Stima puntuale di parametri

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Stima puntuale di parametri"

Transcript

1 Probabilità e Statistica Esercitazioni a.a. 006/007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile Stima puntuale di parametri Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 1

2 Esercizi Esercizio 1. Si consideri per ϑ > 0 la funzione definita da 4 ϑ x se 0 x ϑ 4 f (x; ϑ) = ϑ (ϑ x) se ϑ < x ϑ 0 altrimenti 1. Verificare che per ogni ϑ > 0, f ( ; ϑ) rappresenta una funzione di densità di probabilità.. Sia X 1, X,, X n un campione casuale estratto dalla popolazione di densità f(, ϑ), stabilire se T = n X i è uno stimatore corretto di ϑ. Risoluzione. Disegniamo il grafico della funzione di densità di probabilità data Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p.

3 1. Risulta + f (x; ϑ)dx = 1 ϑ ϑ = 1 quindi f ( ; ϑ) rappresenta una funzione di densità di probabilità per ogni ϑ > 0. T è uno stimatore corretto o non distorto di ϑ se E [T] = ϑ. Nel nostro caso E [X] = 1 ϑ e [ ] E [T] = E X i = E [X i ] = n n = n ne [X i] = n n1 ϑ = ϑ = lo stimatore è corretto Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 3

4 Esercizio. Sia X la variabile casuale di Poisson di parametro λ, 1. calcolare lo stimatore di massima verosimiglianza di λ;. verificare la correttezza dello stimatore trovato; 3. calcolare l errore quadratico medio; 4. determinare uno stimatore con il metodo dei momenti; 5. supponendo poi di avere i seguenti dati campionati, 3,, 4, 3, 5, 4,, 3,, 3, 4,, 3, 4, 3,, 3, 4, 5, 4, 3, 3, 4 calcolare il valore stimato di λ. Risoluzione. X ha funzione di densità di probabilità f X (x; λ) = { λ x x! e λ se x N 0 altrove Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 4

5 La funzione di verosimiglianza è L (x 1,, x n, λ) = λx 1 x 1! e λ λx x! e λ... λxn x n! e λ = λx1+x+ +xn x 1!x! x n! e nλ = = 1 x 1!x! x n! λ x i e nλ con x i N, i = 1,, n. Il valore di λ : λ che massimizza L è detto stima di massima verosimiglianza e Λ(X 1, X,, X n ) è lo stimatore di massima verosimiglianza. Calcoliamo x d dλ L (x e nλ i 1 x i 1,, x n, λ) = x 1!x! x n! x i λ nλ Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 5

6 Cerchiamo gli zeri della derivata prima di L (x 1,, x n, λ) rispetto a λ x i λ x i 1 nλ x i = 0 1 λ x i λ x i nλ x i = 0 1 λ x i n = 0 = λ(x 1, x,, x n ) = x i n = x n Si verifica che λ è un punto di massimo, anche se in modo piuttosto faticoso. Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 6

7 Quindi λ(x 1, x,, x n ) = x i = x n n è la stima di massima verosimiglianza di λ e la media campionaria lo stimatore di massima verosimiglianza. Allo stesso risultato si perviene usando la log-verosimiglianza ln[l (x 1,, x n, λ)] = nλ + x i lnλ ln(x i!) Calcoliamo d dλ ln[l (x 1,, x n, λ)] = n + Poniamo uguale a zero la derivata prima x i λ Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 7

8 x i n + = 0 = λ λ(x 1, x,, x n ) = = x n n Lo stesso risultato di prima, ma si tratta di un punto di massimo? d dλ ln [L (x 1,, x n, λ)] λ = λ = x i λ x i < 0 = λ PUNTO DI MAX Per determinare se lo stimatore è non distorto calcoliamo ] E [ Λ(X 1, X,, X n ) = E [ [ ] n ] 1 X n = n E X i = 1 ne [X] n Essendo X v.c. di Poisson di parametro λ, si ha E [X] = λ, quindi ] E [ Λ(X 1, X,, X n ) = λ = Λ stimatore non distorto Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 8

9 Chiamiamo errore quadratico medio di uno stimatore T = t (X 1,, X ), la funzione di ϑ data da: MSE [T](ϑ) := E [(T τ(ϑ)) ] con τ(ϑ) funzione del parametro da stimare. Ma MSE[T](ϑ) := var [T] + [D [T](ϑ)], D [T](ϑ) := τ(ϑ) E [T] ] ] Nel nostro caso E [ Λ = λ = D [ Λ = 0, quindi ] MSE [ Λ ] = var[ Λ = var [ ] X n = }{{} X i ind. 1 n var [X i ] = 1 n nλ = λ n Determiniamo, ora, uno stimatore con il metodo dei momenti. Ricordiamo che con M r = 1 Xi r, µ r = E [X r ] n Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 9

10 indicano rispettivamente il momento campionario assoluto di ordine r e il momento di ordine r della variabile casuale X. Il metodo dei momenti consiste nel risolvere il sistema nelle incognite ϑ 1,, ϑ k di k, numero dei parametri incogniti, equazioni µ 1 = M 1 µ = M µ k = M k Nel nostro caso abbiamo solo un parametro da stimare, λ, quindi calcoliamo Posto µ 1 = M 1, risulta Λ = 1 n µ 1 = E [X] = λ, e M 1 = 1 n X i. X i Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 10

11 Esercizio 3. Sia X 1, X...X n un campione casuale di ampiezza n estratto da una popolazione con distribuzione uniforme nell intervallo [a b, a + b]. Determinare gli stimatori di a e b con il metodo dei momenti. Risoluzione. L intervallo ha ampiezza a + b (a b) = b, ne segue che la funzione di densità di probabilità della v.c. X è f (x; a, b) = { 1 b se a b x a + b 0 altrove Per determinare gli stimatori di a, b con il metodo dei momenti, bisogna risolvere il sistema { µ 1 = M 1 µ 1 = X n µ = M = µ = 1 n Xi Calcoliamo µ 1 = a+b+a b = a e Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 11

12 Sostituendo µ = var[x] + (µ 1) = [(a + b) (a b)] 1 a = X n b 3 + a = 1 n Xi + a = b 3 + a ed eseguendo alcuni passaggi algebrici, ne segue che gli stimatori cercati sono â = 1 ( X i e n b = 3 Xi n 3 n ) n X i Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 1

13 Esercizio 4. Sia data la variabile casuale unidimensionale X con funzione di densità di probabilità data da: con ϑ > 0. f (x; ϑ) = { 1 18ϑ e x 4 3ϑ se x 0 0 altrimenti 1. Trovare uno stimatore di ϑ > 0 con il metodo di massima verosimiglianza.. Calcolare la densità di probabilità della variabile casuale Y = X. Risoluzione. Costruiamo la funzione di massima verosimiglianza L (x 1,, x n, ϑ) = 1 x1 18ϑ 4 e 3ϑ con x i 0, i = 1,...,n. = 1 x 18ϑ 4 e 3ϑ... 1 (18ϑ 4 ) n e ( x 1 + x xn) 3ϑ 1 x n 18ϑ 4 e 3ϑ = Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 13

14 Cerchiamo ϑ che massimizza lnl tra le soluzioni di d dϑ lnl = n ln18ϑ 4 + lne ( x 1 + x xn) 3ϑ x1 + x x n = n ln18 4n lnϑ 3ϑ si ha d dϑ lnl = 4n ϑ + 3ϑ 3 ( x 1 + x x n ) = 0 Essendo ϑ > 0 risulta ϑ = x1 + x x n 6n Vediamo se si tratta di un punto di massimo, calcoliamo d lnl = +4n dϑ ϑ ϑ 4 ( x 1 + x x n ) lnl = 0. Calcoliamo Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 14

15 ne segue d dϑ lnl ϑ = ϑ = ϑ ( n ϑ 6n ϑ ) = 8n ϑ < 0 = ϑ PUNTO DI MAX Quindi xi Θ = 6n è uno stimatore di ϑ di massima verosimiglianza. Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 15

16 Determiniamo la densità di probabilità della variabile casuale Y = [ X. Si X ] ha F Y (y) = P [Y y] = P y. Se y < 0 si ha [ x y] =. Se y 0, si ha F Y (y) = P [ X y ] = y ϑ 4 e x 3ϑ dx Posto t = x 3ϑ, risulta d t = 1 6ϑ x d x = 18ϑ4 td t = d x. Quindi y 0 1 x 18ϑ 4 e 3ϑ dx = y 3ϑ 0 te t d t = 1 e y 3ϑ ( 1 + y 3ϑ ) Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 16

17 Ne segue derivando si ottiene F Y (y) { f Y (y) 1 e ( y 3ϑ 1 + y se y 0 0 se y < 0 3ϑ ) { y 9ϑ e y 4 3ϑ se y 0 0 se y < 0 Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 17

18 Esercizio 5. Si supponga che X 1, X, X 3 sia un campione casuale di ampiezza 3 estratto da una distribuzione esponenziale di media λ. Si considerino i seguenti stimatori del parametro λ: Λ 1 = X 1, Λ = X 1 + X 1. Indicare quali sono gli stimatori non distorti di λ., Λ 3 = X 1 + X 3. Individuare tra gli stimatori non distorti quello con MSE minimo., Λ 4 = X 3 Risoluzione. Sia X una v.c. esponenziale di media λ, si ha f (x; λ) = { 1 λ e x λ se x 0 0 altrove con E [X] = λ e var [X] = λ. Calcoliamo il valore atteso degli stimatori dati E [Λ 1 ] = E [X 1 ] = λ Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 18

19 [ ] X1 + X E [Λ ] = E = 1 (E [X 1] + E [X ]) = 1 λ = λ [ ] X1 + X E [Λ 3 ] = E = (E [X 1] + E [X ]) = 1 (λ + λ) = λ 3 E [Λ 4 ] = E [ X 3 ] = λ Tutti gli stimatori dati sono non distorti, per individuare il preferibile, calcoliamo la varianza di ciascuno: var [Λ 1 ] = var [X 1 ] = λ [ ] X1 + X var [Λ ] = var = 1 4 (var [X 1] + var[x ] + cov [X 1, X ]) = = 1 4 λ = 1 λ (X 1 e X sono indipendenti) [ ] X1 + X var[λ 3 ] = var = (var [X 1] + 4var[X ]) = 1 (λ + 4λ ) = λ Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 19

20 var [Λ 4 ] = var [ X 3 ] = 1 3 λ Lo stimatore non distorto con varianza minima è la media campionaria. Esercizio 6. Il numero di interruzioni (crash) di un personal computer segue una distribuzione di Poisson di parametro λ. Sia X 1, X...X n un campione casuale di ampiezza n estratto dalla distribuzione di Poisson data. Se il costo di riparazione è dato da Y n = 3X n + X n dove X n è la media campionaria su n crash, calcolare E [Y ]. Risoluzione. Sia X una v.c. di Poisson di parametro λ, si ha f (x; λ) = { λ x x! e λ se x = 0, 1,, altrove con E [X] = λ e var [X] = λ. Calcoliamo il valore atteso dello stimatore dato [ ] E [Y n ] = E 3X n + X n = 3E [ ] [ ] [ ] X n + E X n = 3λ + E X n Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 0

21 Ma quindi E [ ] X n E [ X n ] = var [ Xn ], var [ Xn ] = var [X] n = λ n, E [Y n ] = 3λ + λ n + λ e passando al limite per n si ha E [Y ] = 3λ + λ Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 1

22 Esercizio 7. Per un corso la prova d accertamento del profitto è costituita da una batteria di 30 quesiti con risposta dicotomica. Si può ipotizzare che chi risponde a caso ad un quesito abbia probabilità 1 di indovinare la risposta esatta. Supponiamo che ogni risposta esatta sia valutata 1 30, si dica qual è per una persona perfettamente ignorante: 1. la probabilità di ottenere la sufficienza in una prova d esame;. il numero medio di prove necessarie per superare l esame. Sia X la variabile casuale che conteggia il numero di risposte esatte in una prova. È ragionevole pensare che X = S + I dove S indica la variabile casuale che conteggia il numero dei quesiti di cui il candidato sa la risposta esatta, mentre I è la variabile casuale che conteggia il numero di risposte indovinate. Sia S la v.c. binomiale di parametri n = 30 e p e sia I/S = s la v.c. binomiale di parametri n = 30 s e p = 1. Si determini la funzione di densità di probabilità congiunta di S e I, p S,I (s, i). Si mostri che p X (x) = x p S,I (s, x s) con x = 0,, 30 e dunque X è una s=0 variabile casuale binomiale di parametri n = 30 e 1+p. Si determini uno stimatore non distorto di p. Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p.

23 Risoluzione. Per ipotesi X è la v.c. che conteggia il numero di risposte esatte, ha distribuzione Bi ( 30, ) 1 con ( ) 30 p X (x) = p x (1 p) 30 x x = 0,, 30 x Nel caso ricerchiamo la probabilità di ottenere appena la sufficienza si ha ( ) (1 ) 18 ( ) p = p X (18) = Se invece vogliamo almeno la sufficienza, dobbiamo calcolare P [X 18]. Dato che { np = 30 1 ) nq = 30 1 = 15 5 = X ha distribuzione appr. N = 15 5 ( 15, 15 Quindi P [X 18] = P [X 17.5] = p con l interpolazione, facendo invece " la media aritmetica" p = Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 3

24 T denota il numero di prove di 30 domande ciascuna. Quando si avrà il superamento della prova con esattamente la sufficienza T è una v.c. di Pascal di parametro p = , quindi E [T] = 1 p , per passare la prova con esattamente la sufficienza bisogna fare mediamente l esame dalle 1 alle 13 volte. Se invece si avrà il superamento della prova con almeno la sufficienza T è una v.c. di Pascal di parametro p = = E [T] p = = E [T] Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 4

25 Sia 0 s 30 e 0 i 30 s allora ( ) 30 p S,I (s, i) = p s (1 p) 30 s s = ( 30 s ) ( 30 s i ( ) 30 s i ) (1 p s [ 1 (1 p) ] 30 s ) i ( ) 30 s i 1 = Scelto 0 s 30 e 0 i 30 s risulta p X (x) = = (s,i): s+i=x ( x s=0 30 x p S,I (s, i) = ) ( x s ) (s,i): i=x s [ ] 30 s 1 p p s = p S,I (s, x s) = Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 5

26 = ( 30 s ) s=0 ( ) 30 x x ( 1 p Ricordando il binomio di Newton ( ) x ( x 1 p p s s s=0 x s ) x s = ) p s ( 1 p ( 1 + p ) x ) x s. si ha p X (x) = ( 30 x ) (1 ) (30 x) ( ) x p 1 + p, con x = 0, 1,..., 30. Pertanto X è una binomiale di parametri 30 e 1+p, di media E [X] = p = 15 (1 + p). Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 6

27 Determiniamo, inoltre, uno stimatore di p con il metodo dei momenti: Calcoliamo E [ p] quindi p è corretto. X n = 15(1 + p) = p = X n 15 E [ p] = stimatore di p. 15(1 + p) 1 = p, Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 7

28 Esercizio 8. X 1, X...X n un campione casuale proveniente da una distribuzione rettangolare nell intervallo [0, ϑ] con ϑ > Si determini lo stimatore di ϑ con il metodo dei momenti.. Si verifichi se tale stimatore è consistente. Risoluzione. L intervallo ha ampiezza ϑ 0 = ϑ, ne segue che la funzione di densità di probabilità della v.c. rettangolare X è f (x; ϑ) = { 1 ϑ se 0 x ϑ 0 altrove Per determinare lo stimatore di ϑ con il metodo dei momenti, bisogna risolvere l equazione µ 1 = M 1 = µ 1 = X n, rispetto a ϑ. Calcoliamo µ 1 = 0+ϑ = ϑ, sostituendo nell equazione precedente risulta X n uno stimatore di ϑ. Essendo E [ ] X n = ϑ, lo stimatore è non distorto. Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 8

29 Calcoliamo var [ X n ] = }{{} X i indip. 1 n var[x i ] = 1 n n ϑ 3 = ϑ 3n. Ne segue [ (Xn lim E ϑ ) ] = n + quindi lo stimatore è consistente. lim n + ϑ 3n = 0, Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 9

30 Esercizio 9 (Tema d esame del 10/01/006). Sia X 1, X...X n un campione casuale di ampiezza n estratto da una popolazione con densità di probabilità con ϑ > 0. { ( ) f X (x, ϑ) = ϑ 1 x ϑ se 0 x ϑ 0 altrove 1. Determinare uno stimatore T di ϑ con il metodo dei momenti.. Stabilire se T è distorto e calcolarne l errore quadratico medio. Risoluzione. Individuiamo lo stimatore T del parametro ϑ, risolvendo rispetto a ϑ X n = E [X]. Calcoliamo quindi E [X] = ϑ 0 (1 ϑ x x ) d x = 1 ϑ 3 ϑ Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 30

31 X n = 1 3 ϑ = T = 3X n. Lo stimatore è non distorto, infatti, E [ 3X n ] = 3E [ Xn ] = 3 ϑ 3 = ϑ Calcoliamo, infine, l errore quadratico medio MSE[T] = var[t] = var [ ] var[x] 3X n = 9. n E [ X ] = ϑ Ne segue MSE[T] = ϑ n. 0 ( ϑ x 1 x ) d x = ϑ ϑ 6 = var[x] = ϑ 6 ϑ 9 = ϑ 18. Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 31

32 Esercizio 10 (Tema d esame del 1/07/005). Sia X 1, X...X n un campione casuale di ampiezza n estratto da una popolazione con densità di probabilità f X (x, ϑ) = { 5 ϑ ϑ x ϑ 1 se 0 < x < 5 0 altrove con ϑ > 0. Determinare lo stimatore di massima verosimiglianza Θ di ϑ. Risoluzione. Calcoliamo la funzione di massima verosimiglianza L (x 1, x,, x n, ϑ) = n n f (x i, ϑ) = 5 nϑ ϑ n x ϑ 1 i con 0 < x i < 5, i = 1,,...,,n. Quindi lnl = nϑ ln5 + n lnϑ + (ϑ 1) lnx i e Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 3

33 Poniamo Inoltre, d dϑ lnl = n ln5 + n n ϑ + d dϑ lnl = 0 = ϑ = d dϑ lnl n n ln5 n ln x i ϑ = ϑ = ṋ ϑ < 0 lnx i quindi Θ = n n ln5 n lnx i Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 33

34 Esercizio 11 (Tema d esame del 8/06/005). Sia X 1,...,X n un campione casuale, di dimensione n, estratto da una distribuzione rettangolare uniforme sull intervallo [a, a]. 1. Determinare uno stimatore T 1 di a con il metodo dei momenti. Verificare se lo stimatore T 1 è distorto e calcolarne l errore quadratico medio MSE[T 1 ].. Considerato poi lo stimatore T = 1 X X, verificare se T è distorto e calcolarne l errore quadratico medio MSE[T ]. 3. Supposto n = 3, quale dei due stimatori T 1 e T di a è preferibile (giustificare la risposta)? T 1 = 3 X n T 1 non distorto [Risposta MSE[T 1 ] = a 7n T non distorto MSE[T ] = 5a 16 T 1 preferibile ] Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 34

35 Esercizio 1 (Tema d esame del 11/04/006). Determinare lo stimatore di massima verosimiglianza del parametro λ per un campione estratto dalla densità f(x) = { λ (x 1)e λ(x 1) se x > 1, 0 altrove. [Risposta T = X n 1 ] Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 35

36 Esercizio 13 (Tema d esame del 04/07/006). Sia X 1,...,X 8 un campione aleatorio, di dimensione 8, estratto da una distribuzione rettangolare uniforme sull intervallo [ 1, b], con b > 1. Si chiede: 1. determinare uno stimatore T 1 di b con il metodo dei momenti;. determinare se lo stimatore T 1 sia distorto; 3. calcolare l errore quadratico medio MSE[T 1 ]; 4. considerato poi lo stimatore T = 4X 8 X 3 X 5 + 1, calcolarne l errore quadratico medio MSE[T ]; 5. determinare quale dei due stimatori T 1 e T di b sia preferibile, giustificando la risposta. [Risposta T 1 = X n + 1 T 1 non distorto MSE[T 1 ] = (b+1) 4 MSE[T ] = (b+1) 6 T 1 preferibile ] Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 36

37 Esercizio 14 (Tema d esame del 05/04/005). Sia X una variabile casuale normale con media µ e varianza σ. Siano X 1, X, X 3 le variabili casuali indipendenti descritte dalle tre determinazioni x 1, x, x 3 di un campione casuale estratto da essa. Per stimare il parametro µ si considerano i due seguenti stimatori: X 3 = X 1 + X + X 3 3, T = 1 5 X X X Dire se X 3 e T sono stimatori non distorti di µ e motivare la risposta.. Calcolare MSE[X 3 ] e MSE[T] e stabilire quale tra i due stimatori X 3 e T di µ sia preferibile, motivando la risposta. X 3 non distorto [Risposta T non distorto MSE[X 3 ] = σ 3 MSE[T] = 11σ 5 X 3 preferibile ] Probabilità e Statistica - Esercitazioni - a.a. 006/007 Stima puntuale di parametri- Ines Campa e Marco Longhi - p. 37

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

Statistica Metodologica

Statistica Metodologica Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: silvia.figini@unipv.it Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 8 Abbiamo visto: Metodi per la determinazione di uno stimatore Metodo di massima verosimiglianza

Dettagli

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

4. Si supponga che il tempo impiegato da una lettera spedita dall Italia per arrivare a destinazione segua una distribuzione normale con media

4. Si supponga che il tempo impiegato da una lettera spedita dall Italia per arrivare a destinazione segua una distribuzione normale con media Esercizi sulle distribuzioni, il teorema limite centrale e la stima puntuale Corso di Probabilità e Inferenza Statistica, anno 007-008, Prof. Mortera 1. Sia X la durata in mesi di una valvola per radio.

Dettagli

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

(a) Determinare lo stimatore di massima verosimiglianza θ di θ. (b) Calcolare la funzione di score e l informazione di Fisher.

(a) Determinare lo stimatore di massima verosimiglianza θ di θ. (b) Calcolare la funzione di score e l informazione di Fisher. Statistica Matematica, Anno Accademico 216/17, 27 Gennaio 217 ESERCIZIO 1 Siano X 1, X 2, X 3 variabili aleatorie indipendenti con legge X 1 Gamma(3,2), X 2 Gamma(5,1) e X 3 Gamma(4,3) Determinare la funzione

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

Esercitazione 4 del corso di Statistica (parte 2)

Esercitazione 4 del corso di Statistica (parte 2) Esercitazione 4 del corso di Statistica (parte ) Dott.ssa Paola Costantini Febbraio Esercizio n. Il tempo di percorrenza del treno che collega la stazione di Roma Termini con l aeroporto di Fiumicino è

Dettagli

LE DISTRIBUZIONI CAMPIONARIE

LE DISTRIBUZIONI CAMPIONARIE LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria

Dettagli

Statistica descrittiva II

Statistica descrittiva II Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Esercitazioni di Statistica Metodologica

Esercitazioni di Statistica Metodologica Esercitazioni di Statistica Metodologica June 22, 2009 1 Esercizio La compagnia di telefonia fissa Happy Line ha svolto una indagine sul numero di telefonate effettuate dai suoi clienti la settimana scorsa.

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La v.c. Uniforme Continua Secondo alcuni sondaggi sul sito della Apple (technical support site,

Dettagli

X Vincita (in euro) Tabella 1: Vincite

X Vincita (in euro) Tabella 1: Vincite Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 9 Giugno 1 CdS in STAD, SIGAD - docente: G. Sanfilippo Motivare dettagliatamente

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

Esercitazione 8 maggio 2014

Esercitazione 8 maggio 2014 Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un

Dettagli

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Università di Siena Corso di STATISTICA Parte seconda: Teoria della stima Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Master E 2 C Centro per lo Studio dei Sistemi Complessi Università di

Dettagli

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI II Esercizio 1. Una ditta che produce schermi a cristalli liquidi deve tenere in controllo il numero di pixel non funzionanti. Vengono ispezionati venti schermi alla

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017

Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017 Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 3/5/017 Contents 1 Intervalli di confidenza 1 Intervalli su un campione 1.1 Intervallo di confidenza per la media................................

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 1. Dati gli eventi A,B,C, ognuno dei quali implica il successivo, e tali che P (A) è metà della probabilità di B, che a sua volta ha probabilità metà di quella

Dettagli

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice. discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

STATISTICA A K (60 ore)

STATISTICA A K (60 ore) STATISTICA A K (60 ore) Marco Riani mriani@unipr.it http://www.riani.it Esercizio: si consideri una generica popolazione X con media µ e varianza σ 2 Siano T 1 =(X 1 +X 2 +X 3 +X 4 )/4 e T 2 =(3X 1 +4X

Dettagli

Variabili casuali II

Variabili casuali II Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 6 Abbiamo visto: Definizione di popolazione, di campione e di spazio campionario Distribuzione

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a.

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a. UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 CDF empirica

Dettagli

Statistica Sociale e Criminale (12 CFU) A.A. 2015/2016

Statistica Sociale e Criminale (12 CFU) A.A. 2015/2016 Statistica Sociale e Criminale (1 CFU) A.A. 015/016 CdL Sociologia e Criminologia Simone Di Zio Dove siamo MODULO 3. L Inferenza statistica 3.1 Probabilità e variabili casuali 3. Le tecniche di campionamento

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stimatore media campionaria Il tempo in minuti necessario a un certo impiegato dell anagrafe

Dettagli

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n. 5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La variabile Uniforme Continua Data una scheda telefonica da 5 euro di cui non si sa se sia

Dettagli

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it SESSIONE SUPPLETIVA 015 - QUESTIONARIO x QUESITO 1 Data la funzione integrale ln(t) dt, determinare per quali valori di x il suo grafico 1 incontra la retta di equazione y = x + 1. Calcoliamo

Dettagli

Schema lezione 5 Intervalli di confidenza

Schema lezione 5 Intervalli di confidenza Schema lezione 5 Intervalli di confidenza Non centrerò quella barca, ne sono convinto al 95% COMPRENDERE: Significato di intervallo di confidenza Uso degli stimatori come quantità di pivot per stime intervallari

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizio 1 (stima puntuale) In un processo di controllo di qualità, siamo interessati al numero mensile di guasti

Dettagli

Esercizi di Ricapitolazione

Esercizi di Ricapitolazione Esercizio 1. Sono dati 150g di una soluzione S 1 concentrata al 12%. (a) Determinare quanti grammi di soluto occorre aggiungere a S 1 per ottenere una nuova soluzione S 2 concentrata al 20%. (b) Determinare

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 9 Abbiamo visto metodi per la determinazione di uno stimatore puntuale e casi per: Carattere con

Dettagli

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10 Anno accademico 2009/10 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Distribuzione esponenziale. f(x) = 0 x < 0

Distribuzione esponenziale. f(x) = 0 x < 0 Distribuzione esponenziale Funzione densità f(x) = λe λx x 0 0 x < 0 Funzione parametrica (λ) 72 Funzione di densità della distribuzione esponenziale 1 0.9 0.8 0.7 λ=1 0.6 f(x) 0.5 0.4 0.3 λ=1/2 0.2 0.1

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2010/11

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2010/11 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 00/ Prova scritta del /0/0 Esercizio Due variabili aleatorie indipendenti, X e Y, verificano la relazione X Y. ) Si provi che F Y (x) F X (x) per ogni numero

Dettagli

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta):

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta): ESERCIZIO 1 Una grande banca vuole stimare l ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto. Si seleziona un campione di 100 clienti su cui si osserva

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana Esercitazioni di Statistica Matematica A Lezione 2 Variabili con distribuzione gaussiana.) Una bilancia difettosa ha un errore sistematico di 0.g ed un errore casuale che si suppone avere la distribuzione

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Modelli di variabili casuali Ines Campa Probabilità e Statistica -

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

1 Esercizi per l esame finale

1 Esercizi per l esame finale 1 Esercizi per l esame finale 1 1 Esercizi per l esame finale 1.1 Stima puntuale 1 Sia (X 1,..., X n ) un campione casuale estratto da una distribuzione U[0, θ], θ > 0. (a) Scrivere la funzione di verosimiglianza

Dettagli

Esercitazione del

Esercitazione del Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 5:

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 5: esercitazione 5 p. 1/14 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 5: 22-04-2005 Luca Monno Università degli studi di Pavia luca.monno@unipv.it http://www.lucamonno.it

Dettagli

STATISTICA A D (72 ore)

STATISTICA A D (72 ore) STATISTICA A D (72 ore) Marco Riani mriani@unipr.it http://www.riani.it Elementi che fanno variare l ampiezza dell intervallo di confidenza (p. 70) s.q.m. dell universo σ Più σ è elevato, maggiore è la

Dettagli

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di

Dettagli

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)

Dettagli

TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE

TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. Sia X, X,...

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07 Anno accademico 2006/07 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Distribuzione normale

Distribuzione normale Distribuzione normale istogramma delle frequenze di un insieme di misure relative a una grandezza che varia con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

TEST n La funzione di ripartizione di una variabile aleatoria:

TEST n La funzione di ripartizione di una variabile aleatoria: TEST n. 1 1. Un esperimento consiste nell estrarre successivamente, con reimmissione nel mazzo, due carte da un mazzo di 52 carte. Individuare la probabilità di estrarre due assi. A 0.0059 B 0.0044 C 0.0045

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

b = 1 2σ 3. La lunghezza di una barra è un numero aleatorio X con densità della forma 0, x 0, 0 < x 1 a = 1 F (x) = 2 2x 1 x2

b = 1 2σ 3. La lunghezza di una barra è un numero aleatorio X con densità della forma 0, x 0, 0 < x 1 a = 1 F (x) = 2 2x 1 x2 CALCOLO DELLE PROBABILITÀ E STATISTICA - 0 gennaio 2002 Informatica (N.O.) (Canali 4) esercizi -4 Vecchio Ordinamento esercizi -6. Da un lotto contenente 4 pezzi buoni e 2 difettosi si estraggono senza

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate

Dettagli

Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione

Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione Alessandra Mattei Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) Università degli Studi di Firenze

Dettagli

Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi

Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi Esercizio 1 Data la variabile casuale X con funzione di densità f(x) = 2x, per 0 x 1; f(x) = 0 per x [0, 1], determinare: a) P( - 0,5 < X< 0,7) b)

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

Dispensa di Statistica

Dispensa di Statistica Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza

Dettagli

Metodi Matematici Probabilità e Statistica. Correzione Compitino del

Metodi Matematici Probabilità e Statistica. Correzione Compitino del Metodi Matematici Probabilità e Statistica Correzione Compitino del.4.04 nota: Una sola risposta è esatta. 4 punti per una risposta esatta, -2 per una sbagliata, 0 per una non data. Gli esercizi sono divisi

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

Università degli studi di Udine - Sede di Pordenone

Università degli studi di Udine - Sede di Pordenone Università degli studi di Udine - Sede di Pordenone Facoltà di Scienze della Formazione - Corso di Corso di Matematica e Statistica Tema d esame AA2009/2010-27 gennaio 2010 Esercizio 1a Esplicitare la

Dettagli

Indici di Dispersione

Indici di Dispersione Indici di Dispersione Si cercano indici di dispersione che: utilizzino tutti i dati {x 1, x 2,..., x n } siano basati sulla nozione di scarto (distanza) dei dati rispetto a un centro d i = x i C ad esempio,

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità A. A. /5 prova scritta (//5(docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento dei punti non facoltativi

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica 69AA) A.A. 06/7 - Prima prova in itinere 07-0-03 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows. Immettere Nome utente b## (##

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 25 luglio 2011

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 25 luglio 2011 Politecnico di Milano - Scuola di Ingegneria Industriale II Prova in Itinere di Statistica per Ingegneria Energetica 25 luglio 2011 c I diritti d autore sono riservati. Ogni sfruttamento commerciale non

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esercizio In un urna vi sono N/2 palline bianche e N/2 palline nere. Si supponga di estrarre un campione con ripetizione di dimensione

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

Variabili aleatorie scalari

Variabili aleatorie scalari Metodi di Analisi dei Dati Sperimentali AA /2010 Pier Luca Maffettone Variabili aleatorie scalari Sommario della Introduzione CDF e PDF: definizione CDF e PDF: proprietà Distribuzioni uniforme e Gaussiana

Dettagli

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale II prova in itinere - 2 febbraio 2005

Statistica Matematica A - Ing. Meccanica, Aerospaziale II prova in itinere - 2 febbraio 2005 Statistica Matematica A - Ing. Meccanica, Aerospaziale II prova in itinere - 2 febbraio 2005 c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Esercizio

Dettagli