Funzioni elementari: logaritmi 1 / 11

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Funzioni elementari: logaritmi 1 / 11"

Transcript

1 Funzioni elementari: logaritmi 1 / 11

2 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log a x con a > 0 e a 1. 2 / 11

3 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log a x con a > 0 e a 1. In particolare si ha che y = log a x a y = x 2 / 11

4 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log a x con a > 0 e a 1. In particolare si ha che y = log a x a y = x per cui la funzione logaritmo é la funzione inversa dell esponenziale. 2 / 11

5 Logaritmi 3 / 11 Valgono pertanto le seguenti relazioni fondamentali: log a a x = x, x R

6 Logaritmi 3 / 11 Valgono pertanto le seguenti relazioni fondamentali: log a a x = x, x R a log ax = x, x R,x > 0

7 Grafico di funzione inversa 4 / 11 Siano A,B R e sia f : A B una funzione invertibile. Allora il grafico di f 1 e il grafico di f risultano uno il simmetrico dell altro rispetto alla bisettrice y = x.ossia: Γf 1 = {(x,f (x)) R 2 : x B} = {(f (x),f 1 (f (x))) R 2 : x A} = {(f (x),x) R 2 : x A}

8 Proprietá 5 / 11 Per a,b,x,y R +, con a,b 1 si ha

9 Proprietá 5 / 11 Per a,b,x,y R +, con a,b 1 si ha log a a = 1

10 Proprietá 5 / 11 Per a,b,x,y R +, con a,b 1 si ha log a a = 1 log a 1 = 0

11 Proprietá 5 / 11 Per a,b,x,y R +, con a,b 1 si ha log a a = 1 log a 1 = 0 log a (x) k = klog a x k R

12 Proprietá 5 / 11 Per a,b,x,y R +, con a,b 1 si ha log a a = 1 log a 1 = 0 log a (x) k = klog a x k R log a (x 1 ) + log a (x 2 ) = log a (x 1 x 2 )

13 Proprietá 5 / 11 Per a,b,x,y R +, con a,b 1 si ha log a a = 1 log a 1 = 0 log a (x) k = klog a x k R log a (x 1 ) + log a (x 2 ) = log a (x 1 x 2 ) ( ) log a (x 1 ) log a (x 2 ) = log x1 a x 2

14 Proprietá 5 / 11 Per a,b,x,y R +, con a,b 1 si ha log a a = 1 log a 1 = 0 log a (x) k = klog a x k R log a (x 1 ) + log a (x 2 ) = log a (x 1 x 2 ) ( ) log a (x 1 ) log a (x 2 ) = log x1 a x 2 log b x = log ax log a b

15 Logaritmi 6 / 11 y y a > 1 x 0 < a < 1 x

16 Numero di nepero 7 / 11 Il seguente numero irrazionale viene detto numero di Nepero e 2,71828

17 Numero di nepero 7 / 11 Il seguente numero irrazionale viene detto numero di Nepero e 2,71828 Rappresenta la base piú utilizzata per i logaritmi.

18 Numero di nepero 7 / 11 Il seguente numero irrazionale viene detto numero di Nepero e 2,71828 Rappresenta la base piú utilizzata per i logaritmi. Il logaritmo in base e viene detto logaritmo naturale, e indicato solitamente come lnx o impropriamente con logx.

19 Numero di nepero 7 / 11 Il seguente numero irrazionale viene detto numero di Nepero e 2,71828 Rappresenta la base piú utilizzata per i logaritmi. Il logaritmo in base e viene detto logaritmo naturale, e indicato solitamente come lnx o impropriamente con logx. La funzione esponenziale con base e, e x, viene semplicemente detta funzione esponenziale.

20 Esempi 8 / 11 log 2 8 = 3 perché 2 3 =8

21 Esempi 8 / 11 log 2 8 = 3 perché 2 3 =8 log 1 3 ( 19 ) = 2 perché ( 13 ) 2 = 1 9

22 Esempi 8 / 11 log 2 8 = 3 perché 2 3 =8 log 1 3 ( 19 ) = 2 perché ( 13 ) 2 = 1 9 log 1 2 x = 3 = x = ( 1 2 ) 3 = 8

23 Esempi 8 / 11 log 2 8 = 3 perché 2 3 =8 log 1 3 ( 19 ) = 2 perché ( 13 ) 2 = 1 9 log 1 2 x = 3 = x = ( 1 2 ) 3 = 8 log x 16 = 2 = x 2 = 16 = x = 4

24 Esempi 8 / 11 log 2 8 = 3 perché 2 3 =8 ( log 19 ) ( 1 = 2 perché 13 ) 2 = log 1 x = 3 = x = ( ) = 8 log x 16 = 2 = x 2 = 16 = x = 4 3 log35 = 5

25 Esercizi 9 / 11 Determinare il dominio delle seguenti funzioni: y = log(x + 2), y = log x + 1, y = log 2 (8 x 2 ) log(x 2 + 4x) + x

26 Esercizi 10 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = e x e la retta di equazione x = 2.

27 Esercizi 10 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = e x e la retta di equazione x = 2. Stabilire per quali valori di x il grafico della funzione f (x) = e x :

28 Esercizi 10 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = e x e la retta di equazione x = 2. Stabilire per quali valori di x il grafico della funzione f (x) = e x : interseca la retta di equazione y = 1; y = 0; y = 2.

29 Esercizi 10 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = e x e la retta di equazione x = 2. Stabilire per quali valori di x il grafico della funzione f (x) = e x : interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2.

30 Esercizi 10 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = e x e la retta di equazione x = 2. Stabilire per quali valori di x il grafico della funzione f (x) = e x : interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2. sta sotto la retta di equazione y = 1; y = 0; y = 3.

31 Esercizi 10 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = e x e la retta di equazione x = 2. Stabilire per quali valori di x il grafico della funzione f (x) = e x : interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2. sta sotto la retta di equazione y = 1; y = 0; y = 3. Per quali valori di x, la funzione assume valori maggiori di 5?

32 Esercizi 11 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = log 3 (x) e la retta di equazione x = 9; x = 0.

33 Esercizi 11 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = log 3 (x) e la retta di equazione x = 9; x = 0. Stabilire per quali valori di x il grafico della funzione f (x) = log 3 (x):

34 Esercizi 11 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = log 3 (x) e la retta di equazione x = 9; x = 0. Stabilire per quali valori di x il grafico della funzione f (x) = log 3 (x): interseca la retta di equazione y = 1; y = 0; y = 2.

35 Esercizi 11 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = log 3 (x) e la retta di equazione x = 9; x = 0. Stabilire per quali valori di x il grafico della funzione f (x) = log 3 (x): interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2.

36 Esercizi 11 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = log 3 (x) e la retta di equazione x = 9; x = 0. Stabilire per quali valori di x il grafico della funzione f (x) = log 3 (x): interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2. sta sotto la retta di equazione y = 1; y = 0; y = 3.

37 Esercizi 11 / 11 Determinare il punto di intersezione tra il grafico della funzione f (x) = log 3 (x) e la retta di equazione x = 9; x = 0. Stabilire per quali valori di x il grafico della funzione f (x) = log 3 (x): interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2. sta sotto la retta di equazione y = 1; y = 0; y = 3. Per quali valori di x, la funzione assume valori maggiori di 2?

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

y = è una relazione tra due variabili, che ad ogni valore della

y = è una relazione tra due variabili, che ad ogni valore della LE FUNZIONI DEFIINIIZIIONE Una funzione f () = è una relazione tra due variabili, che ad ogni valore della VARIABILE INDIPENDENTE associa AL PIU (al massimo) un valore della VARIABILE DIPENDENTE E UNA

Dettagli

FUNZIONI LOGARITMICHE

FUNZIONI LOGARITMICHE La funzione f: R R + dove f(x) = b x b>0, b 1, è invertibile. La funzione inversa si chiama logaritmo in base b log b : R + R, essendo la funzione inversa si ha log b (b x ) = x b log b x = x In particolare

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

FUNZIONI LOGARITMICHE

FUNZIONI LOGARITMICHE La funzione f: R R + dove f(x) = b x b>0, b 1, è invertibile. La funzione inversa si chiama logaritmo in base b log b : R + R, essendo la funzione inversa si ha log b (b x ) = x b log b x = x In particolare

Dettagli

1. Funzioni e grafici elementari

1. Funzioni e grafici elementari 1. Funzioni e grafici elementari Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 A.A. 2016/17 Funzioni e grafici Grafici deducibili Funzioni periodiche Funzioni simmetriche

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0 Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

COMPITI DEL PERIODO ESTIVO CLASSE 4AL. PARTE A] Esercizi delle tipologie di verifiche svolte.

COMPITI DEL PERIODO ESTIVO CLASSE 4AL. PARTE A] Esercizi delle tipologie di verifiche svolte. COMPITI DEL PERIODO ESTIVO CLASSE 4AL PARTE A] Esercizi delle tipologie di verifiche svolte. Svolgere ciascuna parte, basandosi sulle schede e sugli appunti prese a lezione. Sotto modulo.a : ] Classifica

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA

LICEO SCIENTIFICO R. NUZZI - ANDRIA Anno Scolastico 2015/16 MATEMATICA LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA Il Dipartimento di Matematica per il corrente anno scolastico (2015/2016) ha individuato la realizzazione di diciannove corsi integrativi

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

2.3. Esercizio. Disegnare il grafico delle seguenti funzioni f(x) = x x, g(x) = max(0, cos(x)), h(x) = min(0, sin(x))

2.3. Esercizio. Disegnare il grafico delle seguenti funzioni f(x) = x x, g(x) = max(0, cos(x)), h(x) = min(0, sin(x)) ANALISI Soluzione esercizi 4 ottobre 0.. Esercizio. Disegnare il grafico delle funzioni f(x) = x 4, g(x) = x 3, r(x) = min(0, x 3 ), s(x) = 3 x Esistono software che disegnano i grafici di moltissime funzioni

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

1 La funzione logaritmica

1 La funzione logaritmica Liceo Scientico Paritario Ven. A. Luzzago di Brescia - A.S. 2011/2012 Equazioni e disequazioni logaritmiche - Simone Alghisi 1 La funzione logaritmica Si è dimostrato che l'equazione esponenziale in forma

Dettagli

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia Funzioni Esponenziale e Logaritmica Prof. Simone Sbaraglia Funzione Esponenziale Vogliamo definire propriamente le funzioni esponenziali e logaritmiche che abbiamo introdotto in precedenza. Qual e` il

Dettagli

Ripasso delle matematiche elementari: esercizi proposti

Ripasso delle matematiche elementari: esercizi proposti Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

Numeri reali. Funzioni reali di variabile reale

Numeri reali. Funzioni reali di variabile reale Numeri reali. Funzioni reali di variabile reale Composizione di funzioni. Per semplicita, da ora in poi fino ad avviso contrario, useremo la seguente nozione di composizione di funzioni (che assume una

Dettagli

Funzione Esponenziale

Funzione Esponenziale Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima servizi commerciali calcolo numerico (N,

Dettagli

Introduzione. Test d ingresso

Introduzione. Test d ingresso Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...

Dettagli

EQUAZIONI ESPONENZIALI

EQUAZIONI ESPONENZIALI Equazioni esponenziali elementari EQUAZIONI ESPONENZIALI Le equazioni esponenziali del tipo (o riconducibili ad esso) a =b, dove a>0 è la base e b>0 un qualunque numero positivo, sono dette elementari.

Dettagli

La funzione esponenziale

La funzione esponenziale La funzione esponenziale Potenze con esponente reale La potenza a x è definita: x R se a > 0, x R + se a = 0, x Z se a < 0, Funzione esponenziale Si chiama funzione esponenziale ogni funzione del tipo:

Dettagli

DOMINIO di FUNZIONI. PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte.

DOMINIO di FUNZIONI. PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte. DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte. Tutorial di Barberis Paola - 2009 Definizioni: FUNZIONE e DOMINIO LA FUNZIONE

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

Introduzione alla II edizione. Introduzione. Test d ingresso

Introduzione alla II edizione. Introduzione. Test d ingresso Indice Introduzione alla II edizione Introduzione Test d ingresso v vii ix 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5

Dettagli

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

1. Funzioni reali di una variabile reale

1. Funzioni reali di una variabile reale Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Funzioni esponenziali e logaritmiche Indice

Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali...1 Funzioni logaritmiche...3 Funzioni esponenziali Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y =

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Dispensa di Matematica per la classe 4. C Anno scolastico 07-08 ESPONENZIALI E LOGARITMI Nome e Cognome: POTENZE a b si legge A ELEVATO A BI : a è la base, b è l esponente, l operazione è l elevamento

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Funzione logaritmo con. funzione inversa della funzione di

Funzione logaritmo con. funzione inversa della funzione di FUNZIONE LOGARITMO a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo con funzione inversa

Dettagli

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2 Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica DISCIPLINA: MATEMATICA Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima tecnico della grafica calcolo numerico

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Funzioni esponenziali e logaritmiche

Funzioni esponenziali e logaritmiche Funzioni esponenziali e logaritmiche Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y = exp a (x) che fa corrispondere ad ogni x R il numero reale positivo a x. Proprietà

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

Verica di Matematica su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1]

Verica di Matematica su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1] Verica di Matematica su equazioni e disequazioni esponenziali e logaritmiche [COMPITO ]. Risolvere le seguenti equazioni esponenziali: (a) 3 x = 3 x ; (b) e x 0e x + = 0; (c) x x 40 = 0.. Risolvere le

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Funzione esponenziale

Funzione esponenziale Paolo Siviglia Funzione esponenziale Consideriamo le seguenti funzioni. e Come si vede, si tratta di potenze con esponente variabile. Espressioni di questo tipo sono denominate funzioni esponenziali. La

Dettagli

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie LICEO ARTISTICO STATALE BRUNO MUNARI, CREMONA Anno scolastico 2011-2012 PROGRAMMA SVOLTO DI MATEMATICA CLASSE IV A Ripasso: le disequazioni e le loro proprietà: (pag. 2, Volume SL 1) - gli intervalli limitati

Dettagli

LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Esercitazione su: angoli, funzioni e formule goniometriche Indice 1 Goniometriche 1.1 Introduzione.............................. 1. La soluzione

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

Una funzione pari ha il grafico simmetrico rispetto all'asse x. Calcola il dominio e l'immagine della funzione rappresentata nella seguente figura:

Una funzione pari ha il grafico simmetrico rispetto all'asse x. Calcola il dominio e l'immagine della funzione rappresentata nella seguente figura: Vero o falso: [0,1] ha minimo 1 e massimo 0 (0,100 ] non ha minimo ma ha massimo 100 (0,5) è un intorno di 2 y=x 2 è invertibile y=x 2 è pari y=x 3 è pari Posto g( x)= x 2 e f (x )=x+1 allora g( f ( x))=(

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Il corso prevede 3 ore settimanali Sono previste 2 verifiche scritte nel trimestre e 3 nel pentamestre PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Testo in adozione:

Dettagli

Matematica Capitolo 1. Funzioni. Ivan Zivko

Matematica Capitolo 1. Funzioni. Ivan Zivko Matematica Capitolo 1 Funzioni Ivan Zivko Introduzione Una unzione è un qualcosa che mette in relazione un valore in entrata ( input ) con un altro in uscita ( output ). Input FUNZIONE Output Matematica

Dettagli

1 Insiemi. 1.1 Operazioni sugli insiemi. Domande Debito Formativo di MATEMATICA. Sommario

1 Insiemi. 1.1 Operazioni sugli insiemi. Domande Debito Formativo di MATEMATICA. Sommario Domande Debito Formativo di MATEMATICA Sommario Insiemi.... Operazioni sugli insiemi... Strutture numeriche, aritmetiche.... Ordinamento numeri reali, razionali, interi.... Il m.c.m. e M.C.D. tra numeri....

Dettagli

D3. Parabola - Esercizi

D3. Parabola - Esercizi D3. Parabola - Esercizi Traccia il grafico delle seguenti parabole e trova i punti d incontro con l asse e con l asse graficamente e/o algebricamente. 1) = ++ (0;)] ) = -+1 ( + 3 ;0), ( 3 ;0), (0;1)] 3)

Dettagli

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco Contesto: Geometria analitica - Attività di recupero PRIMA 0) ti senti preparato sull argomento? si no abbastanza poco La parabola DOPO 0) ti senti preparato sull argomento? si no abbastanza poco 1)In

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Introduzione Funzioni reali di variabile reale Algebra delle funzioni reali Funzioni composta e inversa Funzioni monotone i definisce funzione reale di variabile reale e s indica con f: A R una funzione

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IIIB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 DISEQUAZIONI Disequazioni razionali intere di secondo

Dettagli