stesso numero di parti congruenti; diciamo ce sono equicomposte composte dao stesso numero di parti congruenti). Essendo equicomposte, anno tutte a stessa estensione, in quanto occupano a stessa parte di superficie; e ciamiamo aora equivaenti e indiciamo ciò ne seguente modo: F & F & F eggi: F equivaente a F equivaente a F )

4 onsideriamo un rettangoo avente a ase unga 5 cm e atezza unga 3 cm. Per cacoare a sua area asterà vedere quante vote un unità di misura è contenuta in esso. Se scegiamo come unità di misura i centimetro quadrato e o riportiamo in esso, osserviamo ce ci sono 15 quadratini, cioè area è di 15 cm². tae risutato arriviamo motipicando fra oro i numeri 5 e 3 ce esprimono, in centimetri, a ungezza dea ase e de atezza. 1cm L area de rettangoo si ottiene motipicando a misura dea ase per quea de atezza. La formua è quindi: formua diretta) formue inverse)

5 I quadrato è un particoare rettangoo avente a ase congruente a atezza. Per cacoare a sua area possiamo appicare a stessa formua de rettangoo: dove, cioè L area de quadrato si ottiene motipicando a misura de ato per se stessa. La formua è: formua diretta) formua inversa)

6 Osserva i paraeogramma ; se da esso ritagiamo i triangoo H e o spostiamo daa parte opposta, otteniamo un rettangoo equivaente a paraeogramma. Possiamo quindi affermare ce: H H Un paraeogramma è equivaente a un rettangoo avente a stessa ase e a stessa atezza. L area de paraeogramma si ottiene motipicando a misura dea ase per quea de atezza. La formua è: formua diretta) formue inverse)

7 Un triangoo è equivaente aa metà di un paraeogramma avente a stessa ase e a stessa atezza. L area de triangoo si ottiene motipicando a misura dea ase per quea de atezza a essa reativa e dividendo tae prodotto per due. La formua è: formua diretta) formue inverse)

8 E H Un romo è equivaente aa metà di un rettangoo ce a per ase e per atezza rispettivamente e due diagonai de romo. L area de romo si ottiene motipicando e misure dee due diagonai e dividendo tae prodotto per due. F d d1 O G d d1 O La formua è: d1 d d1 d formua diretta) d formue d 1 inverse)

9 1 1 Un trapezio è equivaente aa metà di un paraeogramma ce a come ase a somma dee asi de trapezio e come atezza a stessa atezza. H isegniamo i trapezio 1 isegniamone due congruenti e sistemiamoi in modo da far coincidere un ato oiquo. L area di un trapezio si ottiene motipicando a somma dee asi per a misura de atezza e dividendo tae prodotto per due ) 1 La formua sarà: formua + 1 diretta) Otteniamo un paraeogramma ce a per ase a somma dee asi de trapezio e per atezza a stessa atezza. formue inverse)

10 H G onsideriamo un poigono regoare, per esempio ottagono EFGH. ome vedi si può dividere in 8 triangoi congruenti. In ognuno di questi triangoi a ase coincide con un ato de ottagono e atezza è apotema de poigono. Per cacoare area de ottagono asterà cacoare area di uno dei triangoi e motipicare i risutato per otto: a F E a a t da cui : o 6 ma 6 ) non è atro ce i perimetro de' esagono, quindi a p a formua diventa :

11 iremo quindi ce: L area di un poigono regoare si ottiene motipicando a misura de perimetro per a misura de apotema e dividendo tae prodotto per due. La formua è: acoare a misura de apotema f e φ sono due costanti, detti impropriamente numeri fissi, i oro vaore dipende da tipo di poigono. p p a a a formua diretta) ) p a ϕ f ϕ formue e a f formua formua H inverse) a diretta) inversa) G F E

12

GEOMETRIA PIANA. Legenda: l = lato. a, b, c = dimensioni d1, d2 oppure d, D = diagonali 2P = perimetro r = raggio π (pi greco) = 3,14 b

GEOMETRIA PIANA. Legenda: l = lato. a, b, c = dimensioni d1, d2 oppure d, D = diagonali 2P = perimetro r = raggio π (pi greco) = 3,14 b GEOMETRIA PIANA Legenda: A = area h = atezza = ato = ase o ase minore B = ase maggiore a,, c = dimensioni d1, d oppure d, D = diagonai P = perimetro r = raggio π (pi greco) = 3,14 d a A P d h r B D d c

Dettagli

VERIFICA DI GEOMETRIA

VERIFICA DI GEOMETRIA NOME...T... VERIFI I GEOMETRI 1) Indica con una crocetta se vero o faso: I trapezi anno tutti i ati opposti paraei. I paraeogrammi anno i ati opposti uguai e paraei. Un triangoo equiatero è un poigono

Dettagli

Equivalenza di figure piane +soperimetria ed equivalenza di figure piane Area di triangoli e quadrilateri Teorema di Pitagora e sue applicazioni

Equivalenza di figure piane +soperimetria ed equivalenza di figure piane Area di triangoli e quadrilateri Teorema di Pitagora e sue applicazioni Equivaenza i figure piane +soperimetria e equivaenza i figure piane rea i triangoi e quariateri Teorema i itagora e sue appiazioni +soperimetria e equivaenza i figure piane Staiisi se e seguenti affermazioni

Dettagli

Triangolo rettangolo

Triangolo rettangolo Triangoo rettangoo Le paroe dea matematica Cateto minore C i ipotenusa C1 Cateto maggiore Verificiamo i teorema di Pitagora Enunciato: In un triangoo rettangoo area de quadrato costruito su ipotenusa è

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio 3 GEMETRI Lunghezza dea circonferenza e area de cerchio Esercizi suppementari di verifica Esercizio 1 Metti una crocetta su vero (V) o faso (F) accanto ad ogni formua reativa aa unghezza dea circonferenza

Dettagli

Percorsi di Matematica on line ESERCIZI DI RECUPERO 3

Percorsi di Matematica on line ESERCIZI DI RECUPERO 3 Gariea ori Sivia Vivada Rita Martinei Percorsi di Matematica on ine ESERCIZI DI RECUPERO Sommario Numeri Souzioni Spazio e figure 9 Souzioni 9 Reazioni e funzioni Souzioni 6 Misure, dati e previsioni 66

Dettagli

LA GEOMETRIA NELLO SPAZIO

LA GEOMETRIA NELLO SPAZIO LA GEOMETRIA NELLO SPAZIO n.1 Un eemento primitivo: o spazio. Lo spazio è caratterizzato dai seguenti assiomi: Lo spazio contiene infiniti punti, infinite rette, infiniti piani. Ogni piano divide o spazio

Dettagli

MAPPA 1 FIGURE. Figure geometriche: idee, misure, strumenti. Figure geometriche Una figura geometrica è un insieme di punti.

MAPPA 1 FIGURE. Figure geometriche: idee, misure, strumenti. Figure geometriche Una figura geometrica è un insieme di punti. MPP 1 Figure Figure geometriche Una figura geometrica è un insieme di punti. Figure piane e figure soide Una figura i cui punti appartengono tutti ao stesso piano si chiama piana. Una figura i cui punti

Dettagli

L AREA DELLE FIGURE PIANE

L AREA DELLE FIGURE PIANE L AREA DELLE FIGURE PIANE Segna il completamento corretto. 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa

Dettagli

LE POTENZE DEI NUMERI

LE POTENZE DEI NUMERI ARITMETICA LE POTENZE DEI NUMERI PREREQUISITI conoscere e proprietaá dee quattro operazioni svogere cacoi a mente ed in coonna con e quattro operazioni risovere espressioni con e quattro operazioni distinguere

Dettagli

Le equazioni e le disequazioni lineari

Le equazioni e le disequazioni lineari MATEMATICAperTUTTI Le equazioni e e disequazioni ineari Le equazioni ineari ESERCIZIO SVOLTO Le equazioni. Chiamiamo equazione ad una incognita un uguagianza fra due espressioni agebriche di cui ameno

Dettagli

Il piano cartesiano, la retta e le funzioni di proporzionalità

Il piano cartesiano, la retta e le funzioni di proporzionalità MATEMATICAperTUTTI I piano cartesiano, a retta e e funzioni di proporzionaità ESERCIZIO SVOLTO I piano cartesiano. Per fissare un sistema di riferimento ne piano si considerano due rette orientate fra

Dettagli

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì.. Segna il completamento corretto. L AREA DELLE FIGURE PIANE (in rosso i risultati) 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie,

Dettagli

La statistica descrittiva

La statistica descrittiva MATEMATICAperTUTTI Dee seguenti indagine statistiche individua a popoazione, i carattere oggetto di studio e e possibii modaità di tae carattere. 1 ESERCIZIO SVOLTO Indagine: utiizzo de tempo ibero da

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

ROBERTO VACCA - BRUNO ARTUSO - CLAUDIA BEZZI. Geometria 2

ROBERTO VACCA - BRUNO ARTUSO - CLAUDIA BEZZI. Geometria 2 ROBERTO VACCA - BRUNO ARTUSO - CLAUDIA BEZZI Geometria 2 Edizione 1 2 3 4 5 6 7 8 9 10 2011 2012 2013 2014 2015 Direzione Editoriae: Roberto Invernici Coordinamento Editoriae: Progetti di Editoria s.r..

Dettagli

Le funzioni goniometriche

Le funzioni goniometriche CAPITOLO 1 MATEMATICA PER LA FISICA Le funzioni goniometriche Obiettivi definire e funzioni goniometriche fondamentai in riferimento ai triangoi rettangoi e aa circonferenza goniometrica risovere triangoi

Dettagli

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto;

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto; 1 Esercizio (tratto da Probema 8.29 de Mazzodi 2) Un asta di unghezza 1.2 m e massa M 0.5 Kg è incernierata ne suo estremo A ad un perno fisso e può osciare senza attrito in un piano verticae. A istante

Dettagli

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2 ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. 1) Risovere e seguenti equivaenze CLASSE 1TGC2 1 5 m = mm 6 44 km 2 = m 2 2 34,5 dam 2 = dm 2 7 9 cm 3 = m 3 3 5 cm 2 = m 2

Dettagli

Organi di collegamento

Organi di collegamento Organi di coegamento Linguette Ciavette Aeri scanaati Organi di coegamento - Carmine apoi pag. 1 di 10 LIGUETTA Per inguetta si intende un organo meccanico caettato in opportune cave degi aeri ed utiizzato

Dettagli

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano Pagina 1 di 13 I poligoni I poligoni sono figure piane che hanno come contorno una linea spezzata chiusa formatada almeno tre segmenti consecutivi. Un poligono può avere tre, quattro, cinque o più lati.

Dettagli

Parallelogrammi e trapezi 1

Parallelogrammi e trapezi 1 Paraeogrammi e trapezi riconoscere un paraeogramma e individuarne e proprietaá riconoscere paraeogrammi particoari e individuarne e proprietaá riconoscere trapezi e individuarne e proprietaá individuare

Dettagli

Il rapporto fra la lunghezza di una circonferenza qualsiasi e la lunghezza del suo diametro è costante. in conclusione:

Il rapporto fra la lunghezza di una circonferenza qualsiasi e la lunghezza del suo diametro è costante. in conclusione: La circonferenza è una linea curva e misurarla, per esempio, con il righello è un procedimento impossibile. ome fare allora? Vediamo di trovare un procedimento adeguato. 1. Procuriamoci un oggetto il cui

Dettagli

LIMITI E CONTINUITA. 1. Sul concetto di limite

LIMITI E CONTINUITA. 1. Sul concetto di limite LIMITI E CONTINUITA. Su concetto di imite I concetto di imite nasce da esigenza di conoscere i comportamento di una funzione agi estremi de suo insieme di definizione D. Quaora esso sia costituito da unione

Dettagli

Il Tetraedro regolare

Il Tetraedro regolare I Tetraedro regoare E i soido che ha per facce 4 triangoi equiateri, (F = 4) Ha 6 spigoi (S = 6) e 4 vertici (V = 4) I suo sviuppo è i seguente: Chiuso diventa: Le proiezioni possibii sono: I suoi assi

Dettagli

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo Dott. Ing aoo Serafini Cic per tutti gi appunti (AUTOAZIONE TRATTAENTI TERICI ACCIAIO SCIENZA dee COSTRUZIONI ) e-mai per suggerimenti Due incognite ipertstatiche con cedimento eastico ineare su vincoo

Dettagli

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante:

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante: ome sai, se vuoi riprodurre una figura, puoi disegnarla perfettamente uguale rispettandone la forma e le dimensioni e cambiandone quindi solo la posizione. In questo caso la riproduci isometricamente,

Dettagli

Parallelogrammi, trapezi e poligoni regolari

Parallelogrammi, trapezi e poligoni regolari CAPITOLO 5 Paraeogrammi, trapezi e poigoni regoari 1. I PARALLELOGRAMMI CON GEOGEBRA Esercitazione 1. Costruire un paraeogramma dati tre vertici consecutivi Per risovere questo probema usiamo a definizione

Dettagli

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA http://www.itimarconi.ct.it/sezioni/didatticaonine/edie/ostruzioni/linea%0eastic... Pagina di 06/0/006 L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTIA. BREVI RIHIAMI SULLA TEORIA DELLE TRAVI INFLESSE Si

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2) circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio

Dettagli

I poligoni e la circonferenza

I poligoni e la circonferenza CAPITOLO 2 I poigoni e a circonferenza 1. POLIGONI INSCRITTI E CIRCOSCRITTI CON GEOGEBRA Esercitazione 1. I teoremi sui quadriateri con GeoGebra Facciamo a seguente costruzione: disegniamo un triangoo

Dettagli

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando

Dettagli

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili.

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili. TEMI ESAME Esercizio 1 Tema d esame de 1/09/1998 Si consideri a struttura iustrata in figura, con EJ costante. I vaore de azione concentrata F è pari a: Figura 1.1 1 F p 4 La struttura iustrata in figura

Dettagli

Percorsi di Matematica on line

Percorsi di Matematica on line Gariea ori Sivia Vivada Rita Martinei Percorsi di Matematica on ine ESERIZI I POTENZIMENTO -- IREZIONE EITORILE: avide asteano RELIZZTO : RG& S.R.L. SOLUZIONI PER L EITORI che ha curato per a casa editrice

Dettagli

CONOSCENZE 1. il concetto di parallelismo e. e perpendicolari. 2. la proiezione di un segmento

CONOSCENZE 1. il concetto di parallelismo e. e perpendicolari. 2. la proiezione di un segmento GEOMETRIA PREREQUISITI conoscere e caratteristiche de sistema decimae conoscere e proprietaá dee quattro operazioni e operare con esse operare con e misure angoari conoscere gi enti dea geometria e e oro

Dettagli

I primi elementi e i triangoli

I primi elementi e i triangoli MATEMATICAperTUTTI I triangoi 1 ESERCIZIO SVOLTO I primo criterio di congruenza. I confronto fra figure geometriche è un operazione che ricorre spesso in geometria, speciamente i confronto fra triangoi.

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

2B GEOMETRIA. Isoperimetria, equivalenza e calcolo delle aree. Esercizi supplementari di verifica

2B GEOMETRIA. Isoperimetria, equivalenza e calcolo delle aree. Esercizi supplementari di verifica 2 GEOMETRI Isoperimetria, equivalenza e calcolo delle aree Esercizi supplementari di verifica Esercizio 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. a) V F ue poligoni isoperimetrici

Dettagli

Compito scritto di Elettricità e Magnetismo ed Elettromagnetismo 24 Giugno 2004

Compito scritto di Elettricità e Magnetismo ed Elettromagnetismo 24 Giugno 2004 Compito scritto di Eettricità e Magnetismo ed Eettromagnetismo 4 Giugno 4 ecupero I (II) esonero di Eettromagnetismo: esercizio C (D) in due ore Prova scritta di Eettricità e Magnetismo: esercizi A e B

Dettagli

Poligoni inscritti e circoscritti ad una circonferenza

Poligoni inscritti e circoscritti ad una circonferenza Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.

Dettagli

Equilibrio del corpo rigido

Equilibrio del corpo rigido Equiibrio de corpo rigido Probema1 Due sbarrette omogenee AB e BC aventi a stessa unghezza e a stessa massa di 6 kg, vengono sadate ne punto B in modo da formare un angoo di 90. Le due sbarrette così unite

Dettagli

CONOSCENZE 1. le proposizioni 2. i connettivi logici 3. le espressioni logiche

CONOSCENZE 1. le proposizioni 2. i connettivi logici 3. le espressioni logiche ALGEBRA LOGICA E CONNETTII PREREQUISITI conoscere gi insiemi e i oro inguaggio conoscere i significato di soggetto e predicato di una frase conoscere i significato di congiunzione, disgiunzione e negazione

Dettagli

Anno 1. Poligoni equivalenti

Anno 1. Poligoni equivalenti Anno 1 Poligoni equivalenti 1 Introduzione Una qualsiasi figura geometrica piana è costituita da una linea spezzata chiusa che, a sua volta, delimita una parte di piano. In questa lezione introdurremo

Dettagli

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it Nicoa De Rosa Liceo scientiico sperimentae sessione straordinaria matematicamente.it PROBLEMA La sezione trasversae di un canae di imgazione ha a orma di un trapezio isoscee con a base maggiore in ato.

Dettagli

Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece

Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece ha lasciato inalterato. Si chiama trasformazione geometrica un

Dettagli

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno I POLIGONI Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. E D contorno La linea spezzata chiusa che delimita il F C poligono si chiama contorno I punti A, B, C, D,

Dettagli

Sfruttando le considerazioni appena fatte come misureresti il coefficiente di attrito statico μ s?

Sfruttando le considerazioni appena fatte come misureresti il coefficiente di attrito statico μ s? MISURA DEL COEFFICIENTE DI ATTRITO STATICO Materiae occorrente: piano incinato monete Nota a unghezza de piano, qua è a reazione che sussiste fra i coefficiente di attrito statico μ s e a configurazione

Dettagli

MAPPA 8 FIGURE. Area dei poligoni e figure equivalenti. Misura dell estensione superficiale. Il metro quadrato. Figure equivalenti

MAPPA 8 FIGURE. Area dei poligoni e figure equivalenti. Misura dell estensione superficiale. Il metro quadrato. Figure equivalenti Misua de estensione supeficiae L aea è a misua de estensione supeficiae di una figua ispetto a unità di misua fissata. Indiciamo aea con a ettea. Esempio: R MPP 8 u 1 è aea de ettangoo R secondo unità

Dettagli

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U Prendiamo in considerazione le figure geometriche nel piano, cioè le figure piane, intendendo con questo termine un qualsiasi insieme di punti appartenenti a uno stesso piano. Disegniamo più segmenti consecutivi:

Dettagli

La trasformata di Fourier

La trasformata di Fourier La trasformata di Fourier (Metodi Matematici e Cacoo per Ingegneria) Enrico Bertoazzi DIMS Università di Trento anno accademico 2005/2006 La trasformata di Fourier 1 / 15 Outine 1 La serie di Fourier La

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 14

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 14 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 14 L equivalenza di figure piane Due figure piane si dicono equivalenti (o equiestese) se hanno la stessa estensione nel piano. L area

Dettagli

Si supponga ora che, con le stesse condizioni iniziali, l urto avvenga elasticamente. Calcolare in questo caso:

Si supponga ora che, con le stesse condizioni iniziali, l urto avvenga elasticamente. Calcolare in questo caso: 1 Esercizio (tratto da Probema 8.21 de Mazzodi 2) Un asta rigida di sezione trascurabie, unga = 1 m e di massa M = 12 Kg è imperniata ne centro ed è ibera di ruotare in un piano orizzontae xy. Contro un

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE M. G. USTO ROTZIONI DEGLI ESTREMI DI UN TRVE PRISMTIC PPOGGIT LLE ESTREMITÁ E SOGGETT D UN CRICO VERTICLE CSO DEI CRICHI TRINGOLRE, UNIFORME E CONCENTRTO mgbstudio.net PGIN INTENZIONLMENTE VUOT SOMMRIO

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

Anno 2. Equivalenza fra triangoli, parallelogramma e trapezio

Anno 2. Equivalenza fra triangoli, parallelogramma e trapezio Anno 2 Equivalenza fra triangoli, parallelogramma e trapezio 1 Introduzione In questa lezione parleremo dell equivalenza tra alcune figure piane; in particolare parleremo di triangoli, trapezi e parallelogrammi.

Dettagli

Circonferenze e cerchi

Circonferenze e cerchi Alunno/a... Geometria Classe... Sez.... Data... Circonferenze e cerchi 1 Definisci la circonferenza: 2 Definisci il settore circolare: 3 Definisci la figura che nel disegno è colorata in grigio: 4 Osserva

Dettagli

De Poligonorum Inscriptione

De Poligonorum Inscriptione De oigonorum Inscriptione Ovvero: come trascorrere i mese di settembre fra i, coi, radicai doppi e financo tripi De oigonorum Inscriptione / 0 De oigonorum Inscriptione / 0 INDIC INTRODUZION... IMOSTZION

Dettagli

IL PENDOLO REVERSIBILE DI KATER

IL PENDOLO REVERSIBILE DI KATER IL PENDOLO REVERSIBILE DI KATER I periodo dee osciazioni de pendoo sempice è dato daa formua: T 0 = π g Questa reazione è vaida per e piccoe osciazioni, quando, cioè, si può assimiare i seno de'angoo massimo

Dettagli

Equivalenza e aree. Circonferenza e cerchio

Equivalenza e aree. Circonferenza e cerchio Indice Geometria e misura VIII Indice unità 1 Equivalenza e aree Figure piane equivalenti L area del rettangolo e del quadrato 8 L area del parallelogramma 14 L area del triangolo 17 La formula di Erone

Dettagli

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) Un poligono è detto regolare quando.

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) Un poligono è detto regolare quando. POLIGONI REGOLARI. ( Libro : teoria pag. 54 61; esercizi pag. 120 128) Un poligono è detto regolare quando. Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono

Dettagli

AREE DEI POLIGONI. b = A h

AREE DEI POLIGONI. b = A h AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.

Dettagli

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA PRISMI E PIRAMIDI COS È UN PRISMA È UN POLIEDRO DELIMITATO DA Due POLIGONI congruenti e paralleli, come basi. Tanti PARALLELOGRAMMI quanti sono i lati del poligono di base (come facce laterali). PRISMA

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Le caratteristiche generali di un quadrilatero

Le caratteristiche generali di un quadrilatero 1 Le caratteristiche generali di un quadrilatero Nel quadrilatero (poligono di quattro lati) si distinguono:! i vertici,,, ;! gli angoli α, β, γ, δ;! i lati,,, ;! le diagonali e. EFINIZIONE. ue angoli

Dettagli

Buone Vacanze! Compiti per le vacanze. Classe II A

Buone Vacanze! Compiti per le vacanze. Classe II A Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei

Dettagli

INDICE EQUIVALENZA E MISURA DELLE FIGURE

INDICE EQUIVALENZA E MISURA DELLE FIGURE INIE 2 Unità di apprendimento 5 EQUIVLENZ E MISUR ELLE FIGURE 3 ttività per iniziare verso le competenze fondamentali 4 1 Equivalenza delle figure piane Equicomposizione ed equivalenza delle figure geometriche,

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

Esercizi di geometria per il corso PAS A059

Esercizi di geometria per il corso PAS A059 Esercizi di geometria per il corso PAS A059 1. Dato un rombo con un angolo di 60 trovare il rapporto tra il raggio del cerchio inscritto nel rombo e il raggio del piu piccolo cerchio che contiene interamente

Dettagli

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili Esempio di risouzione di struttura iperstatica co metodo misto ompemento aa ezione 47/50: Teai a nodi mobii La struttura in figura è soggetta ad un cedimento verticae dea cerniera. Tutto i teaio ha sezione

Dettagli

non ha significato in R ¼

non ha significato in R ¼ MATEMATICAerTUTTI I radicai ESERCIZIO SVOLTO Potenze e radici. Saiamo che si uò estrarre a radice quadrata soo di numeri ositivi o nui e che i risutato è un numero ositivo o nuo. La radice cubica di un

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

Anno 4 Superficie e volume dei solidi

Anno 4 Superficie e volume dei solidi Anno 4 Superficie e volume dei solidi Introduzione In questa lezione parleremo del volume e della superficie dei solidi, imparando a trattare con semplicità il loro calcolo tramite le formule Al termine

Dettagli

CALCOLO MATEMATICO E GEOMETRIA GEOMETRIA PIANA

CALCOLO MATEMATICO E GEOMETRIA GEOMETRIA PIANA CALCOLO MATEMATICO E GEOMETRIA GEOMETRIA PIANA Nella prima parte del corso si ripasseranno le caratteristiche principali delle figure di geometria piana, per poi passare nella seconda parte dell'anno alla

Dettagli

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA.

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Area dei poligoni AREA DEI POLIGONI 1 Def: si dice area di una superficie piana la parte delimitata di piano che essa occupa. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Proprietà:

Dettagli

Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza

Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza 1. I poligoni inscritti Quando un poligono è inscritto in una Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza Se un poligono è inscritto in una circonferenza,

Dettagli

7. Travi appoggiate: metodo generale

7. Travi appoggiate: metodo generale 7. Travi aoggiate: metodo generae Se si riesce a trasformare a trave aoggiata in una mensoa, e sue deformazioni si ossono cacoare con gi stessi criteri de aragrafo recedente. Deve trattarsi naturamente

Dettagli

a b a : b Il concetto di rapporto

a b a : b Il concetto di rapporto 1 Il concetto di rapporto DEFINIZIONE. Il rapporto fra due valori numerici a e b è costituito dal loro quoziente; a e b sono i termini del rapporto, il primo termine si chiama antecedente, il secondo si

Dettagli

Inflessione nelle travi

Inflessione nelle travi Ifessioe ee travi Caso dea trave icastrata ad u estremità Data a trave a mesoa AB di ughezza, sottoposta a azioe de carico cocetrato F appicato a estremo ibero B, questa risuta soecitata, i ogi sezioe,

Dettagli

Un metodo di calcolo per le strutture monodimensionali piane

Un metodo di calcolo per le strutture monodimensionali piane www.carosantagata.it n metodo di cacoo per e strutture monodimensionai piane bstract. Si propone un metodo di cacoo per a determinazione dea configurazione di equiibrio dee strutture monodimensionai piane.

Dettagli

Cap 1. LA CIRCONFERENZA

Cap 1. LA CIRCONFERENZA Cap 1. LA CIRCONERENZA Rivedi a teoria I uoghi geometrici Un uogo eá 'insieme di tutti e soi gi oggetti geometrici che possiedono una proprietaá P; se gi oggetti sono punti, si para di uogo di punti. Esempi

Dettagli

IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle..

IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. IL Calcolo letterale (o algebrico). (teoria pag. 29 31;esercizi pag. 100 103, es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il

Dettagli

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag )

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) POLIGONI REGOLARI. ( Libro : teoria pag. 52 61; esercizi pag. 120 128) Un poligono è detto regolare quando Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

LE FRAZIONI. 1 Scrivi la frazione corrispondente alla parte colorata. cinque settimi. dieci quindicesimi. nove diciottesimi. dodici ventiquattresimi

LE FRAZIONI. 1 Scrivi la frazione corrispondente alla parte colorata. cinque settimi. dieci quindicesimi. nove diciottesimi. dodici ventiquattresimi LE FRAZIONI Scrivi la frazione corrispondente alla parte colorata. 3 7 9 Riscrivi la frazione in cifre e colora la parte indicata. cinque settimi dieci quindicesimi nove diciottesimi dodici ventesimi quattordici

Dettagli

Sandra Bernecoli - Luigi Tomasi CABRIRRSAE. I poliedri regolari: un tema di geometria dello spazio rivisitato con Cabri-géomètre.

Sandra Bernecoli - Luigi Tomasi CABRIRRSAE. I poliedri regolari: un tema di geometria dello spazio rivisitato con Cabri-géomètre. BRIRRSE quaderni di Sandra Bernecoi - Luigi Tomasi I poiedri regoari: un tema di geometria deo spazio rivisitato con abri-géomètre n 1 Sandra Bernecoi Liceo Scientifico Statae P. Paeocapa di Rovigo Luigi

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

Cap 1. I PRIMI ELEMENTI

Cap 1. I PRIMI ELEMENTI Cap 1. I PRIMI ELEMENTI Rivedi a teoria I termini primitivi In quasiasi discipina non si puoá definire tutto e non si puoá dimostrare tutto; eá necessario introdurre acuni oggetti (termini primitivi) e

Dettagli

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO:

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO: PROBLEMI FONDAMENTALI CON LE FRAZIONI/RAPPORTI Le frazioni hanno applicazioni in moltissimi problemi. I tipi di problemi più frequenti sono: 1. Calcolare la frazione di un numero 2. Calcolare un numero

Dettagli

GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello

GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello GEOMETRIA SOLIDA PIRAMIDE Prof.ssa M. Rosa Casparriello Scuola media di Cervinara 2007/2008 DEFINIZIONE La piramide è un poliedro limitato da un poligono qualsiasi e da tanti triangoli quanti sono i lati

Dettagli

Geometria e misura. Indice. esercizi. mi autovaluto 26. mi autovaluto 38. Il calcolo delle aree 3. Il teorema di Pitagora 27

Geometria e misura. Indice. esercizi. mi autovaluto 26. mi autovaluto 38. Il calcolo delle aree 3. Il teorema di Pitagora 27 Indice Geometria e misura Per orientarti 2 unità di apprendimento 1 Il calcolo delle aree 3 Equivalenza di figure piane 4 Figure piane prevalenti e subvalenti, p. 9 alcoliamo le aree 10 rea del rettangolo,

Dettagli