Accelerazione di Coriolis

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Accelerazione di Coriolis"

Transcript

1 Accelerazione di Coriolis Corpi in rotazione e forze d'inerzia Dato un corpo rigido in rotazione attorno ad un asse, tale che, dopo un intervallo di tempo Δt esso abbia ruotato di un angolo Δθ, si definisce velocità angolare istantanea il limite per Δt 0 del rapporto tra la variazione dell'angolo di rotazione (espresso in radianti) e l'intervallo di tempo Δt (derivata dello spostamento angolare rispetto al tempo) Δϑ dϑ ω = lim = Δt 0 Δt dt Si conviene inoltre di associare a tale grandezza scalare un vettore r parallelo all'asse di rotazione e con il medesimo verso che avrebbe il moto di avanzamento di una vite (destrorsa) che ruoti nello stesso senso del corpo considerato In tal modo, detto r il vettore distanza che congiunge un punto P del corpo con un punto qualsiasi dell'asse di rotazione, è sempre possibile calcolare la velocità lineare v r del punto P come il prodotto vettoriale r r r ω = v ed in modulo v = ω r sen α dove α è l'angolo (convesso) compreso tra i due vettori, cosicché r sin α è la proiezione di r sulla retta perpendicolare che congiunge il punto P all'asse di rotazione e rappresenta dunque la distanza di P dall'asse. Nel caso della terra è facile verificare che, utilizzando il raggio terrestre, la velocità lineare di un punto a latitudine è pari a v = ω r sen α = ω r cos

2 Un osservatore solidale con un sistema in moto accelerato, qual è appunto un sistema in rotazione, non verifica il principio di inerzia (nel senso che sperimenta fenomeni in disaccordo con esso e ne dimostra quindi la falsità). I sistemi in moto accelerato sono perciò detti sistemi non inerziali. In essi corpi apparentemente non soggetti a forze manifestano accelerazioni. In realtà si può dimostrare che la comparsa di tali accelerazioni è legata al particolare sistema di riferimento considerato ed esse non esisterebbero se il sistema fosse fermo o si muovesse di moto rettilineo uniforme. Paradossalmente in un sistema accelerato l'inerzia di un corpo si manifesta come una accelerazione apparente. Per questo motivo tali accelerazioni apparenti vengono attribuite a forze fittizie dette forze d'inerzia. La più comune forza d'inerzia è la forza centrifuga che si manifesta in un sistema in rotazione. Un osservatore solidale con un sistema in rotazione (una giostra ad esempio) si sente spinto verso l'esterno in direzione normale all'asse di rotazione. Tale sensazione è un effetto dell'inerzia che tenderebbe a far muovere l'osservatore di moto rettilineo uniforme rispetto al sistema esterno fisso, lungo la direzione tangente al suo moto rotatorio. Si può dimostrare che tale forza è proporzionale ad una accelerazione (accelerazione centrifuga) che vale r r r r = ω ω a c ( ) E' facile verificare che il prodotto vettoriale è sempre diretto in senso radiale. Nel caso il corpo si muova di velocità v rispetto al sistema in rotazione compare, oltre alla forza centrifuga, una seconda forza fittizia, detta forza di Coriolis. Si può dimostrare che tale forza è proporzionale ad una accelerazione (accelerazione di Coriolis) che vale r r r a Cor = ω v Tale forza si manifesta ad esempio su tutti i corpi in movimento rispetto alla superficie terrestre, con l'eccezione dei casi in cui i vettori v e v hanno la stessa direzione (in caso di parallelismo l'angolo compreso tra i vettori e nullo ed essendo sin 0 = 0, anche il prodotto vettoriale si annulla). Casi del genere si hanno quando un corpo si muove lungo la verticale in corrispondenza dei poli (ad esempio un grave che cade sopra un polo) o quando un corpo parte dall'equatore con direzione tangente al meridiano. Quando un corpo si muove rispetto alla superficie terrestre possiamo distinguere due casi: a) movimento tangenziale (parallelo alla superficie) b) movimento radiale (perpendicolare alla superficie)

3 1) Movimento tangenziale Nel caso di un movimento tangenziale è facile verificare che l'angolo α tra i vettori v e v coincide con l'angolo di latitudine del corpo L'accelerazione di Coriolis presenta in tal caso modulo pari a acor = ω v sen Per la regola del prodotto vettoriale essa è sempre perpendicolare al piano individuato dai due vettori v e v. v Il verso è quello di una terna sinistrorsa (poiché il prodotto vettoriale è preceduto dal segno meno). Il corpo viene quindi deviato verso Est se si muove verso latitudini maggiori (verso i poli) e verso Ovest se si muove verso le basse latitudini (verso l'equatore). In pratica ciò comporta una deviazione verso destra nell'emisfero boreale e verso sinistra in quello australe. Se il corpo si muove lungo un meridiano (direzione Nord/Sud) l'accelerazione di Coriolis presenta un'unica componente orizzontale, tangente al parallelo passante per il luogo. Se il corpo durante il moto cambia la sua longitudine ed il vettore velocità risulta dunque inclinato rispetto ai meridiani, l'accelerazione di Coriolis presenta anche una componente verticale. Nel caso la direzione del vettore velocità formi un angolo β con il meridiano passante per il luogo, possiamo considerare le componenti della velocità lungo il meridiano (v cosβ) e lungo il parallelo (v sinβ) La componente lungo il meridiano produce solo una deviazione laterale, mentre la componente lungo il parallelo produce sia una deviazione laterale che una deviazione verticale. Per rendercene conto rappresentiamo il moto di un corpo che si muova tangenzialmente ad un parallelo che non sia l'equatore. 3

4 Come si può osservare il vettore accelerazione risulta in questo caso perpendicolare all'asse di rotazione. E' dunque possibile scomporre il suo effetto sul moto del corpo in una componente tangenziale, che lo devia verso destra, e in una componente verticale (che in questo caso lo devia verso l'alto). Naturalmente se il corpo si muove lungo un parallelo in direzione Ovest la componente orizzontale è diretta sempre verso la sua destra (in questo caso verso il polo nord) mentre la componente verticale è diretta verso il basso. La componente verticale è tanto maggiore quanto più la direzione del vettore velocità si scosta dalla direzione del meridiano passante per il luogo e a parità di inclinazione, diventa via via maggiore scendendo in latitudine. In particolare un corpo che parta dall'equatore con un qualche angolo rispetto al meridiano presenta solo una componente verticale che diventa massima quando il suo moto è tangente all'equatore. In definitiva un corpo che si muova verso est subisce oltre ad una deviazione laterale anche una deviazione verso l'alto (e pesa quindi meno di un corpo fermo), mentre un corpo che si muova verso ovest subisce anche una deviazione verso il basso (e peso quindi di più di un corpo fermo). Possiamo ottenere in modo semplice la relazione di Coriolis per un corpo che si muova tangenzialmente alla superficie terrestre. Consideriamo il moto di un corpo P che, partendo da un punto A posto a latitudine, si sposti con velocità v in direzione sud lungo il meridiano passante per A. Il punto A si trovi ad una distanza D dall'asse di rotazione e sia quindi animato da una velocità di rotazione pari a ωd. Scomponiamo ora la velocità v nella sua componente perpendicolare all'asse di rotazione (v sin ) e parallela all'asse di rotazione (v cos ). Dopo un tempo t il corpo si è mosso di un tratto vt lungo la superficie terrestre e si è allontanato dall'asse di rotazione di un tratto d = (v sin ) t Il punto della superficie terrestre posto sullo stesso meridiano (passante per A) alla distanza dall'asse D + d presenta una velocità di rotazione maggiore del punto A e pari a ω (D + d). Esso dunque ruota più velocemente rispetto ad A di una quantità ω (D + d) - ωd = ωd 4

5 Quando il corpo P giunge dopo un tempo t sopra tale punto lo troverà pertanto spostato verso est di una quantità s = t ωd Esprimendo ora d in funzione della velocità del corpo si ottiene s = t ω (v sin ) t = ω v t sin Se dunque interpretiamo tale spostamento come causato da una forza fittizia (di Coriolis) che agisce in modo costante, possiamo descrivere il movimento in termini di un'accelerazione costante e confrontare così la relazione precedente con quella del moto uniformemente accelerato 1 s = at ed eguagliando i secondi membri troviamo l'espressione dell'accelerazione di Coriolis per un corpo in moto tangenziale rispetto alla superficie terrestre a = ωv sin ) Movimento radiale Nel caso di un movimento radiale (caduta di un grave, proiettile lanciato verticalmente) è facile verificare che l'angolo α tra i vettori v ω e v coincide con la colatitudine, cioè con l'angolo complementare all'angolo di latitudine. Se dunque = 90 - α, l'accelerazione di Coriolis presenta in tal caso modulo pari a acor = ω v sen α = ω v cos E' semplice verificare che, per la regola del prodotto vettoriale, l'accelerazione di Coriolis è in questo caso sempre tangente al parallelo passante per il luogo e orientata verso est. Calcoliamo ora lo spostamento verso est lungo il parallelo che subisce un corpo in caduta libera da un'altezza h. Il tempo t di caduta da un'altezza h di un corpo soggetto all'accelerazione di gravità g è pari a h t = g La sua velocità al tempo t (nell'ipotesi che al tempo t = 0 la sua velocità fosse nulla) è pari a v = gt Sostituendo l'accelerazione di Coriolis diventa acor = ω gt cos Integrando due volte tale relazione si ottiene prima la velocità del corpo verso est vcor = ω gt cos 5

6 e infine lo spostamento verso est, dopo un tempo t scor = 1 ω 3 gt cos 3 Sostituendo infine a t il tempo di caduta da un'altezza h si ottiene h scor = h 3 ω g cos Poiché la terra compie una rotazione completa intorno al proprio asse (π radianti) in 3 h 56 m 4 s (giorno sidereo = s), la sua velocità angolare è pari a π ω = = 7, rad / s supponendo di trovarci ad una latitudine di 45 e ad una altezza di 100 m, lo spostamento subito dal grave sarà s = 5 ωh 3 h cosα = 7,9 10 g cos 45 = 0,0155 m = 15,5 mm 9,8 Si ritrova così per via teorica il valore ottenuto sperimentalmente (circa 16 mm) da Guglielmini nel 1691 lasciando cadere dei gravi dalla torre degli Asinelli a Bologna. Si noti che il parallelo che passa per il luogo non indica la direzione Est-Ovest (quest ultima è individuata dal cerchio massimo passante per il luogo perpendicolarmente al meridiano locale). Così il grave, venendo deviato dalla forza di Coriolis in direzione del parallelo, cade verso Nord-Est (nell emisfero boreale). Il pendolo di Foucault L'accelerazione di Coriolis è in grado di giustificare anche la rotazione del piano di oscillazione del pendolo (esperimento di Foucault) a latitudini diverse dall'equatore Supponiamo che il pendolo si trovi ad una latitudine e che stia oscillando lungo un meridiano (in direzione Nord - Sud) muovendosi di un tratto ± r intorno al punto A (si supponga che il filo del pendolo sia sufficientemente lungo da poter confondere la sua traiettoria curva con un segmento di retta di lunghezza r), raggiungendo alternativamente il punto B e C. Detta D A la distanza del punto A dall'asse di rotazione sarà allora 6

7 D C la distanza del punto C dall'asse di rotazione, pari a D = D d C A + D B la distanza del punto B dall'asse di rotazione, pari a D = D d B A Le rispettive velocità lineari sono V V B VA = ωd A = ω DB = ω D = ω D = ω D ( A d ) ( d ) C C A + e la differenza di velocità tra il punto A e gli estremi B e C vale V = V V = ωd Δ A B / C osservando poi che d = r sin la differenza di velocità dei punti estremi rispetto al punto A varrà allora ΔV = ωr sen Con tale velocità differenziale rispetto al punto A i punti B e C tracciano intorno ad A Una circonferenza di raggio r. Ciascun punto completa la sua traiettoria intorno ad A in un tempo t pari a t = πr = π = s ωr sen ω sen sen Tale intervallo di tempo è detto giorno pendolare. Esso è pari ad un giorno sidereo ai poli ed aumenta progressivamente verso l'equatore, dove il suo valore va all'infinito (il piano del pendolo non ruota). 7

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

Cinematica Angolare! FONDAMENTI DI BIOINGEGNERIA - ING.FRANCESCO SGRO!

Cinematica Angolare! FONDAMENTI DI BIOINGEGNERIA - ING.FRANCESCO SGRO! Cinematica Angolare! Movimento angolare! ü Si definisce movimento angolare qualsiasi movimento di rotazione che avviene rispetto ad un asse immaginario! ü In un movimento angolare tutto il corpo/soggetto

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

L EQUILIBRIO DEL PUNTO MATERIALE

L EQUILIBRIO DEL PUNTO MATERIALE 1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione

Dettagli

Le Coordinate Astronomiche

Le Coordinate Astronomiche Le Stelle vanno a scuola Le Coordinate Astronomiche Valentina Alberti Novembre 2003 1 2 INDICE Indice 1 Coordinate astronomiche 3 1.1 Sistema dell orizzonte o sistema altazimutale.......... 3 1.2 Sistema

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Figura 4. Conclusione

Figura 4. Conclusione Forza di Coriolis La forza di Coriolis é una forza che si manifesta su un corpo all interno di un sistema di riferimento (SDR) rotante, quale la terra che ruota su se stessa, quando il corpo stesso si

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Alcuni esercizi di Dinamica

Alcuni esercizi di Dinamica Alcuni esercizi di Dinamica Questi esercizi saranno svolti in aula, pertanto è bene che lo studente provi a svolgerli preventivamente in maniera autonoma. Altri esercizi sono presenti alla fine del Cap.

Dettagli

Fisica con gli smartphone. Lezioni d'autore di Claudio Cigognetti

Fisica con gli smartphone. Lezioni d'autore di Claudio Cigognetti Fisica con gli smartphone Lezioni d'autore di Claudio Cigognetti VIDEO I SENSORI IN UNO SMARTPHONE Oggi la miniaturizzazione dei sensori indicati con l acronimo inglese MEMS (sistemi microelettronici e

Dettagli

4 FORZE FONDAMENTALI

4 FORZE FONDAMENTALI FORZA 4! QUANTE FORZE? IN NATURA POSSONO ESSERE OSSERVATE TANTE TIPOLOGIE DI FORZE DIVERSE: GRAVITA' O PESO, LA FORZA CHE SI ESERCITA TRA DUE MAGNETI O TRA DUE CORPI CARICHI, LA FORZA DEL VENTO O DELL'ACQUA

Dettagli

MISURA DELL ACCELERAZIONE DI GRAVITA TERRESTRE

MISURA DELL ACCELERAZIONE DI GRAVITA TERRESTRE Elisa Bielli & Viviana Bosello 3 G 9/11/2015 Laboratorio di fisica 1 MISURA DELL ACCELERAZIONE DI GRAVITA TERRESTRE SCOPO: Misurare strumentalmente l accelerazione di gravità terrestre mediante l uso di

Dettagli

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N.

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N. Un oggetto con massa pari a 2500 g è appoggiato su un pavimento orizzontale. Il coefficiente d attrito statico è s = 0.80 e il coefficiente d attrito dinamico è k = 0.60. Determinare la forza d attrito

Dettagli

Corso di Fisica Generale 1

Corso di Fisica Generale 1 Corso di Fisica Generale 1 corso di laurea in Ingegneria dell'automazione ed Ingegneria Informatica (A-C) 9 lezione (23 / 10 /2015) Dr. Laura VALORE Email : laura.valore@na.infn.it / laura.valore@unina.it

Dettagli

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria Modello di 1) Dati i vettori aa = 3xx + 2yy + zz e bb = xx + zz determinare cc = 3aa + bb dd = aa 4bb aa bb aa xxbb. Determinare altresì il modulo del vettore cc. 2) Un blocco di 5.00 kg viene lanciato

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini Introduzione. Il metodo scientifico. Principi e leggi della Fisica. I modelli

Dettagli

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 1 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

FISICA Corso di laurea in Informatica e Informatica applicata

FISICA Corso di laurea in Informatica e Informatica applicata FISICA Corso di laurea in Informatica e Informatica applicata I semestre AA 2004-2005 G. Carapella Generalita Programma di massima Testi di riferimento Halliday Resnick Walker CEA Resnick Halliday Krane

Dettagli

LA TERRA. La TERRA ha la forma di una grande sfera un po schiacciata alle estremità, chiamate POLI.

LA TERRA. La TERRA ha la forma di una grande sfera un po schiacciata alle estremità, chiamate POLI. LA TERRA La TERRA ha la forma di una grande sfera un po schiacciata alle estremità, chiamate POLI. Per poterla studiare possiamo rappresentare la TERRA per mezzo di un mappamondo (globo). Su di esso possiamo

Dettagli

Unità 4 Paragrafo 1 La forma e le dimensioni della Terra

Unità 4 Paragrafo 1 La forma e le dimensioni della Terra Unità 4 Paragrafo 1 La forma e le dimensioni della Terra forma ellissoide di rotazione più precisamente geoide sfera schiacciata ai poli solido più gonio dove ci sono i continenti e un po depresso nelle

Dettagli

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice.

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. LA PARABOLA Definizione: Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. Dimostrazione della parabola con

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

descrivere le caratteristiche della sfera utilizzare le formule inerenti. Introduzione

descrivere le caratteristiche della sfera utilizzare le formule inerenti. Introduzione Anno 4 Sfera 1 Introduzione In questa lezione parleremo di un importante solido di rotazione detto sfera. Ne daremo la definizione, ne studieremo le caratteristiche e le formule a essa inerenti. Al termine

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I 1. La tensione alla quale una lenza si spezza è comunemente detta resistenza della lenza. Si vuole calcolare la resistenza minima T min che deve

Dettagli

Curve e integrali curvilinei: esercizi svolti

Curve e integrali curvilinei: esercizi svolti Curve e integrali curvilinei: esercizi svolti 1 Esercizi sulle curve parametriche....................... 1.1 Esercizi sulla parametrizzazione delle curve............. 1. Esercizi sulla lunghezza di una

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

PERIZIA TECNICA RIFERIMENTO: AUMENTO VELOCITA MOTO OSCILLATORIO CAMPANE PARROCCHIA DI BREGUZZO (TN) VERIFICA TECNICA

PERIZIA TECNICA RIFERIMENTO: AUMENTO VELOCITA MOTO OSCILLATORIO CAMPANE PARROCCHIA DI BREGUZZO (TN) VERIFICA TECNICA PERIZIA TECNICA RIFERIMENTO: AUMENTO VELOCITA MOTO OSCILLATORIO CAMPANE PARROCCHIA DI BREGUZZO (TN) COMMITTENTE: ELETTROIMPIANTI AUDEMA - CASTREZZATO (BS) OGGETTO: VERIFICA TECNICA PREMESSE Il sottoscritto

Dettagli

da Erriu, Nitti, Verniglio Element i di Fisica ed. Mondurri

da Erriu, Nitti, Verniglio Element i di Fisica ed. Mondurri 7.17. SEDIMENTAZIONE da Erriu, Nitti, Verniglio Element i di Fisica ed. Mondurri Se si vogliono studiare le proprietà fisiche e chimiche dei componenti subcellulari (membrane, nuclei, mitocondri, ecc.)

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA NOTAZIONE ESPONENZIALE 1. Scrivi i seguenti numeri usando la notazione scientifica esponenziale 147 25,42 0,0001 0,00326

Dettagli

Indirizzo scientifico - Domande di fisica per la classe 49/A test somministrati 12

Indirizzo scientifico - Domande di fisica per la classe 49/A test somministrati 12 Indirizzo scientifico - Domande di fisica per la classe 49/A test somministrati 12 1. Utilizzando un flusso di acqua che scorre in un tubo, la cui sezione circolare ha raggio di 2 cm, con velocità di 50

Dettagli

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 TURNO 1 COMPITO A Un'automobile di massa m=1500 kg viaggia ad una velocità costante v 1 di 35 Km/h. Ad un certo punto inizia ad accelerare

Dettagli

LA RADIAZIONE SOLARE

LA RADIAZIONE SOLARE Lezioni dal corso di Gestione degli Impianti di Conversione dell Energia Università Federico II di Napoli 15/03/2012 LA RADIAZIONE SOLARE Definizioni In generale, ogni corpo rilascia energia sottoforma

Dettagli

SIMULAZIONE - 29 APRILE 2016 - PROBLEMA 1

SIMULAZIONE - 29 APRILE 2016 - PROBLEMA 1 www.matefilia.it SIMULAZIONE - 29 APRILE 216 - PROBLEMA 1 Le centraline di controllo del Po a Pontelagoscuro (FE) registrano il valore della portata dell'acqua, ovvero il volume d'acqua che attraversa

Dettagli

SUPERFICI CONICHE. Rappresentazione di coni e cilindri

SUPERFICI CONICHE. Rappresentazione di coni e cilindri SUPERFICI CONICHE Rappresentazione di coni e cilindri Si definisce CONO la superficie che si ottiene proiettando tutti i punti di una curva, detta DIRETTRICE, da un punto proprio, non appartenente al piano

Dettagli

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3)

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) Consideriamo un agente che deve scegliere un paniere di consumo fra quelli economicamente ammissibili, posto che i beni di consumo disponibili sono solo

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone

MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone MURI DI SOSTEGNO a cura del professore Francesco Occhicone anno 2014 MURI DI SOSTEGNO Per muro di sostegno si intende un opera d arte con la funzione principale di sostenere o contenere fronti di terreno

Dettagli

Prodotto Multimediale

Prodotto Multimediale Prodotto Multimediale Relativo al Laboratorio 2: "Multimedialità e Didattica" Autore: Zumbo Francesco Breve presentazione del Moto Rettilineo Uniforme e Uniformemente Accelerato I moti, a seconda della

Dettagli

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA BILANCIO DEI VINCOLI ED ANALISI CINEMATICA ESERCIZIO 1 Data la struttura piana rappresentata in Figura 1, sono richieste: - la classificazione della struttura in base alla condizione di vincolo; - la classificazione

Dettagli

1 La Geometria delle Masse

1 La Geometria delle Masse 1 La eometria delle Masse 1.1 Baricentri e Momenti Statici Due siste di forze vengono detti equivalenti quando generano la stessa risultante e lo stesso momento risultante rispetto ad un polo qualsiasi.

Dettagli

DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE

DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE Costruzione del triangolo equilatero circonferenza e scegliere un punto 1, che risulterà opposto al vertice A. Con la medesima apertura e puntando in 1, tracciare

Dettagli

STUDIO DEL MOTO DI UN CORPO SU CUI AGISCE UNA FORZA COSTANTE. 2 Principio della Dinamica

STUDIO DEL MOTO DI UN CORPO SU CUI AGISCE UNA FORZA COSTANTE. 2 Principio della Dinamica STUDIO DEL MOTO DI UN CORPO SU CUI AGISCE UNA FORZA COSTANTE 2 Principio della Dinamica 1) Considerazione teoriche: il secondo principio della dinamica dice: se ad un corpo in assenza d attrito si applica

Dettagli

Riassunto fisica. Introduzione: La seconda legge di Newton =m a

Riassunto fisica. Introduzione: La seconda legge di Newton =m a Statica Introduzione: La seconda legge di Newton =m a F =0 F =0 M ) fissare un riferimento (assi x e y) ) scoporre ogni forza in x e y 3) scegliere il punto in cui calcolare il Movimento (punto + complicato)

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

17. Elettromagnetismo

17. Elettromagnetismo 1 quaioni di Mawell 17. lettromagnetismo Nelle leioni precedenti abbiamo considerato i campi elettrico e magnetico statici, cioè abbiamo considerato fenomeni indipendenti dal tempo. I campi elettrico e

Dettagli

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE EQUAZIONI E DISEQUAZIONI GONIOMETRICHE Prerequisiti Saper risolvere le equazioni algebriche. Conoscere le definizioni delle funzioni goniometriche. Conoscere i valori delle funzioni goniometriche per gli

Dettagli

Il Principio dei lavori virtuali

Il Principio dei lavori virtuali Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.

Dettagli

Introduzione a GeoGebra

Introduzione a GeoGebra Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni

Dettagli

Navigazione Tattica. L intercettazione

Navigazione Tattica. L intercettazione Navigazione Tattica I problemi di navigazione tattica si distinguono in: Intercettazione, che riguarda lo studio delle procedure atte a raggiungere nel minor tempo possibile un aeromobile o un qualsiasi

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore)

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore) L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Statica del Corpo Rigido Momento di una forza Unità 3 (4 ore) Condizione di equilibrio statico: leve

Dettagli

ESPERIENZE CON GLI SPECCHI PIANI

ESPERIENZE CON GLI SPECCHI PIANI 1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Disponi il cilindro giallo dietro lo specchio, in modo che coincida con l immagine riflessa del cilindro

Dettagli

b) Teoria dell elica

b) Teoria dell elica b) Teoria dell elica L elica e le sue caratteristiche L elica è l organo propulsore di una barca che si muove a motore. L elica, girando, spinge l acqua indietro e imprime allo scafo una spinta in avanti.

Dettagli

Fig. 1: rotore e statore di una dinamo

Fig. 1: rotore e statore di una dinamo La dinamo La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua. Costruttivamente è costituita da un sistema induttore

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio.

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio. TEOREMA DI TALETE Piccolo Teorema di Talete Dato un fascio di rette parallele tagliate da due trasversali, a segmenti congruenti su una trasversale corrispondono segmenti congruenti sull altra trasversale.

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia 1. La forza e il lavoro Che cos è il lavoro in Fisica Ogni lavoro richiede uno sforzo e quindi l impegno di una forza. Il lavoro fisico e quello intellettuale richiedono il primo

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI 1) Che cos è la pressione? Qual è la sua unità di misura nel S.I.? 2) Da che cosa dipende la pressione esercitata da un oggetto di massa m poggiato su di una superficie? 3) Che cos è un fluido? 4) Come

Dettagli

ASTRONOMIA SISTEMI DI RIFERIMENTO

ASTRONOMIA SISTEMI DI RIFERIMENTO Sfera celeste ASTRONOMIA Il cielo considerato come l'interno di una sfera cava al fine di descrivere le posizioni e i movimenti degli oggetti astronomici. Ogni particolare osservatore è situato al centro

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 9 novembre 2004

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 9 novembre 2004 ORSO DI LURE IN SIENZE IOLOGIHE Prova di FISI del 9 novembre 004 1) Una particella di massa m= 0.5 kg viene lanciata dalla base di un piano inclinato O con velocità iniziale v o = 4 m/s, parallela al piano.

Dettagli

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra.

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra. Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 9 novembre 010 Esercizi sul moto di caduta libera Esercizio 1. Una pallina da tennis viene lasciata cadere dal punto più alto

Dettagli

I concetti fondamentali

I concetti fondamentali I concetti fondamentali Completa le seguenti frasi 1. Una grandezza è una quantità che può essere con uno. 2. Misurare una grandezza significa dire quante volte è nella grandezza. 3. Il Sistema Internazionale

Dettagli

Problemi Di Cinematica del Punto Materiale A cura del Prof. T.Papa. dx x = 8 m=s2 : dx 2 _x2 + dy A 2! 2 : A 2! 2 A 2 + 900 A 2!

Problemi Di Cinematica del Punto Materiale A cura del Prof. T.Papa. dx x = 8 m=s2 : dx 2 _x2 + dy A 2! 2 : A 2! 2 A 2 + 900 A 2! Problemi Di Cinematica del Punto Materiale A cura del Prof. T.Paa. Un unto materiale si muove luno la traiettoria di equazione y = x 2 e, luno x, ha comonente della velocita _x = 2 m=s, costante. Determinare

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale)

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Prima parte. Abbiamo a disposizione alcune coppie di specchi, dei piccoli oggetti (poligoni, matite, palline), alcuni disegni. Tra due

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

ORIENTARSI sulla TERRA

ORIENTARSI sulla TERRA ORIENTARSI sulla TERRA significato del termine orientarsi : il termine orientarsi indica letteralmente la capacità di individuare l oriente e fa quindi riferimento alla possibilità di localizzare i quattro

Dettagli

Unità di misura di lunghezza usate in astronomia

Unità di misura di lunghezza usate in astronomia Unità di misura di lunghezza usate in astronomia In astronomia si usano unità di lunghezza un po diverse da quelle che abbiamo finora utilizzato; ciò è dovuto alle enormi distanze che separano gli oggetti

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

Fenomeni magnetici fondamentali

Fenomeni magnetici fondamentali Fenomeni magnetici fondamentali 1. La forza magnetica e le linee del campo magnetico Già ai tempi di Talete (VI sec. a.c.) era noto che la magnetite, un minerale di ferro, attrae piccoli oggetti di ferro:

Dettagli

Corso di Laurea in FARMACIA

Corso di Laurea in FARMACIA Corso di Laurea in FARMACIA 2015 simulazione 1 FISICA Cognome nome matricola a.a. immatric. firma N Evidenziare le risposte esatte Una sferetta è appesa con una cordicella al soffitto di un ascensore fermo.

Dettagli

Formule per il calcolo degli elementi geometrici dentature esterne

Formule per il calcolo degli elementi geometrici dentature esterne Formule per il calcolo degli elementi geometrici dentature esterne Contenuto: Definizione di evolvente Spessore di base in funzione di uno spessore qualunque e viceversa. Ingranaggi cilindrici a denti

Dettagli

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o A A 2 0 11-2 0 1 2 U N I V E R S I TA D E G L I S T U D I D I R O M A T O R V E R G ATA FA C O LTA D I M E D I C I N A E C H I R U R G I A L A U R E A T R I E N N A L E I N S C I E N Z E M O T O R I E

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli

FISICA. Serie 11: Dinamica del punto materiale V. Esercizio 1 Legge di Hooke. Esercizio 2 Legge di Hooke. I liceo

FISICA. Serie 11: Dinamica del punto materiale V. Esercizio 1 Legge di Hooke. Esercizio 2 Legge di Hooke. I liceo FISICA Serie : Dinamica del punto materiale V I liceo Esercizio Legge di Hooke Una molla è sottomessa ad una deformazione. I dati riportati nel grafico qui sotto mostrano l intensità della forza applicata

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE IL BARICENTRO GENERALITA' GEOMETRIA DELLE MASSE Un corpo può essere immaginato come se fosse costituito da tante piccole particelle dotate di massa (masse puntiformi); a causa della forza di gravità queste

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

Campo magnetico e forza di Lorentz (I)

Campo magnetico e forza di Lorentz (I) Campo magnetico e forza di Lorentz (I) Fatti sperimentali (Oersted e Ampere) Legge di Gauss per il campo magnetico Forza di Lorentz Definizione del campo magnetico Magnetismo Noto fin dall antichita` (VI

Dettagli

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali Capitolo 5 5.1 Grandezze scalari Si definiscono scalari quelle grandezze fisiche che sono descritte in modo completo da un numero accompagnato dalla sua unità di misura. La temperatura dell aria in una

Dettagli

1 Gli effetti della forza di Coriolis

1 Gli effetti della forza di Coriolis LA FORZA DI CORIOLIS di Giulio Mazzolini 2012 1 Gli effetti della forza di Coriolis È un effetto noto che i venti nell emisfero nord deviano sempre verso destra, invece nell emisfero sud deviano sempre

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli

POMPE A PALETTE Introduzione

POMPE A PALETTE Introduzione POMPE A PALETTE Introduzione Architettura Caratteristiche di Funzionamento Calcolo della Cilindrata Bilanciamento Idraulico Pompe a Palette 1 SCHEMA BASE Il rotore è un tamburo circolare che ruota all

Dettagli

Quesito 1 Si calcoli. 3 2 2 4 3 3 = 3 2 4 3 = 2 ln3 = 8 81 2,3. 1 = 2 3 2 3 = 2 3 1+1 2 1 = = =ln81. Soluzione 1

Quesito 1 Si calcoli. 3 2 2 4 3 3 = 3 2 4 3 = 2 ln3 = 8 81 2,3. 1 = 2 3 2 3 = 2 3 1+1 2 1 = = =ln81. Soluzione 1 ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 0 PIANO NAZIONALE INFORMATICA Questionario Quesito Si calcoli 3 3 è 0 0 Applicando De L Hospital si ha: -,3 3 3 4 3 3 = infatti: 0 = 3 4 3 3 = 3 4

Dettagli

Lavoro Quantità. si determinino prodotto marginale e medio del fattore lavoro.

Lavoro Quantità. si determinino prodotto marginale e medio del fattore lavoro. Microeconomia, Esercitazione 3. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 Produzione/1 Data una certa tecnologia di produzione definita solo nell input lavoro (o, in alternativa,

Dettagli