Risposte non motivate non verranno giudicate

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Risposte non motivate non verranno giudicate"

Transcript

1 Istituzioni di Matematiche 12/01/2016 Ver.1 SECONDO PARZIALE Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5 e gli studenti della laurea quinquennale gli esercizi 1,2,3, (i): Determinare tutti i numeri naturali n N affinché n 3 n + 4 abbia resto 5 nella divisione per 7. (punti (ii): Sia a Z con a 3 mod 7. Determinare il resto di a 3 + a nella divisione per 7. (punti (iii): Si denoti con [a] n la classe resto di a nella divisione per n. Si determinino tre numeri negativi in [ 4] 5 [2] 7. (punti (i): Utilizzando l algoritmo di Euclide calcolare il massimo comune divisore d tra a := 2925 e b := (punti 5 ) (ii): Trovare due interi s, t Z tali che d = as + bt (ossia scrivere il massimo comun divisore tra 2925 e 1040 come un multiplo di 2925 più un multiplo di 1040). (punti 5 ) (iii): Determinare il minimo comune multiplo tra a e b. (punti 2 ) (i): Calcolare il quoziente e il resto tra 79 e 13, e poi tra 79 e 13. (punti 6 ) (ii): Utilizzando il crivello di Eratostene stabilire se 401 è un numero primo. (punti 6 ) (i): Vengono lanciati due dadi a 6 facce, qual è la probabilità che esca il numero 4 almeno una volta. (punti 6 ) (ii): Vengono lanciati due dadi da 6 e da 20 facce rispettivamente, qual è la probabilità che in entrambi i dadi esca un numero multiplo di 3. (punti 6 ) (i): Ordinare dal più grande al più piccolo le frazioni 15/18, 3/16, 8/13, 4/15. (punti 6 ) (ii): Scrivere in forma decimale (ossia nella forma del tipo 1/4 = 0.25), la frazione 4/9 in base 3. (punti 6 ) 1

2 Istituzioni di Matematiche 12/01/2016 Ver.1 Appello d esame Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5 e gli studenti della laurea quinquennale gli esercizi 1,2,3,4 1. (i): Scrivere e verificare l uguaglianza quando n = 3 e n = 5. (punti 4.) (ii): Dimostrare che per n 1 si ha n(n + 1) = 1 n(n + 1)(n + 2) n(n + 1) = 1 n(n + 1)(n + 2). (punti 8) 3 2. Sia A = N N l insieme delle coppie ordinate di numeri naturali e sia R la relazione definita da (a, b)r(c, d) se e solo se a + 2d = b + 2c. (i): Stabilire se la relazione R è o non è riflessiva, simmetrica, antisimmetrica, transitiva. (punti 4.) (ii): Scrivere cinque elementi di A in relazione con (1, 3). (punti 4.) (iii): Determinare l insieme {(a, b) A (a, b)r(0, 0)}. (punti 4.) (i): Determinare tutti i numeri naturali n N affinché n 3 n + 4 abbia resto 5 nella divisione per 7. (punti (ii): Sia a Z con a 3 mod 7. Determinare il resto di a 3 + a nella divisione per 7. (punti (iii): Utilizzando l algoritmo di Euclide calcolare il massimo comune divisore d tra a := 2925 e b := (punti (i): Vengono lanciati due dadi a 6 facce, qual è la probabilità che esca il numero 4 almeno una volta. (punti 6 ) (ii): Vengono lanciati due dadi da 6 e da 20 facce rispettivamente, qual è la probabilità che in entrambi i dadi esca un numero multiplo di 3. (punti 6 ) (i): Ordinare dal più grande al più piccolo le frazioni 15/18, 3/16, 8/13, 4/15. (punti 6 ) (ii): Scrivere in forma decimale (ossia nella forma del tipo 1/4 = 0.25), la frazione 4/9 in base 3. (punti 6 )

3 Istituzioni di Matematiche 12/01/2016 Ver.2 SECONDO PARZIALE Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5 e gli studenti della laurea quinquennale gli esercizi 1,2,3, (i): Determinare tutti i numeri naturali n N affinché n 3 2n + 4 abbia resto 5 nella divisione per 7. (punti (ii): Sia a Z con a 4 mod 7. Determinare il resto di a 3 + a nella divisione per 7. (punti (iii): Si denoti con [a] n la classe resto di a nella divisione per n. Si determinino tre numeri negativi in [ 3] 5 [2] 7. (punti (i): Utilizzando l algoritmo di Euclide calcolare il massimo comune divisore d tra a := 2106 e b := (punti 5 ) (ii): Trovare due interi s, t Z tali che d = as + bt (ossia scrivere il massimo comun divisore tra 2106 e 1274 come un multiplo di 2106 più un multiplo di 1274). (punti 5 ) (iii): Determinare il minimo comune multiplo tra a e b. (punti 2 ) (i): Calcolare il quoziente e il resto tra 79 e 12, e poi tra 79 e 12. (punti 6 ) (ii): Utilizzando il crivello di Eratostene stabilire se 419 è un numero primo. (punti 6 ) (i): Vengono lanciati due dadi a 6 facce, qual è la probabilità che esca il numero 5 almeno una volta. (punti 6 ) (ii): Vengono lanciati due dadi da 6 e da 18 facce rispettivamente, qual è la probabilità che in entrambi i dadi esca un numero multiplo di 3. (punti 6 ) (i): Ordinare dal più grande al più piccolo le frazioni 16/18, 13/16, 9/13, 8/15. (punti 6 ) (ii): Scrivere in forma decimale (ossia nella forma del tipo 1/4 = 0.25), la frazione 7/9 in base 3. (punti 6 )

4 Istituzioni di Matematiche 12/01/2016 Ver.2 Appello d esame Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5 e gli studenti della laurea quinquennale gli esercizi 1,2,3,4 1. (i): Scrivere e verificare l uguaglianza quando n = 3 e n = 5. (punti 4.) (ii): Dimostrare che per n 2 si ha (n 1)n = 1 (n 1)n(n + 1) (n 1)n = 1 (n 1)n(n + 1). (punti 8) 3 2. Sia A = N N l insieme delle coppie ordinate di numeri naturali e sia R la relazione definita da (a, b)r(c, d) se e solo se a + 3d = b + 3c. (i): Stabilire se la relazione R è o non è riflessiva, simmetrica, antisimmetrica, transitiva. (punti 4.) (ii): Scrivere cinque elementi di A in relazione con (1, 4). (punti 4.) (iii): Determinare l insieme {(a, b) A (a, b)r(0, 0)}. (punti 4.) (i): Determinare tutti i numeri naturali n N affinché n 3 2n + 4 abbia resto 5 nella divisione per 7. (punti (ii): Sia a Z con a 4 mod 7. Determinare il resto di a 3 + a nella divisione per 7. (punti (iii): Utilizzando l algoritmo di Euclide calcolare il massimo comune divisore d tra a := 2106 e b := (punti (i): Vengono lanciati due dadi a 6 facce, qual è la probabilità che esca il numero 5 almeno una volta. (punti 6 ) (ii): Vengono lanciati due dadi da 6 e da 18 facce rispettivamente, qual è la probabilità che in entrambi i dadi esca un numero multiplo di 3. (punti 6 ) (i): Ordinare dal più grande al più piccolo le frazioni 16/18, 13/16, 9/13, 8/15. (punti 6 ) (ii): Scrivere in forma decimale (ossia nella forma del tipo 1/4 = 0.25), la frazione 7/9 in base 3. (punti 6 )

5 Istituzioni di Matematiche 12/01/2016 Ver.3 SECONDO PARZIALE Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5 e gli studenti della laurea quinquennale gli esercizi 1,2,3, (i): Determinare tutti i numeri naturali n N affinché n 3 3n + 4 abbia resto 5 nella divisione per 7. (punti (ii): Sia a Z con a 6 mod 7. Determinare il resto di a 3 + a nella divisione per 7. (punti (iii): Si denoti con [a] n la classe resto di a nella divisione per n. Si determinino tre numeri negativi in [ 1] 5 [2] 7. (punti (i): Utilizzando l algoritmo di Euclide calcolare il massimo comune divisore d tra a := 2925 e b := (punti 5 ) (ii): Trovare due interi s, t Z tali che d = as + bt (ossia scrivere il massimo comun divisore tra 2925 e 2080 come un multiplo di 2925 più un multiplo di 2080). (punti 5 ) (iii): Determinare il minimo comune multiplo tra a e b. (punti 2 ) (i): Calcolare il quoziente e il resto tra 81 e 13, e poi tra 81 e 13. (punti 6 ) (ii): Utilizzando il crivello di Eratostene stabilire se 421 è un numero primo. (punti 6 ) (i): Vengono lanciati due dadi a 8 facce, qual è la probabilità che esca il numero 4 almeno una volta. (punti 6 ) (ii): Vengono lanciati due dadi da 6 e da 24 facce rispettivamente, qual è la probabilità che in entrambi i dadi esca un numero multiplo di 3. (punti 6 ) (i): Ordinare dal più grande al più piccolo le frazioni 5/18, 13/16, 8/13, 4/15. (punti 6 ) (ii): Scrivere in forma decimale (ossia nella forma del tipo 1/4 = 0.25), la frazione 5/9 in base 3. (punti 6 )

6 Istituzioni di Matematiche 12/01/2016 Ver.3 Appello d esame Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5 e gli studenti della laurea quinquennale gli esercizi 1,2,3,4 1. (i): Scrivere e verificare l uguaglianza quando n = 4 e n = 5. (punti 4.) (ii): Dimostrare che per n 1 si ha n(n + 1) = 1 n(n + 1)(n + 2) n(n + 1) = 1 n(n + 1)(n + 2). (punti 8) 3 2. Sia A = N N l insieme delle coppie ordinate di numeri naturali e sia R la relazione definita da (a, b)r(c, d) se e solo se a + 5d = b + 5c. (i): Stabilire se la relazione R è o non è riflessiva, simmetrica, antisimmetrica, transitiva. (punti 4.) (ii): Scrivere cinque elementi di A in relazione con (3, 1). (punti 4.) (iii): Determinare l insieme {(a, b) A (a, b)r(0, 0)}. (punti 4.) (i): Determinare tutti i numeri naturali n N affinché n 3 3n + 4 abbia resto 5 nella divisione per 7. (punti (ii): Sia a Z con a 6 mod 7. Determinare il resto di a 3 + a nella divisione per 7. (punti (iii): Utilizzando l algoritmo di Euclide calcolare il massimo comune divisore d tra a := 2925 e b := (punti (i): Vengono lanciati due dadi a 6 facce, qual è la probabilità che esca il numero 4 almeno una volta. (punti 6 ) (ii): Vengono lanciati due dadi da 6 e da 24 facce rispettivamente, qual è la probabilità che in entrambi i dadi esca un numero multiplo di 3. (punti 6 ) (i): Ordinare dal più grande al più piccolo le frazioni 5/18, 13/16, 8/13, 4/15. (punti 6 ) (ii): Scrivere in forma decimale (ossia nella forma del tipo 1/4 = 0.25), la frazione 5/9 in base 3. (punti 6 )

7 Istituzioni di Matematiche 12/01/2016 Ver.1 Prova teorica Appello d esame 1. Enunciare il Teorema fondamentale dell aritmetica. (punti 4.) 2. In figura tratteggiare l insieme ((A \ B) (C A)) \ (B A C). (punti 4.) A B C 3. Si consideri l insieme A := {1, 2, 3, 4, 5, 6, 7} e la relazione R definita dal seguente diagramma a frecce. Dire se la relazione è riflessiva, transitiva, simmetrica, antisimmetrica. Determinare l insieme {a A 2Ra}(punti

8 Istituzioni di Matematiche 12/01/2016 Ver.1 Prova teorica Secondo parziale 1. Siano a, b Z numeri interi. Dimostrare che se 3 divide a e 3 divide b, allora 3 divide a + b. (punti 4.) 2. Dire se ciascuno dei seguenti enunciati è vero o falso. (Come sempre le risposte vanno motivate. punti (i): Se MCD(a, b) è dispari, è vero che a e b sono entrambi dispari? (ii): Se mcm(a, b) è dispari, è vero che a e b sono entrambi dispari? (iii): Ci sono tre numeri a, b e c per cui MCD(a, b) 1, MCD(b, c) 1 e MCD(a, c) = 1? 3. Usando l algoritimo di Euclide dimostrare che per ogni n 2, si ha MCD(n, 6n + 2) = 2 per ogni n pari. (punti

9 Istituzioni di Matematiche 12/01/2016 Ver.2 Prova teorica Appello d esame 1. Enunciare il Teorema fondamentale dell aritmetica. (punti 4.) 2. In figura tratteggiare l insieme ((C \ B) (A C)) \ (B C A). (punti 4.) A B C 3. Si consideri l insieme A := {1, 2, 3, 4, 5, 6, 7} e la relazione R definita dal seguente diagramma a frecce. Dire se la relazione è riflessiva, transitiva, simmetrica, antisimmetrica. Determinare l insieme {a A 2Ra}(punti

10 Istituzioni di Matematiche 12/01/2016 Ver.2 Prova teorica Secondo parziale 1. Siano a, b Z numeri interi. Dimostrare che se 4 divide a e 4 divide b, allora 4 divide a + b. (punti 4.) 2. Dire se ciascuno dei seguenti enunciati è vero o falso. (Come sempre le risposte vanno motivate. punti (i): Se MCD(a, b) non è divisibile per due, è vero che a e b sono entrambi dispari? (ii): Se mcm(a, b) non è divisibile per due, è vero che a e b sono entrambi dispari? (iii): Ci sono tre numeri a, b e c per cui MCD(a, b) 1, MCD(b, c) 1 e MCD(b, ac) = 1? 3. Usando l algoritimo di Euclide dimostrare che per ogni n 2, si ha MCD(n, 5n + 2) = 2 per ogni n pari. (punti

11 Istituzioni di Matematiche 12/01/2016 Ver.3 Prova teorica Appello d esame 1. Enunciare il Teorema fondamentale dell aritmetica. (punti 4.) 2. In figura tratteggiare l insieme ((B \ A) (C B)) \ (A B C). (punti 4.) A B C 3. Si consideri l insieme A := {1, 2, 3, 4, 5, 6, 7} e la relazione R definita dal seguente diagramma a frecce. Dire se la relazione è riflessiva, transitiva, simmetrica, antisimmetrica. Determinare l insieme {a A 2Ra}(punti

12 Istituzioni di Matematiche 12/01/2016 Ver.3 Prova teorica Secondo parziale 1. Siano a, b Z numeri interi. Dimostrare che se 5 divide a e 5 divide b, allora 5 divide a + b. (punti 4.) 2. Dire se ciascuno dei seguenti enunciati è vero o falso. (Come sempre le risposte vanno motivate. punti (i): Se MCD(a, b) è pari, è vero che a e b sono entrambi pari? (ii): Se mcm(a, b) non è divisibile per due, è vero che a e b sono entrambi dispari? (iii): Ci sono tre numeri a, b e c per cui MCD(a, b) 1, MCD(b, c) 1 e MCD(a + c, b) = 1? 3. Usando l algoritimo di Euclide dimostrare che per ogni n 2, si ha MCD(n, 4n + 2) = 2 per ogni n pari. ( punti

Risposte non motivate non verranno giudicate

Risposte non motivate non verranno giudicate Istituzioni di Matematiche 16/02/2016 Ver.1 Nome e cognome Matricola X se Quadriennale Risposte non motivate non verranno giudicate Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5

Dettagli

623 = , 413 = , 210 = , 203 =

623 = , 413 = , 210 = , 203 = Elementi di Algebra e Logica 2008. 3. Aritmetica dei numeri interi. 1. Determinare tutti i numeri primi 100 p 120. Sol. :) :) :) 2. (i) Dimostrare che se n 2 non è primo, allora esiste un primo p che divide

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

1 Proprietà elementari delle congruenze

1 Proprietà elementari delle congruenze 1 Proprietà elementari delle congruenze Un altro metodo di approccio alla teoria della divisibilità in Z consiste nello studiare le proprietà aritmetiche del resto della divisione euclidea, o, come si

Dettagli

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Liceo Scientifico Gullace PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Aritmetica 014-15 1 Lezione 1 DIVISIBILITÀ, PRIMI E FATTORIZZAZIONE Definizioni DIVISIBILITÀ': dati due interi a e b, diciamo

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Laboratorio teorico-pratico per la preparazione alle gare di matematica

Laboratorio teorico-pratico per la preparazione alle gare di matematica Laboratorio teorico-pratico per la preparazione alle gare di matematica Ercole Suppa Liceo Scientifico A. Einstein, Teramo e-mail: ercolesuppa@gmail.com Teramo, 10 dicembre 2014 USR Abruzzo - PLS 2014-2015,

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

IST. MAT. SFP 2015/2016-ESERCIZI

IST. MAT. SFP 2015/2016-ESERCIZI IST. MAT. SFP 2015/2016-ESERCIZI LOGICA (1) Esprimere la negazione delle seguenti proposizioni: Ogni cinese è asiatico Esiste un cinese che é biondo Nessun europeo è americano Tutti i cinesi non sono asiatici

Dettagli

Matematica Discreta e Logica Matematica ESERCIZI

Matematica Discreta e Logica Matematica ESERCIZI Matematica Discreta e Logica Matematica ESERCIZI Proff. F. Bottacin e C. Delizia Esercizio 1. Scrivere la tavola di verità della seguente formula ben formata e determinare se essa è una tautologia: A ((A

Dettagli

Un elenco di esercizi per il corso Matematica docente: Alberto Dolcetti

Un elenco di esercizi per il corso Matematica docente: Alberto Dolcetti Un elenco di esercizi per il corso Matematica docente: Alberto Dolcetti Ricevo molti messaggi di posta elettronica che suggeriscono varie soluzioni per gli esercizi proposti. Questo non mi dispiace perchè

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

Aritmetica modulare, numeri primi e crittografia

Aritmetica modulare, numeri primi e crittografia Università di Pavia 14 Giugno 2016 Numeri primi Definizione Un intero n > 1 è un numero primo se non esistono due interi a, b > 1 tali che n = ab. Sono dunque numeri primi: 2, 3, 5, 7, 11, 13, 17, 19,

Dettagli

Tot

Tot Università degli studi di Verona Corsi di laurea in Informatica e in Tecnologie dell Informazione Prova scritta di Matematica di Base 14 settembre 2005 matricola...................... nome..........................

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero

Dettagli

Note di Aritmetica. Mauro Saita Versione provvisoria. Settembre Numeri naturali. 1

Note di Aritmetica. Mauro Saita   Versione provvisoria. Settembre Numeri naturali. 1 Note di Aritmetica Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria. Settembre 2011. 1 Indice 1 Numeri naturali. 1 2 Numeri interi 3 2.1 L anello Z dei numeri interi..................................

Dettagli

Congruenze. Classi resto

Congruenze. Classi resto Congruenze. Classi resto Congruenze modulo un intero DEFINIZIONE Siano a e b due numeri interi relativi; fissato un intero m si dice che a è congruo a b modulo m se la differenza a b è multipla di m, e

Dettagli

TEORIA DEI NUMERI. Progetto Giochi matematici. Mail:

TEORIA DEI NUMERI. Progetto Giochi matematici. Mail: TEORIA DEI NUMERI Progetto Giochi matematici Referente: prof. Antonio Fanelli Mail: fanelli.xy@gmail.com TEORIA DEI NUMERI Parte della Matematica che studia i numeri naturali ed interi e le relative proprietà.

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Matematica con Python

Matematica con Python Matematica con Python e-mail: maurosaita@tiscalinet.it Versione provvisoria. Dicembre 2016. 1 Lezione n. 2 Euclide. Indice 1 Iterazioni 2 1.1 Il ciclo for e il comando range......................... 2

Dettagli

C.L. Informatica, M-Z Bari, 12 Gennaio 2016 Traccia: 1

C.L. Informatica, M-Z Bari, 12 Gennaio 2016 Traccia: 1 Bari, 2 Gennaio 206 Traccia: Esercizio. Scrivere la definizione di funzione suriettiva. Dimostrare che la composizione di due funzioni suriettive è una funzione suriettiva. Esercizio 2. () Stabilire se

Dettagli

Verifica per la classe prima COGNOME... NOME... Classe... Data...

Verifica per la classe prima COGNOME... NOME... Classe... Data... Capitolo Gli insiemi Insiemi Insiemi Sottoinsiemi Operazioni.a Rappresentare per tabulazione e tramite l uso dei diagrammi di Eulero-Venn i seguenti insiemi dati per caratteristica: A {n n H 0 ; n 7} B

Dettagli

Sistemi di congruenze lineari

Sistemi di congruenze lineari Sistemi di congruenze lineari Per sistema sistema di congruenze lineari si intende il problema di determinare, se esistono, tutti gli interi che soddisfano contemporaneamente ad un certo numero di assegnate

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

z =[a 4 a 3 a 2 a 1 a 0 ] 10

z =[a 4 a 3 a 2 a 1 a 0 ] 10 Esercizio 1. Sia z =[a 4 a 3 a 2 a 1 a 0 ] 10 un numero intero (la notazione significa che le cifre con cui rappresento z in base 10 sono a 4,..., a 0 {0, 1,..., 9}, ecioè z = a 4 10 4 + a 3 10 3 + a 2

Dettagli

La codifica dei numeri

La codifica dei numeri La codifica dei numeri La rappresentazione dei numeri con il sistema decimale può essere utilizzata come spunto per definire un metodo di codifica dei numeri all interno degli elaboratori: la sequenza

Dettagli

Introduzione alla TEORIA DEI NUMERI

Introduzione alla TEORIA DEI NUMERI Renato Migliorato Introduzione alla teoria dei numeri Introduzione alla TEORIA DEI NUMERI Avvertenza: questo è l inizio di un testo pensato come supporto al corso di Matematiche Complementari I ed ancora

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2017 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico

Dettagli

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato. LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Dettagli

Programma di matematica classe I sez. B a.s

Programma di matematica classe I sez. B a.s Programma di matematica classe I sez. B a.s. 2016-2017 Testi in adozione: Bergamini-Barozzi-TrifoneMatematica.bluSeconda edizione vol.1- primo biennio Ed. Zanichelli MODULO A: I numeri naturali e i numeri

Dettagli

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se ( a, b Z) (p ab = (p a p b). Teorema 1. Sia p Z, p ±1. Allora p è primo se e solo se ( a, b Z)

Dettagli

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso NOTA - Negli esercizi che seguono verranno adottate le seguenti notazioni: il simbolo Z

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014 M Tumminello,

Dettagli

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002 Prova scritta di Algebra settembre 2002 1) Si consideri il sottoinsieme del gruppo Q \{0} dei numeri razionali non nulli rispetto alla moltiplicazione: { m X = n } m 0, n Si dimostri che X è un sottosemigruppo;

Dettagli

G. Pareschi RELAZIONI D ORDINE

G. Pareschi RELAZIONI D ORDINE G. Pareschi RELAZIONI D ORDINE 1 Definizione 1.1. Sia X un insieme. Una relazione su X è detta una relazione d ordine o un ordinamento di X se è riflessiva, antisimmetrica e transitiva. Un insieme X, munito

Dettagli

Calcolo algebrico e polinomi 1 / 48

Calcolo algebrico e polinomi 1 / 48 Calcolo algebrico e polinomi 1 / 48 2 / 48 Introduzione In questa lezione esporremo i principali concetti relativi al calcolo algebrico elementare e ai polinomi. In particolare, illustreremo: Prodotti

Dettagli

Fattorizzazione di interi e crittografia

Fattorizzazione di interi e crittografia Fattorizzazione di interi e crittografia Anna Barbieri Università degli Studi di Udine Corso di Laurea in Matematica (Fattorizzazione e crittografia) 14 Maggio 2012 1 / 46 Il teorema fondamentale dell

Dettagli

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

ESERCITAZIONE N.5. La relazione divide in Z. E data in Z * la corrispondenza x~y x divide y. Stabilire se è riflessiva, simmetrica, transitiva.

ESERCITAZIONE N.5. La relazione divide in Z. E data in Z * la corrispondenza x~y x divide y. Stabilire se è riflessiva, simmetrica, transitiva. ESERCIZIO 1. ESERCITAZIONE N.5 6 novembre 2007 La relazione divide in Z E data in Z * la corrispondenza x~y x divide y. Stabilire se è riflessiva, simmetrica, transitiva. Divisione euclidea in Z Algoritmo

Dettagli

TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione

TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione TEORIA DEI NUMERI. Numeri naturali, interi relativi e principi d induzione Le proprietà dell insieme N = {0,, 2, } dei numeri naturali possono essere dedotte dai seguenti assiomi di Peano:. C è un applicazione

Dettagli

Il nano sulle spalle del gigante

Il nano sulle spalle del gigante Il nano sulle spalle del gigante il sottile legame che separa matematica e informatica Miriam Di Ianni Università di Roma Tor Vergata Cosa è un problema? Dal dizionario: In matematica e in altre scienze,

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

Programma del Corso di Matematica Discreta (Elementi) anno accademico 2005/2006

Programma del Corso di Matematica Discreta (Elementi) anno accademico 2005/2006 Programma del Corso di Matematica Discreta (Elementi) lettere M-Z anno accademico 2005/2006 2 febbraio 2006 1. Logica 2. Insiemi e Funzioni 3. Numeri naturali 4. Numeri interi 5. Relazioni 6. Classi di

Dettagli

Si dice che q è il quoziente e r è il resto della divisione di a per b. Inotre, si ha: c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c).

Si dice che q è il quoziente e r è il resto della divisione di a per b. Inotre, si ha: c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c). I numeri interi Teorema 1 (divisione in Z) Siano a, b Z, b 0 Allora esistono e sono unici q, r Z tali che (1) a = bq + r () 0 r < b Si dice che q è il quoziente e r è il resto della divisione di a per

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

6. Soluzione degli esercizi su: massimo comun divisore e minimo comune multiplo.

6. Soluzione degli esercizi su: massimo comun divisore e minimo comune multiplo. M. Barlotti Soluzioni per gli Esercizi di Algebra v.!". Capitolo 6 Pag. 1 6. Soluzione degli esercizi su: massimo comun divisore e minimo comune multiplo. Esercizio 6.1 Sia A ³ Ö"", %( $**, #%$ """. Rispetto

Dettagli

Aritmetica modulare. Veronica Gavagna

Aritmetica modulare. Veronica Gavagna Aritmetica modulare Veronica Gavagna Aritmetica modulare o Aritmetica dell orologio Da http://proooof.blogspot.it/2010/04/alice-bob-e-eva-lorologio.html Alice, Bob e Eva L'orologio Che ore saranno tra

Dettagli

c A (a c = b) Le ipotesi che abbiamo ci dicono che esistono h, k A tali che:

c A (a c = b) Le ipotesi che abbiamo ci dicono che esistono h, k A tali che: Definizione 1. Dato un insieme A, un operazione su A è una applicazione da A A a valori in A. Definizione 2. Se A è un insieme con una operazione, dati a, b A diciamo che a divide b (e scriviamo a b) se

Dettagli

Politecnico di Torino Prima Facoltà di Architettura Esame di Istituzioni di Matematiche-I. f(x) = e 2x e 2.

Politecnico di Torino Prima Facoltà di Architettura Esame di Istituzioni di Matematiche-I. f(x) = e 2x e 2. Politecnico di Torino Prima Facoltà di Architettura Esame di Istituzioni di Matematiche-I A COGNOME e NOME Rondoni (01BJV, W0033) Corgnier Esercizio 1. Sia data la funzione f(x) definita da f(x) = e 2x

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Programma di matematica classe Prima

Programma di matematica classe Prima Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,

Dettagli

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta 1 / 65 index Matematica

Dettagli

(b) le operazioni, sono distributive: (c) le operazioni, hanno un elemento neutro: cioè esistono O e I P(X) tali che A P(X) : A O = A, A I = A.

(b) le operazioni, sono distributive: (c) le operazioni, hanno un elemento neutro: cioè esistono O e I P(X) tali che A P(X) : A O = A, A I = A. Elementi di Algebra e Logica 2008. 7. Algebre di Boole. 1. Sia X un insieme e sia P(X) l insieme delle parti di X. Indichiamo con, e rispettivamente le operazioni di intersezione, unione e complementare

Dettagli

2 settimana settimana 18, 19 dic 2012, 4 h - previsionale

2 settimana settimana 18, 19 dic 2012, 4 h - previsionale ISTITUZIONI DI MATEMATICA per SFP, a.a.2012/13 Docente: PAOLA SUPINO DIARIO DELLE LEZIONI 1 sesta settimana 11, 12 dic 2012, 4 h Riprendiamo la costruzione dell insieme dei numeri interi come classi di

Dettagli

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari)

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari) Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari) 0. Come usare questi appunti In questi appunti troverete alcune

Dettagli

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

Teoria dei Numeri. Lezione del 31/01/2011. Stage di Massa Progetto Olimpiadi

Teoria dei Numeri. Lezione del 31/01/2011. Stage di Massa Progetto Olimpiadi Teoria dei Numeri Lezione del 31/01/2011 Stage di Massa Progetto Olimpiadi Criteri di Divisibilità 2: ultima cifra pari 3: somma (o somma della somma) delle cifre divisibile per 3 4: ultime due cifre divisibili

Dettagli

DIVISIONE TRA POLINOMI IN UNA VARIABILE

DIVISIONE TRA POLINOMI IN UNA VARIABILE DIVISIONE TRA POLINOMI E SCOMPOSIZIONE Prof. Erasmo Modica healthinsurance@tin.it DIVISIONE TRA POLINOMI IN UNA VARIABILE L algoritmo della divisione tra polinomi è analogo a quello della divisione ordinaria

Dettagli

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo: B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO

Dettagli

I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico

I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Anno Scolastico 2012/13 Disciplina: Matematica Classe: I Liceo classico (nuovo ordinamento) Docente: prof. Roberto Capone ALGEBRA I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Specifica dettagliata degli

Dettagli

PROGRAMMAZIONE DISCIPLINARE

PROGRAMMAZIONE DISCIPLINARE Modello A2 Istituto d Istruzione Superiore POLO-LICEO ARTISTICO - VEIS02400C VENEZIA Liceo Artistico, Liceo Classico e Musicale Dorsoduro, 1073 30123 Venezia tel. 0415225252, fax 041 2414154 PROGRAMMAZIONE

Dettagli

Massimo comun divisore

Massimo comun divisore Massimo comun divisore Da Wikipedia, l'enciclopedia libera. In matematica, il massimo comun divisore (M.C.D.) di due numeri interi, che non siano entrambi uguali a zero, è il numero naturale più grande

Dettagli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica Discreta 1 / 29 index

Dettagli

MULTIPLI E DIVISORI. Definizione. Dati due interi a e b, si dice che b divide a e si scrive. se esiste un numero intero q tale che. a = bq.

MULTIPLI E DIVISORI. Definizione. Dati due interi a e b, si dice che b divide a e si scrive. se esiste un numero intero q tale che. a = bq. MULTIPLI E DIVISORI Definizione. Dati due interi a e b, si dice che b divide a e si scrive b a se esiste un numero intero q tale che a = bq. Se b a, si dice anche che a è un multiplo di b oppure che a

Dettagli

L'enigma dei numeri primi

L'enigma dei numeri primi L'enigma dei numeri primi Bardonecchia 16-18 Dicembre 2016 Introduzione I numeri primi: sono un concetto semplice; ruolo fondamentale nella vita di tutti i giorni; stanno lasciando una lunga scia di congetture.

Dettagli

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Prerequisiti per l'accesso al modulo

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

L'algoritmo di Euclide

L'algoritmo di Euclide L'algoritmo di Euclide The Euclidean algorithm for finding the greatest common divisor of two integers La divisione di un numero intero a per un altro intero b può essere prolungata finché il resto è più

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

Istruzioni per l uso per il corso di Istituzioni di Matematiche

Istruzioni per l uso per il corso di Istituzioni di Matematiche Istruzioni per l uso per il corso di Istituzioni di Matematiche anno accademico 2011-2012 Indice 1 Programma del corso 1 2 Bibliografia essenziale del corso 1 3 Modalità d esame 2 3.1 Aritmetica zero............................

Dettagli

La costruzione dei numeri naturali nodi, attività, materiali DIVISIBILITÀ MULTIPLI E DIVISORI. Margherita D Onofrio Roma 26 ottobre 2016

La costruzione dei numeri naturali nodi, attività, materiali DIVISIBILITÀ MULTIPLI E DIVISORI. Margherita D Onofrio Roma 26 ottobre 2016 La costruzione dei numeri naturali nodi, attività, materiali DIVISIBILITÀ MULTIPLI E DIVISORI Margherita D Onofrio Roma 26 ottobre 2016 La divisibilità è un tema che contribuisce alla «sensibilità numerica»,

Dettagli

Problemi e algoritmi. Il che cosa e il come. F. Damiani - Alg. & Lab. 04/05 (da U. de' Liguoro - Alg. & Spe. 03/04)

Problemi e algoritmi. Il che cosa e il come. F. Damiani - Alg. & Lab. 04/05 (da U. de' Liguoro - Alg. & Spe. 03/04) Problemi e algoritmi Il che cosa e il come Il che cosa ed il come Problema: descrive che cosa si deve calcolare Specifica (di un algoritmo): descrive che cosa calcola un algoritmo Algoritmo: descrive come

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

Problemi e algoritmi. Il che cosa ed il come. Il che cosa ed il come. Il che cosa e il come

Problemi e algoritmi. Il che cosa ed il come. Il che cosa ed il come. Il che cosa e il come Problemi e algoritmi Il che cosa e il come Problema: descrive che cosa si deve calcolare Specifica (di un algoritmo): descrive che cosa calcola un algoritmo Algoritmo: descrive come effettuare un calcolo

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base due sarà del tipo: c m c m-1... c 1 c 0 (le c i sono cifre

Dettagli

Piano annuale di lavoro anno scolastico classe quinta Corsi Giunti Scuola Annarita Monaco PROGETTAZIONE DIDATTICA.

Piano annuale di lavoro anno scolastico classe quinta Corsi Giunti Scuola Annarita Monaco PROGETTAZIONE DIDATTICA. PROGETTAZIONE DIDATTICA Competenze Alla fine della classe quinta L alunno/a: Opera tra numeri naturali e decimali: per iscritto, mentalmente, con strumenti di calcolo Risolve problemi, usando il ragionamento

Dettagli

Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D

Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D ˆ ˆ ƒˆ ˆ ƒ ˆ ˆ Œ ˆ.. 2016-2017 Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D Esercizio 1 Nell insieme delle coppie ordinate di numeri naturali,

Dettagli

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo

Dettagli

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4).

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4). 1 Relazioni 1. definizione di relazione; 2. definizione di relazione di equivalenza; 3. definizione di relazione d ordine Definizione Una corrispondenza tra due insiemi A e B è un sottoinsieme R del prodotto

Dettagli

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare

Dettagli

1. DOMANDA SULLA CONGRUENZA E IL TEOREMA DI FERMAT : (MOD 23)

1. DOMANDA SULLA CONGRUENZA E IL TEOREMA DI FERMAT : (MOD 23) Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile

Dettagli

Curricolo verticale MATEMATICA

Curricolo verticale MATEMATICA Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare

Dettagli