Lezione 14. Polinomi a coefficienti interi

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 14. Polinomi a coefficienti interi"

Transcript

1 Peequt: Nume m Lezo - Lezoe 4 Polom a coeffcet te I queta lezoe tudamo le fattozzazo d olom a coeffcet azoal Cacuo d quet uò eee tafomato u olomo a coeffcet te tamte la moltlcazoe e u umeo teo o ullo Qud og olomo d Q [ X ] è aocato ad u olomo d Z [ X ], co l quale ha comue le adc e tutt fatto ducbl Nel oto tudo oamo qud lmtac a codeae olom a coeffcet te, tato ù che, come coegueza del omo eucato, (d cu omettamo la dmotazoe) og olomo o cotate d Z [ X ] oede ua fattozzazoe cu tutt fatto aategoo a Z [ X ] Teoema 4 (Teoema d Gau) Sa f ( X ) Z [ X ], e ao g( X ), h( X ) Q [ X ] tal che f ( X ) = g( X ) h( X ) Alloa ete * c Q tale che, oto g * ( X ) = cg( X ) e abba che g * * ( X ), h ( X ) Z [ X ] (olte, atualmete, a f ( X ) = g ( X ) h ( X )) Eemo 4 Sa * h X c h X ( ) = ( ), 4 f ( X ) = X + X + 4 Z [ X ] Alloa f ( X ) = g( X ) h( X ), ove 8 g( X ) = X +, h( X ) = X + 9 S eda c =, c = Alloa e g X 8 X X X h X = X + = X + Z X f ( X ) = g( X ) h( X ) = g( X ) h( X ) = g ( X ) h ( X ) ( ) = + = + 4 Z[ ], ( ) 9 6 [ ], Dal Teoema 4, co u facle agoameto duttvo, deduce l eguete Coollao 4 Sa f ( X ) Z [ X ] o cotate Sa f ( X ) = ( X ) ( X ) ua ua fattozzazoe Q [ X ] Alloa etoo ( X ) = c ( X ) Z [ X ] e c,, c f ( X ) = ( X ) ( X ) Q tal che, e og =,,, Petato, l oblema della fattozzazoe d u olomo Q [ X ] coduce al oblema d detemae, e u olomo d Z [ X ], ua fattozzazoe olom aateet a Z [ X ] I aagg oo eguet:

2 ) Dato f ( X ) Q [ X ], detema m Z tale che f ( X ) = mf ( X ) Z [ X ] ) S tova ua fattozzazoe d f ( X ) Z [ X ] ) S tafoma tale fattozzazoe ua fattozzazoe d f ( X ) dvdedo uo de fatto e m Pe l aaggo fodametale ) etoo vald metod, alcabl co buoa geealtà I bae al mo coollao al Teoema d Ruff (Coollao 7), detemae fatto ducbl d gado uo d u olomo d Z [ X ] equvale a detemae le adc Q Poozoe 44 (Eteza d adc azoal) Sa α = (,,, MCD(, ) = ) f ( X ) = a X Z [ X ], o cotate e a Z ua ua adce Alloa dvde a ed dvde a = Dmotazoe: Pe ote ha = f ( α ) = a = a Qud α = = = a = a = a + a + a = = = Il umeo teo dvde tutta la omma, ed ache cacuo de tem d dc =,, Segue che dvde ache l'addedo a Eedo ed com, vtù della Poozoe 64, egue che dvde a Iolte, ache dvde tutta la omma, ed ache cacuo de tem d dc =,, Segue che dvde ache l'addedo a Da cò deduce come oa che dvde a Eemo 45 Sa f ( X ) = X + X Z[ X ] Se α = (, Z,, MCD(, ) = ) è ua adce d f ( X ), alloa dvde a = ed dvde,,,,, Segue che α,,, Oa f () = + = a = Duque { } { } f ( ) = = 4 f = + = f = = 4 4 Qud f ( X ) o ha adc azoal Pe l ecodo coollao al Teoema d Ruff (Coollao 9), eedo deg( f ) =, egue che f ( X ) è ducble Q[ X ]

3 Teoema 46 (Cteo d ducbltà d Eete) Sa Sa u umeo mo tale che f ( X ) = a X Z [ X ] o cotate = a) o dvde a ; b) dvde a e og =,, ; c) o dvde a Alloa f ( X ) è ducble Q [ X ] Dmotazoe: I bae alla a), a, qud deg( f ) = Suoamo e audo che, elle ote aegate, f ( X ) a ducble Q[ X ] Alloa f ( X ) è odotto d due olom o cotat d Q[ X ] I bae al Teoema 4 etoo qud g( X ), h( X ) Z [ X ] o cotat tal che f ( X ) = g( X ) h( X ) Sao g( X ) b X, h( X ) =c X, ove b Z e og =,, e c Z = = e og =,, Suoamo olte che deg( g) =, deg( h) =, coì che b, c Alloa, bae alla fomula del gado e l odotto d olom, = +, ove, Iolte a = b c Dalla codzoe b) e dalla defzoe d umeo mo = (Defzoe 7) egue che dvde b oue dvde c ; d'alta ate, vtù d c), o uò dvdel etamb Poamo uoe, eza ledee la geealtà, che dvda b e o dvda c Oa, ha a = b c, e qud, bae ad a), o dvde vuoto, e duque ammette u mmo S ot che S ha b Alloa l'eme { } / b N è o a = b c = b c = b c + b c j + j= = = Oa, e la codzoe b), dvde la omma a e, e defzoe d, dvde b e og =,,, e qud dvde m added della omma Segue che dvde ache l'addedo b c Cò, eò, è moble, dato che è mo e o dvde euo de due fatto b e c Abbamo coì tovato la cotaddzoe cecata, e ovato che f ( X ) è ducble Q[ X ] Eemo 47 Pe og umeo mo ed og teo otvo, l olomo f ( X ) = X + Z [ X ] oddfa le codzo a), b), c) del Teoema 46, ed è qud ducble Q[ X ] Cò mota che, cotaamete a quato avvee C [ X ] (dove, bae al Coollao 6, olom ducbl hao tutt gado uo) o R [ X ] (dove, bae alla Poozoe 9, olom ducbl hao gado al ù due), Q [ X ] etoo olom ducbl d qualuque gado otvo 4 Eemo 48 Il olomo f ( X ) = 5X + X 4X + 6 Z [ X ] è ducble Q [ X ] Ifatt eo vefca le ote del Cteo d Eete co = Oevazoe 49 Il cteo d Eete è u cteo olo uffcete, e o eceao, d ducbltà Q [ X ] I alt tem, u olomo f ( X ) Z [ X ] uò eee ducble Q [ X ] u o vefcado le codzo a), b) e c) e alcu mo Come abbamo vto ell'eemo

4 45, l olomo f ( X ) = X + X Z [ X ] è ducble Q[ X ], eò o vefca la codzoe b) e alcu mo, oché eu mo dvde l teme oto Itoducamo oa l metodo della duzoe modulo Defzoe 4 Sa f ( X ) = a X Z [ X ] Sa u umeo mo Alloa l olomo = dce la duzoe modulo d f ( X ) f ( X ) = [ a ] X Z [ X ] = Pe emlctà, el eguto dcheemo le cla d eto co u oaego Eemo 4 Sa f ( X ) = X + X 5X + 4 Z [ X ] Alloa la ua duzoe modulo è ( ) = + Z [ ], la ua duzoe modulo è la ua duzoe modulo 5 è ( ) = + + Z [ ], ( ) = Z 5[ ] Poozoe 4 (Iducbltà e duzoe modulo ) Sa mo tale che o dvde a Sa = f ( X ) = a X Z [ X ] e a u f ( X ) = a X Z [ X ] la duzoe d f ( X ) modulo Alloa, e f ( X ) è ducble Z [ X ], f ( X ) è ducble Q [ X ] Dmotazoe: Suoamo che f ( X ) a ducble Q [ X ] Alloa, vtù del Teoema 4, etoo g( X ), h( X ) Z [ X ], d gad, ettvamete, tal che f ( X ) = g( X ) h( X ) Sao b e c coeffcet detto d g( X ) ed h( X ) ettvamete Alloa a = bc, qud o dvde é b é c Petato b, c Z, e qud deg( f ) =,deg( g) = Iolte ha Qud f ( X ) è ducble Z [ X ] f ( X ) = g( X ) h ( X ) = Eeczo 4* Povae che l olomo 4 f ( X ) = X + X + Z [ X ] è ducble Q [ X ] (Suggemeto e lo volgmeto Povae che la ua duzoe f ( X ) modulo è ducble Z [ X ], vefcado, co ootu calcol, che ea o decomoe é el odotto d u fattoe leae ed u fattoe d gado, é el odotto d due fatto d gado due)

5 Oevazoe 44 Il cteo d Eete ed l metodo d duzoe modulo hao, geeale, cam d alcabltà dve Ad eemo, e f ( X ) = X + 6X +, l cteo d Eete, alcato e =, c coete d cocludee che f ( X ) è ducble Q [ X ] Pe coto, o è utle effettuae la duzoe modulo ( f ( X ) = X Z [ X ] è ducble) o la duzoe modulo ( f ( X ) = X + Z [ X ] è ducble, quato oede la adce Z )

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

Lezione 9. Congruenze lineari. Teorema Cinese del Resto.

Lezione 9. Congruenze lineari. Teorema Cinese del Resto. Lezoe 9 Prerequt: Lezoe 8. Cogrueze lear. Teorema Cee el Reto. Nella Lezoe 8 abbamo vto che a caua ella compatbltà ella cogrueza moulo rpetto alle operazo artmetche le relazo cogrueza moulo pooo eere ottopote

Dettagli

Lezione 1. Operazioni tra ideali. Radicale di un ideale.

Lezione 1. Operazioni tra ideali. Radicale di un ideale. Lezoe Opeazo ta deal Radcale d u deale Rcodamo la seguete defzoe: Defzoe S dce aello u seme o vuoto A dotato d due opeazo, ua somma + ed u podotto, tal che: - (A, +) sa u guppo abelao (detto guppo addtvo

Dettagli

Lezione 10. Anelli e moduli noetheriani ed artiniani.

Lezione 10. Anelli e moduli noetheriani ed artiniani. Lezoe 0 Aell e modul oethera ed arta. Sa A u aello. Proozoe 0. Sa u A-modulo. Allora le eguet roretà oo equvalet. a) Og catea acedete d ottomodul d è tazoara, coè er og ucceoe d ottomodul d ete u dce tale

Dettagli

Lezione 18. Orbite e cicli di una permutazione.

Lezione 18. Orbite e cicli di una permutazione. Lezoe 8 Peequst: Lezo 4, 7. Obte e ccl d ua pemutazoe. I questa lezoe toducamo, pe u'abtaa pemutazoe, la cosddetta decomposzoe ccl dsgut, che e vela la stuttua, agevolado la detemazoe del suo peodo e della

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

La metrica di Minkowski e la distanza generalizzata o di Mahalanobis. Note di Mary Fraire

La metrica di Minkowski e la distanza generalizzata o di Mahalanobis. Note di Mary Fraire La meca ow e la aa geealaa o ahalaob. Noe ay Fae. Rcham eoc S ee ule oae qu eguo, vao a e ecfc ca oa 9 ull agomeo alcu cham ulle ae ow e ahalaob. Coeao ue veo-ga a eleme ua mace a quav, a, R, eemo la eguee

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini.

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini. Lezone Peequs: Lezone. Funzon polnomal. Radc d un polnomo. Teoema d Ruffn. Sa K un campo e sa L un campo d cu K è soocampo (n al caso s dce anche che L è un'esensone d K). Sa f ( X ) K[ X ] e sa α L. Alloa,

Dettagli

FREQUENZE DI DECESSO PER TAVOLE SELEZIONATE. Un modello di sopravvivenza selezionato è definito mediante una famiglia di funzioni di sopravvivenza

FREQUENZE DI DECESSO PER TAVOLE SELEZIONATE. Un modello di sopravvivenza selezionato è definito mediante una famiglia di funzioni di sopravvivenza Feueze eceo pe tavole elezoate FREQUENZE DI DEESSO PER TAVOLE SELEZIONATE U moello opavvveza elezoato è efto meate ua famgla fuzo opavvveza t S ; t 0 a, a, K ove è l età tea geo acuazoe t è l atuata ell

Dettagli

Dstbuzo Bvaate d due Vaabl Cosdeamo ua dstbuzoe bvaata costtuta da due vaabl statstche. Possamo defe, spetto al solto schema, le seguet mede pazal (essedo e vaabl statstche, tutte le modaltà ad esse elatve

Dettagli

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

Indici di Posizione: Medie Algebriche

Indici di Posizione: Medie Algebriche ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Lezione 13. Gruppo di Galois di un polinomio.

Lezione 13. Gruppo di Galois di un polinomio. Lezoe Prerequst: Lezo 9, 0,, Gruppo d Galos d u polomo Sa F u campo, sa f ( x) F[ x] o costate d grado, sa K u campo d spezzameto d f (x) su F el quale f (x) possede radc dstte Sa = ( f ) Defzoe Il gruppo

Dettagli

Le strutture in cemento armato. Ipotesi di calcolo

Le strutture in cemento armato. Ipotesi di calcolo Le trutture emeto armato Ipote d alolo Prova d ua trave.a. Feurazoe Servameto ollao 11.118 5 Dagramma Curvatura-ometo Fae III ometo (knm) 15 kn? m 1 5 Fae II Fae I V? 4.56 5.5.5.1.15.? 3.731? 1? 4? Curvatura

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

CAPITOLO 1 CONCETTI FONDAMENTALI

CAPITOLO 1 CONCETTI FONDAMENTALI P - Cotoll automatc I CAPITOLO CONCETTI FONDAMENTALI Rduzoe degl chem a blocch Speo tem comple vegoo appeetat co chem a blocch, cu elemet hao cacuo u olo geo e ua ola ucta; dve elemet ultao qu collegat

Dettagli

Lezione 8. Risultanti e discriminanti.

Lezione 8. Risultanti e discriminanti. Lezoe 8 Prerequst: Rdc d polo Cp d spezzeto Lezoe 5 Rsultt e dscrt I quest sezoe studo crter eettv per stlre qudo due polo coecet u cpo ho rdc cou S F u cpo Proposzoe 8 I polo o ull, ] ho u rdce coue u

Dettagli

Relazioni statistiche

Relazioni statistiche buo delle doe apput Coo d Stattca - caale E- - modulo bae - a.a.007-08 Relazo tattche I ua dtbuzoe tattca doppa o multpla può tudae la: coeoe - e al vaae d uo de caatte l alto mae cotate o vaa modo udezoale

Dettagli

ANOVA (ANalysis Of VAriance) Un caso di studio. ANOVA (Analisi della varianza ad un fattore) ANOVA (Analisi della varianza ad un fattore)

ANOVA (ANalysis Of VAriance) Un caso di studio. ANOVA (Analisi della varianza ad un fattore) ANOVA (Analisi della varianza ad un fattore) /0/00 ANOVA (ANaly Of VArace U cao d tudo Coro d Stattca per l prea I put vedta d u azeda oo clafcat bae all ubcazoe (cetro, ecetro, perfera Prof. A. Regol a.a. 00-0 Sulla bae delle oervazo capoare vuole

Dettagli

Generalità sulle macchine rotanti

Generalità sulle macchine rotanti Macchie elettiche ate Geealità ulle macchie otati Foza di Loetz U filo coduttoe immeo i u camo magetico B (i figua B ha diezioe ucete dal foglio) e ecoo da ua coete i iega i ua o ell alta diezioe a ecodo

Dettagli

Lezione 20. Campi numerici ed anelli di Dedekind.

Lezione 20. Campi numerici ed anelli di Dedekind. Lezoe 0 Prerequst: Lezo 9 Dom ad deal prcpal Camp umerc ed aell d Dedekd Defzoe 0 S dce campo umerco og estesoe fta d Q coteuta C Osservazoe 0 Essedo Q u campo perfetto (poché è d caratterstca 0 ved la

Dettagli

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La edita fiaziaia U ispamiatoe, alla fie di ogi ao, vesa ua ata R di 6000 a ua baca che la capitalizza a u tasso d iteesse auo i del 3,5% Il motate M matuato alla fie

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi Le mede Italo Nofro LE MEDIE Statstca medca Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt el collettvo oggetto d

Dettagli

1. Generalità sull energia potenziale elettrica. Supponiamo di avere un sistema di due cariche elettriche positive, Q

1. Generalità sull energia potenziale elettrica. Supponiamo di avere un sistema di due cariche elettriche positive, Q UNITÀ 9 IL POTENZIALE ELETTRICO. Geealità sull eegia poteziale elettica.. L eegia poteziale elettica di due caiche putifomi e di più caiche putifomi.. Il poteziale elettico. 4. Poteziale elettico geeato

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

LA BASE TECNICA. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

LA BASE TECNICA. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Pof. Rocco Robeto Cechaa LA BASE TECICA Pof. Cechaa Rocco Robeto ateale e Rfemet. Captolo del teto Tecca attuaale delle acuazo coto Da (Dabo 993). Lucd dtbut aula Pof. Rocco Robeto Cechaa. Impotazoe teoca

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento Captolo 17 Suggermet agl eercz a cura d Elea Slett Eerczo 17.1: Suggermeto S rcord che X 1, X 2, X 3 oo v.c. dpedet quado le etrazo oo co rpozoe. Uo tmatore T dce o dtorto e l uo valore atteo cocde co

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione.

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione. Dvsbltà e umer prm Sao a,b elemet dell seme Z degl ter relatv Dcamo che a dvde b, smbol a b, se b è multplo d a, ossa se esste u tero h Z tale che b ha Og tero a dvde 0 ( 0 0a ), metre l uco tero che dvde

Dettagli

1. Il principio di non arbitraggio e prime applicazioni

1. Il principio di non arbitraggio e prime applicazioni . Il rco o arbtraggo e rme alcazo. Itrouzoe. Il rco o arbtraggo è l rco u cu baao qua tutt moell valutazoe Faza Matematca. Oortutà arbtraggo è la obltà realzzare u guaago certo eza alcu mego fo. L'ea equlbro

Dettagli

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO CMPI DI OZ CONSEVTIVI - ENEGI POTENZIE E POTENZIE EETTICO Camp Vettoal Defzoe: u campo vettoale è ua egoe dello spazo, cu og puto è defto u vettoe. Ta camp vettoal d patcolae teesse fsca v soo camp d foza

Dettagli

Lezione 22. Fattorizzazione di ideali.

Lezione 22. Fattorizzazione di ideali. Lezioe Peequisiti: Lezioi 0, Fattoizzazioe di ideali Teoema Sia A u domiio di Dedekid, e sia I u suo ideale popio o ullo Alloa esistoo uici ideali pimi o ulli P,, P a due a due distiti ed uici umei itei

Dettagli

Analisi di un sistemi del secondo ordine Circuito RLC

Analisi di un sistemi del secondo ordine Circuito RLC Aal d u tem del ecodo orde Crcuto RLC S vuole aalzzare la rota d u crcuto RLC er dver valor dello morzameto. S celgoo tre valor d reteza corrodeza de qual lo morzameto rulta maggore d uo, more d uo, o

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

maturità 2015

maturità 2015 wwwmatematicameteit matuità QUETIONIO Detemiae l esessioe aalitica della fuzioe =f saedo ce la etta =-+ è tagete al gafico di f el secodo quadate e ce f =- + Dimostae ce il volume del toco di coo è esesso

Dettagli

La legge di Planck e l ipotesi dei quanti di luce Bose (Università di Dacca, India) Lo spazio delle fasi di un quanto di luce relativo ad un certo

La legge di Planck e l ipotesi dei quanti di luce Bose (Università di Dacca, India) Lo spazio delle fasi di un quanto di luce relativo ad un certo 1 La legge di Planck e l ipotei dei quanti di luce Boe (Univeità di Dacca, India) (pevenuto il luglio 194) Lo pazio delle fai di un quanto di luce elativo ad un ceto volume viene divio in "celle" della

Dettagli

Verifiche alle Tensioni Ammissibili. Determinazione del carico utile (o ammissibile) a flessione in una trave continua su tre appoggi.

Verifiche alle Tensioni Ammissibili. Determinazione del carico utile (o ammissibile) a flessione in una trave continua su tre appoggi. Coro di Teia delle Cotruzioi Eerizi Bozza del 7/10/005 Verifihe alle Teioi Ammiibili Determiazioe del ario utile (o ammiibile) a fleioe i ua trave otiua u tre appoggi. a ura di Ezo artielli Coro di Teia

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

Urti su scale diverse. m 1 m 2. tra particelle α Ν. t 4 ms. meteor-crater m. F r 21. r risultato di un contatto fisico

Urti su scale diverse. m 1 m 2. tra particelle α Ν. t 4 ms. meteor-crater m. F r 21. r risultato di un contatto fisico Ut uto: eeto solato el quale ua oza elataete tesa agsce e u teo elataete bee su due o ù co cotatto ta loo [aossazoe ulsa: tascuo oze estee] sultato d u cotatto sco F F sultato d ua teazoe ta atcelle eteo-cate

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Ammortamento americano. Ammortamento americano

Ammortamento americano. Ammortamento americano mmortameto amercao La cora lezoe abbamo vto che ell'ammortameto amercao l rmboro del debto zale avvee medate u uco verameto a cadeza, otteuto attravero ua operazoe d cottuzoe d u captale al tao attvo j;

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione STIMA PARAMTRICA TST DLL IPOTSI L fereza Statstca rguarda affermazo crca I parametr d ua popolazoe sulla base della metodologa statstca e del calcolo delle probabltà Stma putuale Quado u parametro della

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

E L E Z I O N I A N N O S E G G I O 0 1 F O G L I O N B N L M S M 6 0 B 1 6 A M B A N E L L A M A S S I M O 1 6 / 0 2 / 6 0 A C Q

E L E Z I O N I A N N O S E G G I O 0 1 F O G L I O N B N L M S M 6 0 B 1 6 A M B A N E L L A M A S S I M O 1 6 / 0 2 / 6 0 A C Q E L E Z I O N I A N N O 2 0 1 6 S E G G I O 0 1 F O G L I O N 1 1 0 0 0 9 6 4 4 0 5 5 7 A. T. I. A T T I V I T A ` T U R I S T I C H E I T A L I A N E S. R 4 0, 0 0 I 2 D M A N D R 4 7 E 2 0 A 9 4 9 B

Dettagli

Esercitazione V: Sintesi di una variabile quantitativa: variabilità.

Esercitazione V: Sintesi di una variabile quantitativa: variabilità. Eerctazoe V: Ste d ua varable quattatva: varabltà. Eerczo Calcolare lo cotameto emplce medo dalla medaa e dalla meda artmetca, la varaza, lo carto quadratco medo e l coeffcete d varazoe della eguete dtrbuzoe:

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α=

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α= ESERCIZIO 7. U uovo modello di termotato per frigorifero dovrebbe aicurare, tado alle pecifiche teciche, ua miore variabilità ella temperatura del frigo ripetto ai modelli della cocorreza. I particolare

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

Vettori e rette in R 2

Vettori e rette in R 2 Vettoi e ette in R odotto calae. Eecizi. Calcolae il podotto calae dei vettoi: v = [ ] e v = [ ] v_ v_ Il podotto calae è dato da: v v = ( ) + =. Calcolae l'angolo compeo ta i vettoi: v = [ ] e v = [ ]

Dettagli

CONDUZIONE TERMICA INSTAZIONARIA IN UN CILINDRO OMOGENEO E ISOTROPO

CONDUZIONE TERMICA INSTAZIONARIA IN UN CILINDRO OMOGENEO E ISOTROPO CONDUZIONE TEMICA INSTAZIONAIA IN UN CIINDO OMOGENEO E ISOTOPO V. D Aleadro Copyrght ADEPON Tutt Drtt ervat - www.adepro.t CONDUZIONE TEMICA INSTAZIONAIA IN UN CIINDO OMOGENEO E ISOTOPO Valero D AESSANDO

Dettagli

CAPITOLO III SISTEMI DI EQUAZIONI LINEARI

CAPITOLO III SISTEMI DI EQUAZIONI LINEARI CAPITOLO III SISTEMI DI EQUAZIONI LINEARI. GENERALITÀ Sao a,..., a,..., a, b umer real (o compless o elemet d u qualsas campo) ot. Defzoe.. U equazoe della forma: () a x +... + ax +... + a x b dces d prmo

Dettagli

Catene di Markov. Reti wireless Ingegneria Elettronica e Informatica 1

Catene di Markov. Reti wireless Ingegneria Elettronica e Informatica 1 Catee d Marov Utle modello d molt roce d teree er l ettore delle telecomucazo. Proceo d errore. Affevolmeto trodotto dal caale. voluzoe temorale tem a coda (ret). Cooldata trattazoe teorca. Dobl tecche

Dettagli

PROGETTAZIONE COSTRUZIONI E IMPIANTI. Prof. Stefano Pierri - Anno Scolastico

PROGETTAZIONE COSTRUZIONI E IMPIANTI. Prof. Stefano Pierri - Anno Scolastico Laboratorio teologio per l eilizia e eeritazioi i topografia PROGETTZONE COSTRUZON E PNT Prof. Stefao Pierri - o Solatio 01-014 etoo Teioi mmiibili - ETODO TELLRE SEZONE N C.. NFLESS Progetto Noti i materiali

Dettagli

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal

Dettagli

Distribuzioni doppie

Distribuzioni doppie Distibuzioi doppie Quado vegoo osideate ogiutamete due oloe di ua matie di dati si ha ua distibuzioe doppia disaggegata (o uitaia). Si tatta dell eleazioe delle modalità di due aattei ( X e Y ) ossevate

Dettagli

Esercizi commentati per il recupero - Modulo a

Esercizi commentati per il recupero - Modulo a Eercizi commetati per il recupero - Modulo a MODULO a LE IMPRESE INDUSTRIALI, ASPETTI STRUTTURALI, GESTIONALI E CONTABILI Scritture di aetameto e completameto del Coto ecoomico di bilacio ESERCIZIO Relativamete

Dettagli

Statistica descrittiva per l Estimo

Statistica descrittiva per l Estimo Statstca descrttva per l Estmo Paolo Rosato Dpartmeto d Igegera Cvle e Archtettura Pazzale Europa 1-34127 Treste. Itala Tel: +39-040-5583569. Fax: +39-040-55835 80 E-mal: paolo.rosato@da.uts.t 1 A cosa

Dettagli

x = 25,6 e deviazione standard = 2,2. Nella popolazione di riferimento, composta da tutti gli apprendisti, la media di

x = 25,6 e deviazione standard = 2,2. Nella popolazione di riferimento, composta da tutti gli apprendisti, la media di PSICOMETRIA Eercizi - 06 ) A u campioe i 96 iegati elle cuole meie, ati opo il 970, viee ommiitrata ua cala i Autoritarimo (SA) il cui puteggio va a 8 (bao autoritarimo) a 07 (alto autoritarimo). Si ottegoo

Dettagli

FUNZIONE DI TRASFERIMENTO

FUNZIONE DI TRASFERIMENTO FUNZIONE DI TRASFERIMENTO Molt tem damc SISO (Sgle Iput Sgle Output) pooo eere rappreetat da modell lear e tempovarat per mezzo d equazo dfferezal lear e a coeffcet cotat, che eprmoo ua relazoe fra la

Dettagli

C3. Rette parallele e perpendicolari

C3. Rette parallele e perpendicolari C. Rette paallele e pependicolai C.1 Rette pependicolai Due ette ed ono dette pependicolai e incociandoi fomano quatto angoli conguenti. Si cive. C. Teoema: ette pependicolai fomano angoli etti Due ette

Dettagli

IL PRINCIPIO DI INDUZIONE MATEMATICA

IL PRINCIPIO DI INDUZIONE MATEMATICA IL PRINCIPIO DI INDUZIONE MATEMATICA Suppoiamo di vole dimostae ua ceta poposizioe Ρ che dipede da u umeo atuale; l idea che abbiamo dei umei atuali ci suggeisce che: se Ρ è vea pe il umeo 0, e se iolte

Dettagli

DISTRIBUITED BRAGG REFLECTOR (DBR)

DISTRIBUITED BRAGG REFLECTOR (DBR) UNIVERSIT EGLI STUI I ESSIN FCOLT I INGEGNERI CORSO I LURE IN INGEGNERI ELETTRONIC ISTRIUITE RGG REFLECTOR R) R ISTRIUITE RGG REFLECTOR) Stuttua : mezzo eodco a stat N coe d stat d mateale delettco; Gl

Dettagli

2.1 Il modello di regressione lineare multipla

2.1 Il modello di regressione lineare multipla . LA REGRE SSI ONE LI NEARE MULIPLA La teoa della egeoe leae multla ode all obettvo d tudae la dedeza d ua vaable quattatva Y da u eme d m vaabl elcatve quattatve,, m, dette egeo, medate u modello leae.

Dettagli

CAPITOLO II ELEMENTI DI CALCOLO DELLE PROBABILITA'

CAPITOLO II ELEMENTI DI CALCOLO DELLE PROBABILITA' CAPITOLO II LMNTI DI CALCOLO DLL PROBABILITA'. Spazo de capo ed evet Sa eeguto u epereto (e. l laco d u dado, dce pazo de capo o pazo capoaro S l'ee d tutt pobl et (rultat d quell'epereto. Nel cao del

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

Definizioni. Unità strutturale. Massa dell unità strutturale (M 0.) = 100 a.m.u. Macromolecola o Catena polimerica

Definizioni. Unità strutturale. Massa dell unità strutturale (M 0.) = 100 a.m.u. Macromolecola o Catena polimerica Defzo Utà strutturale (massa o moomero) assa dell utà strutturale (.) a.m.u acromolecola o Catea polmerca grado d polmerzzazoe (DP) massa molecolare x.p. Luda ateral polmerc 6 Defzo Grado d polmerzzazoe

Dettagli

ELABORAZIONE DEI DATI

ELABORAZIONE DEI DATI ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore

Dettagli

Lezione alla fiera ABCD, Genova

Lezione alla fiera ABCD, Genova Lezioe alla fiea ABCD, Geova 9..00 Pagia ) il flipchat peseta ua tabella co le caatteistiche del campo elettico. Si evidezia il caso del campo elettico uifome: Pagia ) disego le liee delle amatue: i alto

Dettagli

Lezione 17. Elementi periodici. Teoremi di Lagrange, Eulero e Fermat. Gruppi ciclici.

Lezione 17. Elementi periodici. Teoremi di Lagrange, Eulero e Fermat. Gruppi ciclici. Lezioe 17 Prerequiiti: Lezioi -4, 8. Eleeti eriodici. Teorei di Larae, Eulero e Ferat. rui ciclici. Defiizioe 17.1 Sia (, + ) u ruo additivo. Sia. Per oi Z i oe 0 e = 0; = + + e > 0; volte (( ) ) e < 0.

Dettagli

Il teorema di Gauss e sue applicazioni

Il teorema di Gauss e sue applicazioni Il teoema di Gauss e sue applicazioi Cocetto di flusso Cosideiamo u campo uifome ed ua supeficie piaa pepedicolae alle liee di campo. Defiiamo flusso del campo attaveso la supeficie la uatità : = (misuata

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

Motore trifase a induzione

Motore trifase a induzione Motoe tifae a iduzioe Stuttua e iciio di fuzioaeto I otoi a iduzioe o aicoi tifae cotituicoo ua delle categoie di otoi i coete alteata fa le iù diffue elle alicazioi idutiali a velocità fia e vaiabile

Dettagli

e letata dalla i igente della e ione Poli c e io anili e nno a ione ociale ife i ce uanto egue

e letata dalla i igente della e ione Poli c e io anili e nno a ione ociale ife i ce uanto egue B R U R 22 no e e 2016 n. 1 50 e o e alle Poli c e gio anili e inno a ione ociale Ra aele Pie onte e ulla a e dell i t u o ia e letata dalla i igente della e ione Poli c e io anili e nno a ione ociale

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

3. Calcolare l angolo di carico nelle condizioni di cui al punto precedente [ ] m Reattanza di dispersione

3. Calcolare l angolo di carico nelle condizioni di cui al punto precedente [ ] m Reattanza di dispersione .. SAPENZA - UNESÀ D OMA OS D LAUEA MAGSAL in NGEGNEA ELEA ed ENEGEA MAHNE E AZONAMEN ELE MAHNE ELEHE POA SA DEL GENNAO 5. Un genetoe incono tife è collegto d un tubin g. L ettnz incon è i 4 Ω e uò eee

Dettagli

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe

Dettagli

A proposito di correlazione

A proposito di correlazione BRUNO DE FINETTI A poposto d coelazoe SOCIETÀ AN. TIPOGRAFICA EMILIANA FERRARA 937-V . Come spesso avvee, ache el caso della «coelazoe» molte dscusso o hao oge che da ua cofusoe d cocett. Da qualche tempo

Dettagli

1 il parametro R del circuito equivalente semplificato riferito lato AT [Ω] 3

1 il parametro R del circuito equivalente semplificato riferito lato AT [Ω] 3 UNIESIÀ DI OMA LA SAPIENA FACOLÀ DI INGEGNEIA COSO DI LAUEA IN INGEGNEIA ENEGEICA DISCIPLINA DI MACCHINE E CONEIOI DI ENEGIA ELEICA POA SCIA D ESAME DEL 6 GIUGNO 008 Queito U traformatore trifae ha i egueti

Dettagli

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J Ve. el 9/0/09 Lvoo e Eneg Denzone lvoo pe un oz cotnte Se un oz cotnte gce u un copo che eettu uno potmento ce che l oz compe un lvoo ento come: co ( co ) ove è l componente ell oz pllel llo potmento.

Dettagli

AMPLIFICATORI A BANDA LARGA (Parte 2ª: accoppiamento a trasformatore)

AMPLIFICATORI A BANDA LARGA (Parte 2ª: accoppiamento a trasformatore) N... ml, B - tolo 8 MPIFITOI BND G (Pte ª: ometo tfomtoe) Peeqt: Bo ooez e e elle le fometl ell Eletttà. Bo ooez ell mtemt. Obettv: Sffete oz el oetto mlfzoe. volte è oveete ollee mete tfomtoe (F.) lo

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V Uiverità degli Studi di Napoli Partheope Facoltà di Scieze Motorie a.a. 0/0 Statitica Lezioe V E-mail: paolo.mazzocchi@uipartheope.it Webite: www.tatmat.uipartheope.it DISTRIBUZIONE DOPPIA di frequeze

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

Rendite a rate costanti posticipate in regime di interessi composti

Rendite a rate costanti posticipate in regime di interessi composti Redte rte cott regme d tere compot Redte rte cott potcpte regme d tere compot /32 Redte rte cott potcpte regme d tere compot 2/32 Redte rte cott potcpte regme d tere compot VALORE ATTUALE DI UNA RENDITA

Dettagli

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A.

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A. Coro di Teia delle Cotruzioi Eerizi Bozza del 1/11/005 Verifihe alle Teioi Ammiibili Verifia a preo-fleioe di ua Trave i C.A. a ura di Ezo Martielli 1 Ao aademio 004/05 Coro di Teia delle Cotruzioi Eerizi

Dettagli