2.4 Flussi di valore massimo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2.4 Flussi di valore massimo"

Transcript

1 .4 Flui di valore maimo I modelli di fluo hanno variae applicazioni in eori come elecomunicazioni informaica (muliproceori, proocolli inerne) rapori (aereo, radale, ferroviario, merci) Si raa di diribuire un cero prodoo (e.g. acqua, ga, dai, ) da uno o più puni di produzione ad uno o più puni di uilizzo. E. Amaldi Fondameni di R.O. Poliecnico di Milano

2 .4. Definizioni e problema Ree di fluo: rafo orienao =(V, A) conneo con orgene V e deinazione V e con capacià k ij 0 (i, j) A 3 3 δ - ()=δ + ()=Ø capacià k ij dell arco (i, j) E. Amaldi Fondameni di R.O. Poliecnico di Milano

3 Fluo ammiibile da a : una funzione x: A che 0 x ij k ij (i, j) A ale, 0,3, 0, 0,3, x ih = x + ( i, h) δ ( h) ( h, j) δ ( h hj ) h V \{, } quanià di prodoo che enra = quanià di prodoo che ece (equazioni di conervazione) Valore φ del fluo x = x δ + j ()={ (, j) : (, j) A } + (, j) δ ( ) il fluo x precedene è di valore φ= E. Amaldi Fondameni di R.O. Poliecnico di Milano 3

4 Dai una ree di fluo = (V, A) con capacià ugli archi, due nodi, V, e un fluo ammiibile x un arco (i, j) A è auro e x ij = k ij carico x ij = 0 E. Amaldi Fondameni di R.O. Poliecnico di Milano 4

5 Problema Sia una ree di fluo = (V, A) con capacià inere ugli archi e, V, deerminare un fluo ammiibile di valore maimo. NB : Se più orgeni/deinazioni con unico ipo di prodoo: * * capacià = + E. Amaldi Fondameni di R.O. Poliecnico di Milano 5

6 Modello di programmazione maemaica: lineare max φ.v. x hj x ih + ( h, j) δ ( h) ( i, h) δ ( h) = φ e h = -φ e h = 0 alrimeni quanià nea che ece da 0 x ij k ij (i,j) A x ij, φ (φ indica il valore del fluo ammiibile x) E. Amaldi Fondameni di R.O. Poliecnico di Milano 6

7 .4. Flui ammiibili e agli Taglio della ree aglio δ(s) di con S V e V \S in una ree con n verici n- agli che eparano da! k( S) Capacià del aglio indoo da S: + S 3 3 capacià k(s) = 7 ( i, j) δ E. Amaldi Fondameni di R.O. Poliecnico di Milano 7 = k ij ( S )

8 Dao un fluo ammiibile x e un aglio δ(s) con S e S ϕ( S) = ( i, j) δ + x ij x ( S ) ( i, j) δ ij ( S ) èil valore del fluo ammiibile x aravero il aglio δ(s). φ({}) = valore del fluo Fao Dao x ammiibile, per ogni aglio δ(s) che epara da i ha φ(s)= φ({}). S conervazione del prodoo v V\{, } E. Amaldi Fondameni di R.O. Poliecnico di Milano 8

9 r i e à Proprieà Per ogni fluo ammiibile x e ogni aglio δ(s), S V, che epara da, i ha φ(s) k(s) valore del fluo capacià del aglio Dim. Vio che: φ(s) = k ij x ij xij + + ij ( i, j) δ ( S ) ( i, j) δ ( S ) ( i, j) δ ( S ) 0 k = k(s) def. fluo aravero il aglio δ(s) E. Amaldi Fondameni di R.O. Poliecnico di Milano 9

10 Coneguenza: Se φ(s) = k(s) per un S V con S e S, allora x è di valore maimo e la capacià del aglio δ(s) è minima. La proprieà eprime una relazione di dualià debole fra i due problemi: Dai = (V, A) con capacià inere ugli archi e due nodi, V, deerminare un fluo ammiibile di valore maimo. Dai = (V, A) con capacià inere ugli archi e due nodi, V, deerminare un aglio (che epara da ) di capacià minima. Sudieremo queo ipo di relazione nell ambio generale della programmazione lineare. E. Amaldi Fondameni di R.O. Poliecnico di Milano 0

11 .4.3 Algorimo di Ford-Fulkeron Idea: parire da x ammiibile e cercare di aumenare il valore uando ad ogni pao un cammino (non orienao) da a lungo il quale i può inviare una quanià aggiuniva di prodoo., 0,3, 0, 0,3,,3,,3 φ 0 = φ({}) = φ = E. Amaldi Fondameni di R.O. Poliecnico di Milano

12 e (i, j) non è auro (x ij < k ij ) i può aumenare x ij e (i, j) non è carico (x ij > 0) i può diminuire x ij ripeando 0 x ij k ij arco in avani,,3 0, arco all indiero i può inviare δ = unià di prodoo in più da a Un cammino P da a è aumenane ripeo ad un fluo ammiibile x e x ij <k ij arco in avani e x ij >0 arco all indiero. E. Amaldi Fondameni di R.O. Poliecnico di Milano

13 Sia un fluo ammiibile x per = (V, A) Coruire la ree incremenale = (V, A ) aociaa a x e (i, j) A non auro, (i, j) A con k ij = k ij x ij > 0 fluo ammiibile correne di valore 3,4, capacià,,3, 3 E. Amaldi Fondameni di R.O. Poliecnico di Milano 3 capacià reidua e (i, j) A non carico, (j, i) A con k ji = x ij > 0 capacià reidua

14 , +δ,3 +δ,4 - δ,, nuovo fluo ammiibile di valore φ = 3 + δ (δ = ) iene cono di ue le poibili variazioni di fluo ripeo al fluo ammiibile x correne Se un cammino da a in, i può aumenare il fluo cammino aumenane E. Amaldi Fondameni di R.O. Poliecnico di Milano 4

15 Eempio Fluo ammiibile iniziale x = 0, φ 0 = cammino aumenane lungo il quale i poono inviare δ = unià aggiunive di prodoo 4 7 NB: per x = 0, = 4 δ = 7 E. Amaldi Fondameni di R.O. Poliecnico di Milano 5 4

16 5 6 3,,, 4 δ = 7 fluo ammiibile x di valore φ = x ij = 0 per ui gli archi (i,j) per cui x ij non è indicao 4 cammino aumenane con δ = ripeo al fluo ammiibile correne x δ = E. Amaldi Fondameni di R.O. Poliecnico di Milano 6

17 , 5 6,, 3, 4,,4 cammino aumenane con δ = ripeo al fluo ammiibile correne x fluo ammiibile x di valore φ = δ = E. Amaldi Fondameni di R.O. Poliecnico di Milano 7

18 ,,, 5 6, 3,, 3,4 7 fluo ammiibile x di valore φ = 5, 4, S * = {, 4} inieme di ui i nodi raggiungibili dal nodo origine (di indice ) δ + ( S * ) = 7 non è raggiungibile da (olo 4 lo è) E. Amaldi Fondameni di R.O. Poliecnico di Milano 8

19 ,,, 5 6, 3,, 3,4 7 fluo ammiibile x di valore φ = 5,, 4 Taglio δ (S * ) di capacià = 5 e fluo ammiibile x di valore φ = 5! NB: Tui gli archi uceni di δ (S * ) ono auri e ui quelli enrani ono carichi! S * = {, 4} δ + ( S * ) = 7 non è raggiungibile da (olo 4 lo è) E. Amaldi Fondameni di R.O. Poliecnico di Milano

20 Un fluo ammiibile x è di valore maimo non è raggiungibile da nella ree incremenale aociaa a x ( ) e cammino aumenane x non è oimo ( ) e non è raggiungibile, aglio di.c. + δ ( S * ) = Per definizione di, i ha: δ + ( S * ) ogni (i, j) è auro δ ( S * ) ogni (i, j) è carico S * V E. Amaldi Fondameni di R.O. Poliecnico di Milano 0

21 Dunque φ(s * ) = x ij xij = + * * + ( i, j) δ ( S k ij = ) ( i, j) δ ( S 0 = ) ( i, j) δ k ij * ( S ) = k(s * ) ui auri ui carichi S * Dualià debole φ(s) k(s) x ammiibile S V, S, S x è di valore maimo e aglio indoo da S * è di capacià minima E. Amaldi Fondameni di R.O. Poliecnico di Milano

22 L algorimo implica: Teorema del fluo maimo/aglio minimo: Valore di un fluo ammiible di valore maimo = capacià di un aglio di capacià minima dualià fore Se ue le capacià ono inere (k ij + ), il fluo di valore maimo x ha ui gli x ij e il valore oimo φ* ineri NB: algorimo di Ford-Fulkeron non è di ipo greedy (x ij poono anche eere diminuii) E. Amaldi Fondameni di R.O. Poliecnico di Milano

23 Algorimo di Ford-Fulkeron = (V, A), capacià k inpu ij > 0 (i, j) A, orgene V, deinazione V oupu Fluo amm. x ij (i, j) A, di valore maimo φ* da a BEIN x:=0; φ:=0; oimo:=fale; /* inizializzazione */ REPEAT coruire ree incremenale =(V,A) aociaa ad x; individuare, e, un cammino P da a in ; IF P non eie THEN oimo := rue; ELSE δ:= min {k ij : (i,j) P}; φ:= φ + δ; FOR EACH (i,j) P DO IF (i,j) è in avani THEN x ij := x ij + δ; ELSE x ji := x ji δ; END-IF END-IF UNTIL oimo = rue; END E. Amaldi Fondameni di R.O. Poliecnico di Milano 3

24 Compleià Poiché δ > 0, il valore φ aumena ad ogni ciclo. Se k ij ineri, x e k ij ineri e δ al maimo φ * aumeni # archi Vio che φ * k({}) mk max capacià del aglio con k max = {k ij : (i, j) A} e ogni ciclo richiede O(m), compleià oale O(m k max ). NB: non è polinomiale nella dimenione che è O(m log (k max ))! E. Amaldi Fondameni di R.O. Poliecnico di Milano 4

25 In ceri cai algorimo eremamene inefficiene: M M M M +δ +δ +δ δ= +δ -δ +δ M molo grande Nel cao peggiore: M ierazioni! Ma eiono modifiche che lo rendono polinomiale cercare cammini aumenani con # minimo di archi O(n 3 ) (Edmond e Karp) Anche per capacià non inere! E. Amaldi Fondameni di R.O. Poliecnico di Milano 5

26 Algorimi polinomiali Baai u cammini aumenani, u preflui (rilaando i vincoli di conervazione nei nodi), ul principio di gradazione delle capacià,... Anche per il problema più generale: Daa una ree di fluo con coi aociai agli archi, deerminare un fluo ammiibile di coo oale minimo. Algorimo di eliminazione dei cicli di coo negaivo... E. Amaldi Fondameni di R.O. Poliecnico di Milano 6

27 .4.4 Applicazioni indiree ) Aegnazione di lavori Sia m ingegneri, n lavori e per ogni ingegnere la lia dei lavori che porebbe volgere. Aegnare i lavori agli ingegneri in modo ale che: ogni ingegnere volga al maimo un lavoro ogni lavoro ia aegnao a non più di un ingegnere e il numero di ingegneri occupai (lavori eeguii) ia maimo. Se le compeenze degli ingegneri vengono rappreenae mediane un grafo bipario, coa i cerca in un ale grafo? Come i può ricondurre queo problema a un problema di deerminazione di un fluo ammiibile di valore maimo? E. Amaldi Fondameni di R.O. Poliecnico di Milano 7

28 Modello in ermini di grafi: rafo bipario delle qualifiche ingegneri lavori accoppiameno ( maching ) = inieme di lai non adiaceni Problema: Daoungrafo bipario, deerminare un accoppiameno con un numero maimo di lai. E. Amaldi Fondameni di R.O. Poliecnico di Milano 8

29 Si può ricondurre ad un problema di fluo di valore maimo: capacià ingegneri lavori capacià k inere corripondenza ra flui ammiibili (da a ) di valore φ e accoppiameni con φ lai capacià inere fluo oimo con x ij inere e valore maimo φ * inero E. Amaldi Fondameni di R.O. Poliecnico di Milano 9

30 Se ad ogni lao è aegnao un peo (qualià del lavoro volo), un accoppiameno di peo oale maimo può eere deerminao in empo polinomiale. con flui di valore maimo Sono ai propoi algorimi polinomiali anche per deerminare accoppiameni perfei (che occano ui i nodi) di coo minimo. algorimo di Edmond E. Amaldi Fondameni di R.O. Poliecnico di Milano 30

31 ) Calcolo diribuio Aegnare n moduli di un programma a proceori in modo ale da minimizzare il coo oale, ovvero il coo di calcolo + il coo di comunicazione. Si uppone di conocere: α i = coo eecuzione modulo i u proceore i n β i = coo eecuzione modulo i u proceore i n c ij = coo di comunicazione e moduli i e j ono aegnai a procei diveri i, j n Ricondurre queo problema a quello di deerminare un aglio di capacià minima in un grafo orienao. E. Amaldi Fondameni di R.O. Poliecnico di Milano 3

32 moduli c ij proceore proceore α i β i 4 aglio che epara da aegnameno dei moduli ai due proceori Un aglio di coo minimo corriponde a un aegnameno dei moduli ai due proceori di coo oale minimo E. Amaldi Fondameni di R.O. Poliecnico di Milano 3

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Applicazioni del Maimo fluo Progeazione di Algorimi a.a. 0-6 Maricole congrue a Docene: Annalia De Boni Maching bipario Problema del max maching. Inpu: grafo non direzionao G = (V, E). M E e` un maching

Dettagli

Ulteriori Esercizi su Grafi. Ugo Vaccaro

Ulteriori Esercizi su Grafi. Ugo Vaccaro Progeazione di Algorimi Anno Accademico 0 0 Uleriori Eercizi u Grafi. Ugo Vaccaro N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu e da un analii

Dettagli

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Maimo fluo Progeazione di Algorimi a.a. 2016-17 Maricole congrue a 1 Docene: Annalia De Boni 1 Maimizzare il # di PC prodoi 2 Decrizione del problema Una fabbrica (orgene) di PC deve abilire il numero

Dettagli

Problema del flusso massimo

Problema del flusso massimo Rei di fluo Problema del fluo maimo Moivazione iniziale: problemi di raffico u rei di raporo Trapori ferroviari, auoradali, Traporo di liquidi in rei idriche Traporo di pacchei di dai in una ree di comunicazione.

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Problema: Supponiamo che

Dettagli

Progetto e Ottimizzazione di Reti A. A

Progetto e Ottimizzazione di Reti A. A Progeo e Oimizzazione di Rei A. A. 006-007 Docene Fabrizio Roi roi@di.univaq.i Orario Maredi 15-17 aula.5 Mercoledi 11.30-13.30 aula.5 Giovedi 11.30-13.30 aula.5 Orario di ricevimeno Mercoledi 17-19 Progeo

Dettagli

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano.

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. (Massimo Flusso) Giovanni Fasano. Facolà di Ingegneria dell Informazione, Informaica e Saiica Appuni dalle lezioni di Ricerca Operaiva (Maimo Fluo) ede di Laina Giovanni Faano faano@unive.i hp://venu.unive.i/ faano anno accademico 2013-2014

Dettagli

Massimo Flusso. Ulteriori vincoli. Descrizione del problema. Rete di flusso. Flusso in G

Massimo Flusso. Ulteriori vincoli. Descrizione del problema. Rete di flusso. Flusso in G Maimizzare il # di PC prodoi Maimo Flo rre dai 2 Decrizione del problema Una fabbrica (orgene) di PC dee abilire il nmero di PC da aemblare giornalmene. Ti i PC prodoi erranno endi in n negozio (deinazione).

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Problemi di flusso. Reti. Problemi di flusso. Problemi di flusso. Problemi di percorso. minσ (i,j) E c ij x ij. i N (i,j) E.

Problemi di flusso. Reti. Problemi di flusso. Problemi di flusso. Problemi di percorso. minσ (i,j) E c ij x ij. i N (i,j) E. Problemi di fluo Rei Problemi di percoro Fluo a coo minimo MinoFlow(G(V,E),b,l,u,c,min) Ianza: una ree G(V,E) per cui è dao un valore inero b i (fluo prodoo dal nodo) per ogni nodo v i un coo c ij per

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni Tema 3 Iniemi, elemeni di logica, calcolo combinaorio, relazioni e funzioni 3.1 Queii di livello bae 3.1.1 Si coniderino i egueni enunciai: n è un muliplo di 3 o è un numero pari, e inolre è minore di

Dettagli

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1

Dato un cammino P indichiamo con c(p ) il costo dell insieme di archi A(P ) del cammino, ovvero c(p )=c(a(p )) = uv P c uv. c 1 Capiolo 7 Cammini minimi 7. Definizioni fondamenali Sia dao un grafo non orienao G(N,A) conneo, con coi aociai agli archi c uv R per ogni uv A. Siano anche dai due nodi peciali, N. Faremo la eguene: Aunzione

Dettagli

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1

Lezione 5. Calcolo dell antitrasformata di Laplace. F. Previdi - Automatica - Lez. 5 1 Lezione 5. Calcolo dell aniraormaa di Laplace. Previdi - Auomaica - Lez. 5 Schema della lezione. Inroduzione. Aniraormazione di Laplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale 5. Teorema

Dettagli

Cammini Minimi. Un problema molto comune. Formalizziamo. Peso di un cammino. Esempio. Ritorniamo all esempio iniziale. Input:

Cammini Minimi. Un problema molto comune. Formalizziamo. Peso di un cammino. Esempio. Ritorniamo all esempio iniziale. Input: Cammini Minimi Un problema molto comune i uole andare da alerno a Milano in auto percorrendo il minor numero di chilometri oluzione inefficiente: i coniderano TUTTI i percori poibili e e ne calcola la

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli

PREMESSA In questa lezione verranno esposte le regole per l analisi dei sistemi continui con il metodo della Trasformata di Laplace.

PREMESSA In questa lezione verranno esposte le regole per l analisi dei sistemi continui con il metodo della Trasformata di Laplace. ITIS G CARDANO PREMESSA In quea lezione verranno epoe le regole per l analii dei iemi coninui con il meodo della Traormaa di Laplace ANALISI DEI SISTEMI CONTINUI Per analizzare un iema di conrollo è neceario

Dettagli

Utilizzo della programmazione lineare

Utilizzo della programmazione lineare Universià degli Sudi di Triese a.a. 2009-2010 Gesione della produzione Uilizzo della programmazione lineare La programmazione lineare può essere applicaa per la deerminazione di un piano oimo. Si ipoizza

Dettagli

Metodo della Trasformata di Laplace (mtl)

Metodo della Trasformata di Laplace (mtl) Lezione 7 Meodo della raformaa di Laplace Lezione n.7 Meodo della raformaa di Laplace (ml). Inroduzione. Richiami ulla raformaa di Laplace. Proprieà della raformaa. Regola di derivazione.3 abella di raformae

Dettagli

CAPITOLO 9 - RETI DINAMICHE NEL DOMINIO DELLA FREQUENZA

CAPITOLO 9 - RETI DINAMICHE NEL DOMINIO DELLA FREQUENZA G. SUPT FUGA MT D TOA D T ovembre CAPTOO 9 - T DAMCH DOMO DA FQUZA pag. / CAPTOO 9 - T DAMCH DOMO DA FQUZA TODUZO l meodo della raformaa di aplace, chiamao anche analii nel dominio della frequenza, è una

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

INTRODUZIONE ALLE LEGGI FINANZIARIE

INTRODUZIONE ALLE LEGGI FINANZIARIE Inroduzione alle leggi finanziarie Operazione finanziaria u due dae: S - S + I INTRODUZIONE ALLE LEGGI FINANZIARIE 0 1 anni Legge di equivalenza ineremporale inrodoa dal conrao finanziario: 0 S 1 S + I

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata)

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata) REGISTRAZIONE DEL MOTO Lo copo è riempire una abella / (iane di empo/poizione occupaa) (ec) (meri) Ciò i può fare in due modi: 1) Prefiare le poizioni e miurare a quale empo vengano raggiune. Si compila

Dettagli

Appendici analitico-formali

Appendici analitico-formali Appendici analiico-formali (con la collaborazione di Marco aarella * ) Appendice 1. l prezzo dei beni capiali e il doppio richio legao all inveimeno er Minky il livello reale dell inveimeno effeuao dalla

Dettagli

Esame di Ricerca Operativa del 16/06/2015

Esame di Ricerca Operativa del 16/06/2015 Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

Analisi delle serie storiche parte IV Metodi di regressione

Analisi delle serie storiche parte IV Metodi di regressione Analisi delle serie soriche pare IV Meodi di regressione a.a. 16/17 Saisica Economica -Laurea in Relazioni Economiche Inernazionali 1 Meodo della regressione La componene di fondo, Trend o Ciclo-Trend,

Dettagli

Ist. di economia, Corso di Laurea in Ing. Gestionale, I canale (A-L), A.A Prof. R. Sestini

Ist. di economia, Corso di Laurea in Ing. Gestionale, I canale (A-L), A.A Prof. R. Sestini Is. di economia, Corso di Laurea in Ing. Gesionale, I canale (A-L), A.A. 2008-2009. Prof. R. Sesini SCHEMA DELLE LEZIONI DELLA TREDICESIMA SETTIMANA ELEMENTI di CONTABILITA ECONOMICA NAZIONALE e di MACROECONOMIA

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

M286- ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE. Indirizzo: ELETTRONICA E TELECOMUNICAZIONI

M286- ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE. Indirizzo: ELETTRONICA E TELECOMUNICAZIONI M286- ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: TELECOMUNICAZIONI E PROGETTAZIONE TELECOMUNICAZIONI Sessione d esame: 2010 Soluzione della prova

Dettagli

Aniello Murano Altri problemi NP- Completi

Aniello Murano Altri problemi NP- Completi Aniello Murano Alri problemi NP- Complei 6 Leione n Parole chiave: Np-complee Corso di Laurea: Informaica Codice: Email Docene: murano@ nainfni AA 2008-2009 Perché vedere alri problemi Np- complee? Per

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI Fisica Generale Modulo di Fisica II A.A. 6-7 Ingegneria Meccanica Edile - Informaica Eserciazione IUITI ELETTII b. Nel circuio della figura si ha 5, e 3 3 e nella resisenza passa una correne di A.Il volaggio

Dettagli

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA CI OCCUPEREMO DI 1) Legge di Okun Relazione ra la variazione della disoccupazione e la deviazione del asso di crescia della produzione dal suo asso naurale

Dettagli

Dispositivi e Sistemi Meccanici. 11 Esercizi. Politecnico di Torino CeTeM. Esercizio 11

Dispositivi e Sistemi Meccanici. 11 Esercizi. Politecnico di Torino CeTeM. Esercizio 11 Poliecnico i Torino ete Dipoiivi e Siemi eccanici Eercizi Eercizio Un moore o è collegao a un argano A i ollevameno econo lo chema in figura. Sull albero moore è ineria una frizione conica Fr, che ramee

Dettagli

Politica Economica Europea

Politica Economica Europea Poliica Economica Europea 2 Tao di cambio Obieivo: confronare il valore di uno eo bene denominao in due value divere Bene X P$ Bene X P Eprimere il valore di un bene denominao in una valua, in un alra

Dettagli

Esame di Ricerca Operativa del 11/07/2016

Esame di Ricerca Operativa del 11/07/2016 Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC

SisElnB3 12/19/ Dec SisElnB DDC. Antenna. Transmit Signal Generation. 19-Dec SisElnB DDC SiElnB3 2/9/ Ingegneria dell Informazione Obieivi del gruppo di lezioni B Modulo SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B.3 - Tipologie di amplificaori» Comporameno dinamico di amplificaori»

Dettagli

Esame di Ricerca Operativa del 03/09/2015

Esame di Ricerca Operativa del 03/09/2015 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una raffineria di petrolio miscela tipi di greggio per ottenere tipi di carburante: senza piombo, diesel e blu diesel.

Dettagli

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Schedulazione intervalli. Schedulazione intervalli: Algoritmi Greedy. Schedulazione intervalli.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Schedulazione intervalli. Schedulazione intervalli: Algoritmi Greedy. Schedulazione intervalli. Chaper.1 Inerval Scheduling Greedy Algorihm 1 Schedulazione inervalli Schedulazione inervalli: Algorimi Greedy Schedulazione inervalli.! Job j inizia a j e finice a f j.! Due job ono compaibili e non hanno

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Lezione C1 - DDC

Lezione C1 - DDC Eleronica per l'informaica 3/9/25 Cosa c è nell unià C Unià C: Conversione A/D e D/A Eleronica per l informaica C. Caena di conversione A/D C.2 Converiori D/A C.3 Converiori A/D C.4 Condizionameno del

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

Rappresentazione del sistema. Classificazione dei sistemi di controllo

Rappresentazione del sistema. Classificazione dei sistemi di controllo Rappreenazione del iema ẋ= f x,u, (equazione differenziale) y =g x,u, (equazione algebrica) Nomi delle variabili u: ingreo x: ao y: ucia Claificazione dei iemi di conrollo Ordine Il numero n delle variabili

Dettagli

Basi di Elettronica (1 parte)

Basi di Elettronica (1 parte) Bai di Eleronica ( pare) A TRASFORMATA DI APACE 2 Traformaa invera di aplace 2 Tabella: raformae di aplace di funzioni elemenari 2 Alcune proprieà noevoli della raformaa di aplace 3 Idenià di Pareval 5

Dettagli

Modello di una macchina in corrente continua

Modello di una macchina in corrente continua Modello di una macchina in correne coninua Consideriamo un moore in correne coninua con ecciazione indipendene, in generale per esso poremo scrivere le segueni relazioni: e( ) = K Φ ω( ) v dia ( ) ( )

Dettagli

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE - Campo roane - Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià cosane che ruoa aorno ad un asse con

Dettagli

Elementi di programmazione lineare. Ottimizzazione di funzioni soggette a vincoli

Elementi di programmazione lineare. Ottimizzazione di funzioni soggette a vincoli Elementi di programmazione lineare Ottimizzazione di funzioni oggette a vincoli Formulazione del problema min Z ma oggetta b c a T d Z:funzione obiettivo calare d: coto fio calare : variabile deciionale

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

età (anni) manutenzione (keuro) ricavato (keuro)

età (anni) manutenzione (keuro) ricavato (keuro) .6 Cammini minimi. Determinare i cammini minimi dal nodo 0 a tutti gli altri nodi del seguente grafo, mediante l algoritmo di Dijkstra e, se applicabile, anche mediante quello di Programmazione Dinamica.

Dettagli

Meccanica. Cinematica

Meccanica. Cinematica Meccanica Sisemi meccanici: Il più semplice è il PUNTO MATERIALE: oggeo prio di dimensioni (doao di massa) Asrazione uile: ü per definire in modo semplice alcune grandezze fondamenali ü quando ineressa

Dettagli

Alberi e arborescenze di costo minimo

Alberi e arborescenze di costo minimo Alberi e arborescenze di costo minimo Complementi di Ricerca Operativa Giovanni Righini Dipartimento di Tecnologie dell Informazione - Università degli Studi di Milano Definizioni - 1 Un grafo G = (V,

Dettagli

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

Processi di cost management - Programmazione multiperiodale

Processi di cost management - Programmazione multiperiodale Processi di cost management - Programmazione multiperiodale Queste slide (scrte da Carlo Mannino) riguardano il problema di gestione delle attivà di un progetto allorché i costi di esecuzione sono legati

Dettagli

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi :

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi : Per almeno una delle soluzioni ottime { P i, i r } del problema generalizzato, l unione dei cammini P i forma un albero di copertura per G radicato in r e orientato, ossia un albero la cui radice è r i

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

Sintesi di circuiti sequenziali

Sintesi di circuiti sequenziali Sintei di circuiti equenziali Salvatore Orlando Arch. Elab. S. Orlando Circuito equenziale incrono I Circuiti combinatori I n O O m R e g Per determinare il comportamento del circuito equenziale di opra,

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

11.4 Chiusura transitiva

11.4 Chiusura transitiva 6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)

Dettagli

Gestione e progetto di una rete di teleriscaldamento: applicazione di modelli di flusso con temperatura

Gestione e progetto di una rete di teleriscaldamento: applicazione di modelli di flusso con temperatura Gesione e progeo di una ree di eleriscaldameno: applicazione di modelli di flusso con emperaura Federico Malucelli hp://www.ele.polimi.i/people/malucell con la collaborazione di R. Aringhieri, G. Gallo,

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

Cammini minimi con sorgente singola

Cammini minimi con sorgente singola Capitolo 11 Cammini minimi con sorgente singola efinizione 11.1. Sia G = (V,, w) un grafo orientato e pesato; dato il cammino p = v 0, v 1,..., v k in G, il valore w(p) = k i=1 w(v i 1, v i ) rappresenta

Dettagli

Flusso a Costo Minimo

Flusso a Costo Minimo Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria Dal

Dettagli

AMPL Problemi su Reti

AMPL Problemi su Reti Dipartimento di Matematica Università di Padova Corso di Laurea Informatica Outline Problemi su Reti Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai

Dettagli

Divisori e combinatori

Divisori e combinatori Diviori e combinatori Luca Vincetti a.a. - Diviori e combinatori La combinazione lineare di egnali differenti o, all invero, la uddiviione di un unico egnale in componenti divere fa parte della normale

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

LEZIONE 2.2 LE VARIABILI MACROECONOMICHE

LEZIONE 2.2 LE VARIABILI MACROECONOMICHE LEZIONE 2.22 LE VARIABILI MACROECONOMICHE 1 Le variabili macroeconomiche Livello generale dei prezzi, P Tasso d inflazione, f Gap di produzione (Oupu gap), δ Tasso di crescia del PIL reale, γ Tasso di

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00

Dettagli

SCELTA DI UN INNESTO A FRIZIONE

SCELTA DI UN INNESTO A FRIZIONE SELTA DI UN INNESTO A FRIZIONE Si conideri l'impiano in Fig. 1, coiuio da un moore elerico aincrono riae, un inneo a rizione ad azionameno eleromagneico, un riduore ad ingranaggi ed una macchina operarice.

Dettagli

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

Struttura di un alimentatore da parete

Struttura di un alimentatore da parete Alimenaori 1 Sruura di un alimenaore da paree Alimenaori con regolaore lineare ensione sul condensaore di filro Poenza aiva e apparene Disorsione Alimenaori con regolaore swiching Condensaore di filro

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase 3. Effeo della variazioni di parameri del PLL - A Un PLL uilizza come demodulaore di fase un moliplicaore analogico, e il livello dei segnali sinusoidale di ingresso (Vi) e locale (Vo) è ale da manenere

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

Lezione 4 Material Requirement Planning

Lezione 4 Material Requirement Planning Lezione 4 Maerial Requiremen Planning Obieivo: noi gli alberi di prodoo per ciascun ipo; daa una sringa di loi di prodoi finii (fabbisogni dei clieni), ciascun loo da complearsi enro un dao inervallo (se.)

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1 Sem dnamc LTI del ordne: raeore nel pano d ao Fondamen d Auomaca Prof. Slva Srada x 8 6 4 8 6 4 x x.5.5 5 5 Movmeno dello ao x 3 4 5 6 7 8 9 Movmeno dello ao x 3 4 5 6 7 8 9..4.6.8..4.6.8 x = Sema dnamco

Dettagli

Metodo della trasformata di Laplace

Metodo della trasformata di Laplace Meodo della raformaa di aplace Il meodo imbolico conene di affronare l analii di rei coneneni componeni reaivi (condenaori e induori) in regime inuoidale, aggirando la compleià maemaica inrodoa dalle relazioni

Dettagli

Sistemi aperti. Stato di flusso di massa

Sistemi aperti. Stato di flusso di massa Sitemi aperti ) Concetti di bae ) Primo principio della termodinamica 3) Secondo principio della termodinamica 4) Stati di equilibrio tabile 5) Diagramma energia-entropia 6) Lavoro, non-lavoro e calore

Dettagli

LA PUNTA ELICOIDALE. ϕ angolo dei taglienti; è l angolo formato dai due taglienti principali. γ angolo di spoglia superiore. β angolo di taglio

LA PUNTA ELICOIDALE. ϕ angolo dei taglienti; è l angolo formato dai due taglienti principali. γ angolo di spoglia superiore. β angolo di taglio 1 LA PUNTA ELICOIDALE È l uenile più emplice per l eecuzione di fori cilindrici, generalmene dal pieno. La puna elicoidale è coiuia: da un codolo cilindrico o conico per il cenraggio ul mandrino della

Dettagli

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO Sergio Rech Diparimeno di Ingegneria Indusriale Universià di Padova Mercai energeici e meodi quaniaivi: un pone ra Universià

Dettagli

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW Nella prima pare del capiolo esponiamo il modello di crescia di Solow 1. Successivamene sudieremo le proprieà di convergenza del reddio pro capie implicie nell

Dettagli

2. Grafi e proprietà topologiche

2. Grafi e proprietà topologiche . Grafi e proprieà opologiche Grafo. Marice di incidenza complea. Soografo. Ordine di un nodo. Percorso, maglia, veore opologico di maglia. Taglio, veore opologico di aglio. Orogonalià ra agli e maglie.

Dettagli